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Abstract.

We have shown that the Centers for Disease Control and Prevention (CDC) autocidal gravid ovitraps

(AGO trap) reduced the Aedes aegypti population and prevented mosquito outbreaks in southern Puerto Rico. After
showing treatment efficacy for 1 year, we deployed three traps per home in an area that formerly did not have traps
and in a site that served as the intervention area. Two new areas were selected as reference sites to compare the density
of Ae. aegypti without traps. We monitored mosquitoes and weather every week in all four sites. The hypotheses were
the density of Ae. aegypti in the former reference area converges to the low levels observed in the intervention area,
and mosquito density in both areas having control traps is lower than in the new reference areas. Mosquito density in
the former reference area decreased 79% and mosquito density in the new reference areas was 88% greater than in

the intervention areas.

INTRODUCTION

Dengue is the most common arboviral disease in the world,
and one that has continued to increase in incidence over the
last five decades.' Because vector control is the only means to
control dengue virus transmission currently available,” the
sustained increase of dengue probably reflects lack of signifi-
cant impact or at the best, a partial impact of vector control
without which dengue figures would be even larger. The con-
trol of dengue vectors is complicated by a lack of trained
personnel and resources and by adopting reactive approaches
to dengue control only during epidemics. Furthermore, many
indispensable (e.g., water-storage containers) and disposable
containers (e.g., trash, junk) result from urbanization in the
absence of adequate public services. Population growth has
increased urban complexity in mosquito habitat compartmen-
talization and limits the required access of vector control
personnel to premises.” Additional factors limiting dengue
control are elevated levels of insecticide resistance and lack
of evaluation of the efficacy of vector control measures.*

Current approaches to controlling dengue virus vectors rely
on the control of immature mosquitoes or adults. Immature
stages of mosquitoes are generally controlled by removing
containers that can be used as larval habitats or through the
application of larvicides, whereas adults are controlled by
spatial spraying of pesticides.”? Indoor residual spraying is
being applied for the focal control of Aedes aegypti in and
around dengue cases in Australia® but this technique is not
commonly used elsewhere. Adulticiding techniques have lim-
ited effects on existing adult mosquitoes and does not allow
for sustained control of vector populations.’ Aside from
increased resistance to the most widely used larvicide
(temephos’®), there are two main limitations in controlling
immature mosquitoes. The first of which is gaining access to
the houses or properties that are producing the mosquitoes
because the residents are absent or refuse entry to vector
control personnel.® This prevents achieving area-wide man-
agement of the vector, and mosquitoes from houses that did
not receive control measures are able to recolonize habitats in
adjacent properties. Access to properties can be compensated
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by adjusting the work schedule of vector control programs,
and by creating legislation facilitating access of health inspec-
tors to premises. The other limitation is the existence of cryp-
tic aquatic habitats, which produce dengue virus vectors, such
as storm drains, septic tanks, roof gutters, elevated water
tanks, and depressions on roof tops,”> some of which are
locally abundant and highly productive. When cryptic habitats
are present, but not identified, only the containers that are
visible will be treated resulting in incomplete application of
control measures, which in turn virtually guarantees the fail-
ure of vector control programs.'* A way to determine if
important cryptic aquatic habitats exist in a locality is by
monitoring the impact of immature control on both immature
and adult mosquito populations.'?

Vector control programs are in great need of developing
new control tools that complement the control of immature
mosquitoes'®!” and better entomological surveillance tools to
assess the impact and sustainability of specific or integrated
control measures. There are several promising approaches to
dengue virus vector control that target the adult stages of the
mosquito, such as new adulticides,'® insecticide impregnated
materials (curtains,'® bed nets,?’ covers for water-storage
containers,”’ and ovitraps!'”), sticky gravid traps,”>** auto-
dissemination of insect growth regulators by contaminated
(pyriproxyfen)®* or infected (fungi spores)* adult mosquitoes,
and the release of genetically modified® and Wolbachia-
infected mosquitoes.?”*

