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Chlorobaculum tepidum, a green sulfur bacterium, utilizes
chlorobactene as its major carotenoid, and this organism also
accumulates a reduced form of this monocyclic pigment,
1�,2�-dihydrochlorobactene. The protein catalyzing this
reduction is the last unidentified enzyme in the biosynthetic
pathways for all of the green sulfur bacterial pigments used
for photosynthesis. The genome of C. tepidum contains two
paralogous genes encoding members of the FixC family of
flavoproteins: bchP, which has been shown to encode an
enzyme of bacteriochlorophyll biosynthesis; and bchO, for
which a function has not been assigned. Here we demonstrate
that a bchO mutant is unable to synthesize 1�,2�-dihydrochlo-
robactene, and when bchO is heterologously expressed in a
neurosporene-producing mutant of the purple bacterium,
Rhodobacter sphaeroides, the encoded protein is able to cat-
alyze the formation of 1,2-dihydroneurosporene, the major
carotenoid of the only other organism reported to synthesize
1,2-dihydrocarotenoids, Blastochloris viridis. Identification
of this enzyme completes the pathways for the synthesis of
photosynthetic pigments in Chlorobiaceae, and accordingly
and consistent with its role in carotenoid biosynthesis, we
propose to rename the gene cruI. Notably, the absence of cruI
in B. viridis indicates that a second 1,2-carotenoid reductase,
which is structurally unrelated to CruI (BchO), must exist in
nature. The evolution of this carotenoid reductase in green
sulfur bacteria is discussed herein.

Carotenoids are ubiquitous pigments of photosynthesis, and
together with the modified tetrapyrrole molecules chlorophyll
(Chl)4 and/or bacteriochlorophyll (BChl), are found in all nat-
urally occurring Chl-dependent phototrophs (i.e. chloropho-
totrophs) (1) discovered to date. These isoprenoid molecules
are used to harvest light by absorption of wavelengths in the
400 –550-nm range of the solar spectrum and subsequently
transfer excitation energy to (B)Chls in photochemical reaction
center (RC) complexes where charge separation occurs (2).
Carotenoids also play roles in photoprotection (via quenching
of (B)Chl triplet states and scavenging of harmful radicals and
singlet oxygen) and the stabilization of pigment-protein inter-
actions in photosynthetic complexes of chlorophototrophic
prokaryotes and plants (2–4). Carotenoids can also be synthe-
sized by nonphototrophic organisms, including bacteria, fungi,
and, surprisingly, insects (5). Remarkably, more than 1100
variants of these usually C40 isoprenoid compounds have
been described thus far (6).

The phototrophic green sulfur bacteria (GSB) are major pri-
mary producers of biomass in anoxic environments and con-
tribute significantly to the biogeochemical cycling of carbon,
nitrogen, and sulfur on Earth (7). They are anoxygenic chloro-
phototrophs that support photosynthesis at extremely low irra-
diance by using specialized light-harvesting structures, chloro-
somes, in which BChls c, d, or e molecules self-aggregate to
form highly efficient yet elegantly simple antenna complexes
(8). The major carotenoids found in GSB have cyclic, aromatic
end groups (9, 10), and �90% of the carotenoids found in Chlo-
robaculum tepidum are located in the interior of the chloro-
some (11, 12). GSB species with chlorosomes composed of
BChl c (such as C. tepidum) or BChl d (such as Chlorobaculum
parvum) mostly produce a monocyclic aromatic carotenoid,
chlorobactene. Brown-colored GSB species, such as Chloro-
baculum limnaeum, which synthesize BChl e as their main
antenna BChl and can grow at greater depths in stratified lakes,
primarily make the dicyclic carotenoids isorenieratene and/or
�-isorenieratene (7). Using a combination of genetic manipu-
lation and heterologous expression approaches, the majority of
the enzymes involved in carotenoid biosynthesis in GSB have
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been identified (13–16). The carotenoid biosynthesis pathway
in C. tepidum is summarized in Fig. 1, and the structures of the
major carotenoids of C. limnaeum are shown in Fig. S1. Only
the enzyme catalyzing the reduction of chlorobactene to pro-
duce 1�,2�-dihydrochlorobactene in C. tepidum remained to be
identified. The only other organism reported to synthesize 1,2-
dihydrocarotenoids is the purple bacterium Blastochloris viri-
dis, which contains 15,15�-cis-1,2-dihydroneurosporene in its
RC (17).