Better tools for entomological surveillance, mainly cen-
tered on tracking the adult stages of dengue virus vectors have
been developed, such as a more practical electro-mechanical
aspirator,” active mosquito traps,’® and a number of passive
traps for gravid females that use funnels,*! sticky surfaces,>>>*
or insecticides.*® Novel tools to monitor adult mosquito pop-
ulations can help estimate the impact of vector control mea-
sures when used in well-designed field experiments. Ideally,
field experiments would account for the confounding effects
of spatial heterogeneity and temporal changes in factors that
influence the abundance and structure of mosquito popula-
tions, such as weather. Longitudinal studies are well suited to
answer these questions.>

The current investigation is a continuation of a longitudinal
study on the impact and sustainability of sticky gravid ovitraps
(Centers for Disease Control and Prevention [CDC] autocidal
gravid ovitrap [AGO] traps®®) as a control tool for Ae. aegypti.
There were two main objectives of this study. The first was to
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determine if the sustained reduction in the Ae. aegypti female
populations observed during the first year of the investiga-
tion in an urban area was maintained over time. The second
objective was to examine if adding intervention traps to a
site that was originally used as a non-intervention reference
area would succeed in lowering the population abundance of
female Ae. aegypti to levels that have been observed in a
separate intervention site. Our results confirmed that the use
of three AGO traps per home produced consistent and sig-
nificant reductions in the population of Ae. aegypti over time.

MATERIALS AND METHODS

Study areas. Four urban areas in southern Puerto Rico were
selected as study sites. Most buildings in these areas were one
story houses with patios and had reliable sanitary services, such
as piped water and domestic garbage pickup (Table 1). All sites
had sewerage, however in Playa and Villodas several houses
still used septic tanks. Intervention area I (IA-I; La Margarita)
was isolated from neighboring buildings by a 200 m stretch of
vegetation, whereas intervention area II (IA-IL; Villodas) was
separated from other urbanized areas by ~500 m of vegetation
and roads. Isolation between urban areas was considered nec-
essary to minimize mosquito migration from nearby areas into
the intervention areas.’’*® The two reference areas (RA):
Arboleda (RA-I) and Playa (RA-II) were part of a larger
urban area, and they did not need to be isolated from nearby
Ae. aegypti populations.

Meteorological stations (HOBO Data Loggers, Onset Com-
puter Corporation, Boume, MA) were placed in the center of
La Margarita, Villodas, and Arboleda to monitor air tempera-
ture, relative humidity, and rainfall. No meteorological station
was placed in Playa because this location was just 200 m south
of La Margarita. There is a cooler and drier season from
December to March and a warmer and wetter season for the
rest of the year in the study areas.”” The main difference in
weather among study sites was the wetter conditions registered
in Villodas (Table 1).

AGO traps. The sticky AGO trap has been previously
described.?>** It is a passive trap made out of 1) a black
polyethylene pail (19 L of volume) holding 10 L of water and
a 30 g hay packet to attract gravid mosquitoes, and 2) an
upper trap entrance component that houses the sticky surface.
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The sticky glue was a non-setting, polybutylene adhesive
(32UVR, Atlantic Paste & Glue Co., Inc., Brooklyn, NY),
which had been successfully used in sticky traps before.*® A
fine-mesh screen prevented mosquitoes from reaching the
water, although at the same time allowed water vapor and
odorants to escape through the top of the trap. The screen also
prevented any adult mosquito emerging from the infusion to
escape, which can happen when eggs from dead females are
washed into the infusion by rains.>?> A funnel made out of
plastic screen (19.5 cm dia. x 10.5 cm high x 5.5 cm dia.) was
placed at the entrance of the AGO traps that we used for
mosquito elimination to reduce the entrance of domestic
lizards (CDC, unpublished data). Traps were serviced every
2 months, which consisted of cleaning the outer surface of
the trap and replacing the sticky board, hay packet, and
replenishing with water. Previous observations indicated sus-
tained capture rates of Ae. aegypti per week during the 8 weeks
between trap servicing.**

The AGO traps can be used to monitor or control Ae.
aegypti females. Sentinel AGO traps (SAGO traps) used for
mosquito surveillance were visited once a week to remove
and count all trapped mosquitoes. Traps used for mosquito
control purposes in intervention areas were left in the field for
2 months and were not used for surveillance purposes. Previ-
ous research has shown that the number of female Ae. aegypti
captured in AGO and BG-Sentinel traps were significantly
correlated,” therefore only SAGO traps were used for mos-
quito surveillance in this study. We used between 27 and 44
fixed-position SAGO traps in each study area to monitor the
density of female Ae. aegypti per week (Table 1; Figure 1).
The SAGO traps were separated from each other by a mini-
mum of 30 m to avoid trap interactions and spatial auto-
correlations.*” All SAGO traps in the four study sites were
inspected on the same day of the week, and consisted of
picking adult mosquitoes using tissue probes or forceps.
Mosquitoes were identified to species and sexed by placing
them on a white paper towel for better visibility. Aside from
Ae. aegypti, Culex quinquefasciatus mosquitoes were regu-
larly trapped. Extracting mosquitoes every week from SAGO
traps was needed to insure that any mosquitoes present in the
traps the following week was a new catch.

Experimental design. In a previous study, we placed three
AGO intervention traps per house in 81% of the houses in

TaBLE 1
Description of the four study sites in southern Puerto Rico where three AGO control traps were installed per house in two intervention areas and

were compared with two reference areas that did not have control traps

Weather (February 2013/
2014): temperature (°C),

Type of Elevation  relative humidity (%),  No. buildings Area
Location name experimental unit Geographic coordinates (m) and rainfall (mm) in study area  (ha.) No. sentinel AGO traps No. control AGO traps
La Margarita Intervention 17° 58 18" N; 3 27.2% 327 18 44 (monitored from 793 (since December
area I (IA-I) 66° 18 10" W 74.4 June 2012 to 2011)
745 February 2014)
Villodas Intervention 17° 58 13" N; 20 26.8 241 11 27 (monitored from 570 (since February
area IT (TA-II)  66° 10" 48" W 76.3 June 2012 to 2013)
1,177 February 2014)
Arboleda Reference area 17° 58 46" N; 10 26.2 398 21 30 (monitored from 0
I (RA-I) 66°17 23" W 74.6 February 2013
595 to February 2014)
Playa Reference area 17° 57 59" N; 1 27.2% 269 17 28 (monitored from 0
IT (RA-II) 66° 18 10" W 74.4 February 2013
745 to February 2014)

*The same meteorological station was used because of the proximity of these two areas.
AGO = autocidal gravid ovitrap.
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FiGure 1. Location of sentinel autocidal gravid ovitraps (AGO traps) deployed at fixed locations to monitor the number of female Ae. aegypti

per week in each of the four study areas.

La Margarita (IA-I) and used Villodas (IA-II) as a reference
(without intervention traps) to compare the number of female
Ae. aegypti every week from October 2011 to 2012.*2 The
current investigation is a continuation of that study where
AGO intervention traps were placed in 85% of the houses
in both localities. Thus, AGO intervention traps have been in
La Margarita (IA-I) from December 2011 to February 2014
and in Villodas (IA-IT) from February 2013 to 2014.

Impact of AGO intervention traps. Research hypothesis 1
stated that the density of Ae. aegypti in Villodas (IA-IT) would
be significantly reduced after trap deployment. To test this
hypothesis we compared the average weekly density of female
Ae. aegypti per trap in Villodas (IA-II) before (June 2012—
February 2013) and after placing the AGO intervention traps
(February 2013-2014). Research hypothesis 2 stated that the
density of Ae. aegypti in Villodas (IA-II) after placing the
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traps was similar to that observed in La Margarita (IA-I)
where AGO intervention traps had been in place since
December 2011. When placing the AGO intervention traps
in Villodas (IA-II), we also implemented source reduction
measures that included the removal of artificial containers,
larviciding, and oviciding to reduce the availability of con-
tainers with water and temporarily reduce the population of
Ae. aegypti. These control measures were also implemented in
La Margarita (IA-I) at the beginning of the study in December
of 2011.%