In this study we identify the 1�,2�-carotenoid reductase
responsible for the synthesis of dihydrocarotenoids in C. tepi-
dum via mutation and heterologous expression in a purple bac-
terial host. The identification of this gene completes the biosyn-
thetic pathways for the carotenoids, and, together with the
recent completion of the pathways for (B)Chls in GSB (18, 19),
the pathways for the synthesis of all of the photopigments
found in chlorophototrophic members of this phylum are now

complete. Furthermore, bioinformatic analyses of the genome
of B. viridis, and subsequent genetic manipulations reveal that a
second, independently evolved carotenoid 1,2-reductase must
exist in nature.

Results

Disruption of bchO prevents the synthesis of
1�,2�-dihydrochlorobactene in C. tepidum

A previous study demonstrated that, of the two paralogs of
the BChl biosynthesis gene, bchP, ORF CT2256 encodes an
active BchP enzyme, whereas the role of the protein encoded by
CT1232 (annotated as bchO) could not be established (20). The
BchP and BchO proteins group with the FixC superfamily of
electron-transfer, flavin-dependent reductases (21) and are
members of the larger NAD(P)-binding Rossmann fold super-
family. BchP sequentially reduces three C�C bonds of the iso-

Figure 1. Simplified carotenoid biosynthesis pathway in C. tepidum. Enzymes catalyzing known steps are next to arrows, and respective modifications are
highlighted in pink. Some enzymes can modify multiple substrates, e.g. OH-�-carotene glucoside laurate can be formed by sequential modifications to
�-carotene by CrtC, CruC, and CruD, respectively. The enzyme catalyzing the formation of 1�,2�-dihydrochlorobactene is unknown; the modification intro-
duced by this enzyme is highlighted in green.
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prenoid alcohol attached to a bacteriochlorin macrocycle, and
ChlP performs the same function in the biosynthesis of Chls,
converting the geranylgeranyl moiety to phytyl (22) (Fig. S2).
C40 carotenoids are synthesized from two molecules of the iso-
prenoid compound, geranylgeranyl pyrophosphate, and thus
the reaction to reduce the 1,2 (or 1�,2�) C�C bond, such as that
carried by 1�,2�-dihydrochlorobactene in C. tepidum, is remi-
niscent of the reduction reactions catalyzed by BchP. To deter-
mine whether bchO encodes a carotenoid 1,2-reductase, the
CT1232 ORF was interrupted by insertional inactivation with
an aadA cassette that confers resistance to spectinomycin; the
interruption was confirmed by colony PCR (Fig. S3) and subse-
quent sequencing of the DNA amplicon. The resulting strain,
�bchO, was grown in liquid medium, the accumulated pig-
ments were extracted, and, along with those from the WT, were
analyzed by HPLC (Fig. 2). As expected, 1�,2�-dihydrochloro-
bactene was detected in the WT. Disruption of bchO abolished
the production of 1�,2�-dihydrochlorobactene, indicating that
BchO plays a role in the reduction of the 1�,2� double bond in
carotenoids of C. tepidum. The synthesis of all other carote-
noids in C. tepidum was unaffected.

Expression of certain GSB bchO genes in Rhodobacter
sphaeroides results in the accumulation of
1,2-dihydrocarotenoids

The purple phototrophic bacterium B. viridis is the only
organism other than C. tepidum that has been documented to
produce 1,2-dihydrocarotenoids, utilizing 1,2-dihydroneuro-
sporene as its major carotenoid (23). The 15,15�-cis isomer of
this carotenoid is found in the RC, and 1,2-dihydrolycopene is
also detected as a minor pigment (24) (Fig. S4). The presump-