Comparing areas with and without AGO intervention traps.
To compare these results with the density of Ae. aegypti in
non-intervention areas, we selected two nearby urban areas:
Arboleda (Reference Area I [RA-I]) and Playa (Reference
Area II [RA-IT]; Table 1; Figure 1). Research hypothesis 3
was that Ae. aegypti density in areas with AGO intervention
traps (IA-T and TA-IT) was significantly lower than in the new
reference areas (RA-I and RA-IT). The new RAs were con-
currently monitored from February 2013 to February 2014
(after placing the AGO control traps in TA-II).

Statistical analyses. We tested null hypothesis 1 that the
density of Ae. aegypti females (individuals per trap per week)
in the new intervention area (IA-IT) was the same before and
after placing three AGO traps per home. A generalized linear
mixed model (GLMM) was used to test for the main effect of
treatment (before, after trap placement) in Villodas (IA-II),
whereas controlling for the week of sampling between trap
servicing (1-8 weeks), rainfall (accumulated rainfall during
the third and second weeks before sampling), relative humid-
ity (average of 7 days before sampling), and temperature
(average for 3 weeks before sampling).* The distribution
probability function of the dependent variable was the negative
binomial with log link. The covariance structure for the
repeated estimation of mosquito density per trap per week
was a first-order autoregressive function. The model variables
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location and house ID were used as random factors to account
for location bias using a covariance component identity matrix.

We tested null hypothesis 2 that after placing AGO inter-
vention traps in Villodas (IA-II), mosquito density was going
to reach similar values to those observed in La Margarita
(TA-T), where a similar treatment with three AGO traps per
home had been in place since December 2011. A GLMM
model was used as before but the main effect tested was
location (IA-I versus IA-II).

Null hypothesis 3 stated no significant differences in female
Ae. aegypti density per week among the four study sites (IA-I,
IA-II, RA-I, RA-II), or that placing three AGO intervention
traps around each home in the intervention areas would not
significantly affect mosquito density from February 2013 to
February 2014. A GLMM was used to test for the differences
in average number of female Ae. aegypti per trap per week
where study site was the main effect. The same covariates and
model specifications were used as before. All statistical anal-
yses were performed using IBM SPSS Statistics 20 software
(IBM Corporation, Armonk, NY).

RESULTS

Impact of AGO intervention traps. There was an average
reduction of 79% in the number of female Ae. aegypti per
trap per week after placing the AGO intervention traps in
IA-IT (estimated means + 95% confidence interval [CI];
before = 5.7; 5.0-6.6, after = 1.2; 1.0-1.4; Figure 2). The
GLMM model showed significant effects of trap placement
(before, after; Fy o405 = 798.3, P < 0.001), week after trap
servicing (F7, 2425 = 59, P < 0001), rainfall (F]’ 2425 = 163,
P < 0.001), relative humidity (F;, ,45 = 47.2, P < 0.001), and
temperature (Fq, 2405 = 5.2, P < 0.05).

Average captures in Villodas (IA-II) after placing the
AGO control traps (1.2; 1.0-1.4 females per trap per week)

- - - |A-I before (3 traps / home)
- - - |A-l after (3 traps / home)
——IA-ll before (no control traps)

——|A-ll after (3 traps / home)

Intervention in |A-II
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Ficure 2. Changes in average Ae. aegypti females per trap per week in the new intervention area (IA-II; Villodas) after placing autocidal
gravid ovitraps (AGO traps) in February 2013 and in the previous intervention area (IA-I; La Margarita) where AGO traps had been in place

since December 2011.
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FiGure 3. Variations in weather variables registered in three meteorological stations located in two intervention and one reference sites during

the study.

were lower than in La Margarita during the same time period
(1.6; 1.4-1.8; February 2012-2014). The GLMM model
showed significant effects of site (Fy, 3756 = 7.9, P < 0.01), week
after trap servicing (F;, 3756 = 17.8, P < 0.001), rainfall (F; 3756 =
13.0, P < 0.001), and relative humidity (F; 3756 = 15.5, P <
0.001). However, the densities of Ae. aegypti in both localities
seemed to have converged to similar values during the last
weeks of observations (Figure 2).

Average captures in IA-I were similar before (average =
95% CI; 1.5 £ 0.2) and after (1.6 + 0.2) the point in time when
traps were placed in IA-II, indicating that the presence of
AGO intervention traps in TA-I (La Margarita) consistently
reduced the density of mosquitoes throughout the study
(Figure 2).

Accumulated rainfall during the third and second weeks
before sampling and average relative humidity during the
week before sampling (Figure 3) were positively and signifi-
cantly associated with the density of female Ae. aegypti. These
two meteorological variables were positively correlated but
were kept in the model because they may affect both the
immature and adult stages of Ae. aegypti. There were marked
inter-annual variations in the amount of precipitation
between 2012 and 2013 (Figure 3).

Trap captures in SAGO traps were evaluated weekly after
traps were serviced, which occurred every 8 weeks (Figure 4).
The results indicated a slight reduction in trap efficacy over
time after replenishing the traps with water, changing the
sticky surface, and adding a new pack of hay the eighth week
(Figure 4).

Comparing areas with and without AGO intervention
traps. The average number of female Ae. aegypti per trap per
week significantly varied among sites (Figure 5; F3 7211 =
11.0, P < 0.001), sampling weeks after trap servicing (F7, 7211 =

91.4, P <0.001), rainfall (F; 7,11 =63.9, P<0.001), and relative
humidity (F;, 7211 = 12.6, P < 0.001). The average numbers
of female Ae. aegypti per trap per week (model estimated
means; 95% CI) in the reference areas RA-I (10.4; 4.9-20.9)
and RA-IT (12.9; 6.2-26.6) were greater than in the inter-
vention areas IA-I (1.5; 0.7-3.1) and IA-II (1.3; 0.6-2.6).
Thus, areas with AGO intervention traps had 88% fewer
mosquitoes than nearby reference areas. It was observed that
Ae. aegypti females sharply increased after rains (Figure 3) in
the reference areas, whereas the magnitude of the increase
was much less in the intervention areas (Figure 5).

Average female Ae. aegypti per trap per week
w

1 2 3 4 5 6 7 8
Weeks after servicing the trap

FiGure 4. Model-estimated average numbers of Ae. aegypti
females per trap per week in sentinel autocidal gravid ovitraps at
weekly intervals (1-8) after trap servicing to observe any changes in
trap efficacy over time.
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FIGURE 5. A comparison of average Ae. aegypti females per trap per week in two autocidal gravid ovitraps (AGO traps) intervention (IA-I,
La Margarita; IA-II, Villodas) and two reference areas (RA-I, Arboleda; RA-II, Playa) in southern Puerto Rico from February 2013 to 2014.

Compared with females, fewer male Ae. aegypti were
trapped from February 2013 to February 2014 in the SAGO
traps: TA-I (females = 4,135; males = 249), IA-II (females =
2,260; males = 167), RA-I (females = 18,209; males = 826), and
RA-II (females = 23,143; males = 3,118).

DISCUSSION

In a previous study we showed that placing three AGO
traps per house (yard, garden) caused a significant and stable
reduction (60%) in the number of female Ae. aegypti in an
intervention area as compared with a reference area without
intervention traps.?* In this investigation the same number of
traps per home were placed in a former reference area
(Villodas) and the reduction in Ae. aegypti was compared
before and after trap placement. The hypothesis stated that
the density of mosquitoes in Villodas (TA-IT) would be
reduced to the low and stable counts that were observed in
La Margarita (IA-I). Our results supported this hypothesis as
the population of Ae. aegypti were significantly reduced by
79%. To compare these results with the naturally occurring
density of this mosquito in non-intervention areas, we con-
ducted concurrent surveillance in two nearby reference areas.
Average mosquito density in both reference areas was 88%
greater than in intervention areas. Thus, the results of this
ongoing longitudinal study confirmed that AGO traps can
substantially decrease the population density of Ae. aegypti.