tive precursor for the major carotenoid of B. viridis, neuro-
sporene, accumulates to high levels in a �crtC mutant of the
model purple phototrophic bacterium, R. sphaeroides (25).
This mutant can serve as a platform in which to test whether the
gene products of GSB bchO genes are sufficient to reduce the
1,2 C�C bonds of a carotenoid, by using pigments extracted
from B. viridis as standards for the product(s) of the reaction.
The bchP and bchO genes from C. tepidum (bchPCtep and
bchOCtep), along with bchP and the three bchO paralogs found
in the genome of the brown-colored, BChl e-producing C. lim-
naeum (bchPClim and bchO1-3Clim, where bchO1Clim encodes
a protein most similar to BchOCtep), were cloned into the
pBBRBB–Ppuf843–1200 plasmid (26), in which transcription is
controlled by the promoter found upstream of the genes encod-
ing the core light-harvesting antenna (LH1) and RC subunits in
R. sphaeroides (27). These plasmids were conjugated into the
�crtC mutant of R. sphaeroides, the resulting strains were
grown in liquid medium, and carotenoids were extracted and
analyzed by HPLC (Fig. 3). As expected, the �crtC mutant pri-
marily accumulated neurosporene, as well as a smaller amount
of lycopene. The strains expressing bchPCtep and bchPClim made
the same carotenoids as the �crtC mutant. The strains express-
ing bchOCtep and bchO2Clim made small amounts of 1,2-dihy-
droneurosporene, the level in the latter strain being just above
the limit of detection. The strain expressing bchO1Clim accu-
mulated 1,2-dihydroneurosporene at close to the same level
as neurosporene, and both 15,15�-cis-1,2-dihydroneuro-
sporene and 1,2-dihydrolycopene were also detected (Fig. 3).
Dihydrocarotenoids were not detected in the strain express-
ing bchO3Clim.

To confirm the activities of these BchP proteins as BChl
reductases and to test any potential activity of BchO on BChl,
these plasmids were transformed into a �bchP mutant of
R. sphaeroides (28) that accumulates BChl a carrying a polyun-
saturated geranylgeraniol moiety (Fig. 4). Expression of GSB
bchP genes in this background restored synthesis of BChl a
esterified with phytol, although complete conversion to the
mature pigment was not achieved; products with one and two
reduced double bonds were also detected. The elution profiles
from strains expressing bchO orthologs were identical to that of
the �bchP mutant, indicating that these GSB genes do not
encode enzymes able to reduce the alcohol moieties of BChl a.
These results establish that BchO can act as a carotenoid 1,2-
reductase and indicate that the enzyme is not involved in the
biosynthesis of BChls. A conserved ORF found in the photosyn-
thesis gene clusters of many purple phototrophic bacteria is
also annotated as bchO (29), although the encoded proteins
share no similarity to BchO of GSB. We therefore propose,
according to Demerec nomenclatural rules, that the GSB bchO
genes be renamed cruI to reflect their herein established role in
carotenoid biosynthesis. We further propose to eliminate the
use of bchO with respect to the paralogous ORFs in those GSB
for which no function can currently be assigned. We suggest
that only locus tags be used to identify those ORFs.

Phylogenetic analysis of BchP, CruI, and paralogous proteins

To investigate the evolutionary relationship between BchP
and CruI, orthologs of each were identified in the species listed

Figure 2. HPLC elution profiles of carotenoids extracted from C. tepidum
strains. Highlighted peaks indicate the following carotenoids: peak 1, chlo-
robactene; peak 2, OH-chlorobactene glucoside laurate; peak 3, 1�,2�-dihydro-
chlorobactene; peak 4, OH-�-carotene glucoside laurate; and peak 5, �-caro-
tene. Carotenoids are identified as in Ref. 13, and two peaks for each pigment
are present because of the existence of trans- and cis-conformations of each.
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in Table S1, through the use of the C. tepidum protein
sequences as queries in Blastp searches of the respective pro-
teomes. The phylogenetic relationships among BchP, CruI,
and their paralogs are shown in Fig. 5. The tree supports the
assertion that cruI is paralogous to bchP but that it may have
arisen through horizontal gene transfer from a purple pho-

totrophic bacterium, because the GSB CruIs are more closely
related to purple bacterial BchPs than those within GSB. Inter-
estingly, the only cruI-like gene identified in an organism other
than GSB was found in Gemmatimonas phototrophica, a
recently discovered member of the Gemmatimonadetes, the
seventh bacterial phylum to contain a chlorophototroph (30).

Figure 3. HPLC elution profiles of carotenoids extracted from R. spha-
eroides �crtC strains expressing GSB bchP and bchO paralogs. Carote-
noids extracted from B. viridis are included for comparison. Highlighted peaks
indicate the following carotenoids: peak 1, lycopene; peak 2, neurosporene;
peak 3, 1,2-dihydrolycopene; peak 4, 1,2-dihydroneurosporene; and peak 5,
15,15�-cis-1,2-dihydroneurosporene.

Figure 4. HPLC elution profiles of BChl species extracted from R. spha-
eroides �bchP strains expressing GSB bchP and bchO paralogs. BChl a
extracted from WT R. sphaeroides is included for comparison. Highlighted
peaks indicate BChl a species esterified with the following isoprenoid alco-
hols: peak 1, geranylgeraniol; peak 2, dihydrogeranylgeraniol; peak 3, tetrahy-
drogeranylgeraniol; and peak 4, phytol.
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G. phototrophica acquired its phototrophic capability via hori-
zontal gene transfer of the photosynthesis gene cluster from a
purple chlorophototroph (31); the presence of this paralog in
G. phototrophica raises interesting questions about its origin.

R. sphaeroides strains expressing additional GSB cruI
homologs do not synthesize 1,2-dihydrocarotenoids

The phylogenetic analysis detailed above identified homo-
logs of cruI in additional GSB, although these genes are not
completely conserved in this phylum. This suggested that other
GSB may contain active carotenoid 1�,2�-reductases. To test
this hypothesis, the identified ORFs (from C. parvum, Chloro-
herpeton thalassium, Prosthecochloris aestuarii, and Chloro-
bium clathratiforme) were subsequently tested in the R. spha-
eroides �crtC mutant in the same manner described above.
Additionally, an apparent bchP paralog present in the genome
of G. phototrophica was also tested (Fig. S5). The expression of
these bchP/cruI homologs in the �crtC mutant did not result in
the production of 1,2-dihydroneurosporene. It may be that

these proteins display stricter substrate specificity than those
from C. tepidum and C. limnaeum, only catalyzing the reduc-
tion of chlorobactene, �-carotene, or some other compound
(e.g. Chl a or a lipid). However, 1,2-dihydrocarotenoids have
not been reported in these GSB strains, and dihydrocarotenoids
do not seem to be present in G. phototrophica (32).

The B. viridis carotenoid 1,2-reductase is unrelated to CruI

The recently sequenced genome of B. viridis, the only strain
outside the GSB documented to produce carotenoids reduced
at the 1,2 position, does not contain cruI (33). In addition to the
carotenoids depicted in Fig. S4, B. viridis utilizes BChl b as its
primary photopigment (34) and bacteriopheophytin (BPheo) b,
a demetallated analog of its parent BChl that acts as the primary
electron acceptor in type-2 RCs (35). Both of these pigments
carry a reduced phytyl moiety (36), and thus B. viridis must
contain an active BchP. Because cruI is a paralog of bchP and
catalyzes a similar reductive reaction, the B. viridis bchP
(BVIR_564) gene was deleted to determine whether the

Figure 5. Phylogenetic relationships of BchP/ChlP and CruI (BchO) paralogs. The maximum likelihood tree was constructed from amino acid alignments
using the PROTGAMMAAUTO model in RAxML version 8.2.4. The numbers on the branches indicate the percentage of bootstrap support from 100 replicates,
and the scale bars indicate the specified number of amino acid substitutions per site. Example organisms from green sulfur bacteria (green), purple bacteria
(purple), green filamentous bacteria (Chloroflexi; amber), Acidobacteria (red), and Gemmatimonadetes (pink) are included. Cyanobacterial (cyan) and plant (light
green) ChlP proteins are included for reference. CruI proteins for which activity has been detected are shaded in gray.
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encoded protein is a bifunctional BChl/carotenoid reductase.
The gene was replaced at its start codon with the aadA gene,
and this replacement was confirmed by colony PCR (Fig. S6)
and subsequent sequencing of the DNA amplicon. The result-
ing strain, �bchP, was cultured in liquid medium, and the accu-
mulated pigments were extracted and, along with those from
the WT, analyzed by HPLC (Fig. 6). Deletion of bchP results in
shifts in retention for both the major BChl b peak and the minor
BPheo b peak to shorter times, consistent with the effect of
mutations of chlP/bchP genes in organisms synthesizing Chl
a/BChl a (37, 38) (Fig. 4). The BChl b and BPheo b in the �bchP
mutant should now be esterified with geranylgeraniol rather
than phytol, indicating that the activity of BchP has been abol-
ished. The carotenoids from this strain were also analyzed;
although the levels of lycopene and 1,2-dihydrolycopene are
reduced in �bchP relative to the WT, both carotenoids were
still detected. The major carotenoid in �bchP is 1,2-dihydro-
neurosporene. These results indicate that BchP in B. viridis is
solely utilized for the synthesis of BChl b carrying a reduced
esterifying alcohol moiety and that it is not responsible for the
production of 1,2-dihydrocarotenoids in this organism.