Sticky AGO traps are effective at eliminating gravid
Ae. aegypti females and act as population sinks for both repro-
ductive adults and egg stages. We have previously shown that
the number of gravid females in AGO traps correlated with the
number of eggs in paired ovitraps®*; a result that has also been
observed in sticky traps with Ae. albopictus.®® This indicates
that the low and stable counts observed in both intervention

areas are most likely the result of a reduction in the number of
Ae. aegypti eggs going into available water-filled containers
over time. It was noted that the number of female mosquitoes
in the intervention areas fluctuated within narrow limits but
responded to an increase in rainfall accumulation, although
mosquito counts never increased to produce the larger mosquito
populations observed in the reference areas. This study also
adds evidence that rainfall is a main driver of Ae. aegypti popu-
lations in Puerto Rico.*** Temperature tended to decrease
after abundant rains as a result of increased cloudiness. Rela-
tive humidity increased after abundant rains and was signifi-
cantly associated with Ae. aegypti females per trap, however
the effect of humidity could not be distinguished from the
effect of rainfall because both variables were highly correlated.

The fact that AGO traps are serviced only every 2 months
is advantageous in comparison with smaller sticky gravid traps
or insecticidal ovitraps that require weekly or monthly main-
tenance. We have previously shown that AGO traps have
a sustained capacity to capture gravid females throughout an
8-week period.*> However, we were able to take advantage of
this more exhaustive temporal study to explore trap perfor-
mance over time. The results indicated that the week after
servicing the trap was a significant cofactor explaining trap
captures. There was a tendency to capture fewer specimens in
time, but these variations did not justify servicing the traps at
shorter intervals. These results applied to the SAGO traps that
were checked weekly, as there were opportunities to correct
any problems (e.g., objects blocking the trap entrance). This
was not done for the intervention traps, which have not been
assessed for capture efficiency after being serviced.

The use of AGO traps requires ample participation of the
community. For example, most houses (81-85%) in each
intervention area have had three traps in their yards since
December 2011 in La Margarita and since February 2013 in
Villodas. Permission to enter properties for trap servicing
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needs to be requested every 2 months, however many resi-
dents have authorized our personnel to enter their yards for
this purpose even in their absence. Furthermore, to reach the
coverage required for servicing most of the traps, we have
adjusted our field work schedule to include weekends and
after working hours to increase the likelihood that technicians
would find residents at home.?

Future studies using AGO traps should evaluate if the
reduction of mosquito populations shown in these studies
would be sufficient to prevent dengue virus transmission. The
elimination of gravid Ae. aegypti females has the added
advantage of targeting this vector at the stage in which they
can transmit arboviruses; that is, after having taken infectious
blood meals. Another logical next step would be combining
the use of AGO traps with other vector control methods,
within an integrated vector management program. The AGO
traps are compatible with other control methods such as
source reduction and larviciding, space or residual spraying
of insecticides, insecticide-impregnated materials, and the
release of genetically modified or Wolbachia-infected males.

There is a variety of traps devised to capture gravid Ae.
aegypti females, such as sticky,**** insecticidal,” and
mechanical® traps but they are not commonly used in vector
control programs. Gravid traps have been used within an
integrated approach to control Ae. aegypti around dengue
cases in Australia and Singapore,**>! but their efficacy needs
to be assessed.”® Ovitraps baited with water and Bacillus
thuringiensis israelensis (Bti) were used as part of an inte-
grated control intervention in two cities in Brazil.”® Several
field tests using insecticidal gravid traps have shown a lack of
consistent results on their impact on Ae. aegypti popula-
tions.*>°*% One factor that works against the efficacy of
gravid traps and ovitraps is the presence of naturally occur-
ring containers that function as refuges for the reproductive
population, as opposed to the sink effect of the traps. Thus, it
is expected that the impact of traps targeting gravid females
or their eggs would be augmented by removing competing
containers and controlling the immature stages of Ae. aegypti*’;
a task that can be complicated by the presence of highly
productive, cryptic aquatic habitats.
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