Discussion

Our identification of CruI as a 1,2-carotenoid reductase in
C. tepidum completes the pathways for the biosynthesis of
carotenoids in GSB, and thus the pathways for the synthesis of
all photosynthetic pigments in the Chlorobiaceae (GSB) are
now known. Orthologs of cruI are irregularly found throughout
the GSB, although the detection of 1,2-dihydrocarotenoids has
not been reported for any additional GSB species. It may be that
these cruI genes are redundant in these species. C. clathrati-
forme is a brown-colored GSB, synthesizing BChl e as well as
dicyclic carotenoids such as those depicted in Fig. S1; these
carotenoids do not have �-end groups available for reduction,
so redundancy of cruI from this strain is unsurprising. How-
ever, C. limnaeum also accumulates BChl e and dicyclic caro-
tenoids (10), but we have demonstrated that this strain contains
at least two active CruI carotenoid reductases. C. parvum,
C. thalassium (Chloroherpetonaceae), and P. aestuarii are
green-colored GSB and, like C. tepidum, synthesize monocyclic

carotenoids with chlorobactene or �-carotene backbones (39,
40), but the CruI proteins from these strains may have lost
function during their evolution. Alternatively, the substrate
provided to these proteins may be unsuitable to determine their
activities as carotenoid reductases; they may have stricter sub-
strate specificities and only reduce carotenoids with chlorobac-
tene or �-carotene backbones. It is also possible that the pro-
teins encoded by these genes have alternative functions, e.g.
biosynthesis of other isoprenoid molecules or the reduction/
desaturation of fatty acids. The role of the CruI proteins for
which an activity has not been demonstrated will require fur-
ther study, including heterologous expression in the cruI
mutant of C. tepidum, which may produce more suitable sub-
strates for these orthologs. This will require the development of
a plasmid-based expression system or the identification of a
neutral site in the genome in which a foreign gene and a pro-
moter sequence can be inserted.

The absence of a cruI gene in B. viridis, which synthesizes
1,2-dihydro-derivatives of neurosporene and lycopene, sug-
gests that an additional carotenoid 1,2-reductase exists in
nature, and it must be structurally unrelated to those found in
GSB. This independent evolution of unrelated enzymes cata-
lyzing the same reaction is not uncommon in nature (41) and is
in fact quite prevalent in pathways for pigment biosynthesis;
unrelated enzymes catalyzing three of the intermediate steps of
(B)Chl biosynthesis are known to exist (42–45), and GSB and
cyanobacteria utilize three or four enzymes to produce lyco-
pene from phytoene, whereas purple phototrophs use a single
phytoene desaturase enzyme (16, 46) (see Fig. 1 and Fig. S4).

Phylogenetic analysis of BchP and CruI paralogs suggested
that GSB CruI proteins are more closely related to members of
the purple bacterial BchP family than the BchP proteins within
GSB. It could be that an ancestral GSB acquired a purple bac-
terial bchP gene that would have been redundant and that this
gene accumulated mutations leading to its evolutionary con-
version into a gene encoding a carotenoid reductase. Similarly,
G. phototrophica acquired a purple bacterial photosynthesis
gene cluster via lateral transfer and contains both bchP and a
cruI-like gene; the bchP gene encodes a protein that groups with

Figure 6. HPLC elution profiles of BChls (A) and carotenoids (B) extracted from B. viridis strains. Highlighted peaks indicate the following pigments: peak
1, BChl b esterified with geranylgeraniol; peak 2, BChl b esterified with phytol; peak 3, BPheo b esterified with geranylgeraniol; peak 4, BPheo b esterified with
phytol; peak 5, lycopene; peak 6, neurosporene; peak 7, 1,2-dihydrolycopene; peak 8, 1,2-dihydroneurosporene; peak 9, 15,15�-cis-1,2-dihydroneurosporene.
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the purple bacterial BchP sequences as expected, but cruI genes
are absent in purple bacteria. This raises the possibility that a
gene duplication occurred in a purple bacterium, and G. pho-
totrophica acquired two copies of bchP, one of which was also
transferred to GSB at some point, or even that the duplication
occurred in G. phototrophica and that cruI evolved in this phy-
lum and was subsequently transferred to the GSB. It is possible
that as more genome data are acquired, cruI-like genes will be
identified in diverse phyla, such as the purple bacteria, which
may clarify the evolutionary history of this enzyme.

The phylogenetic relationship between BchP and CruI pro-
teins makes it of interest to elucidate the necessity for the evo-
lution of carotenoid 1,2-reductases. 1�,2�-Dihydrochlorobac-
tene is a minor carotenoid in C. tepidum. It only accounts for
�6% of total carotenoids in the WT (13), and a null mutation of
cruI has no detectable effect on growth (20). C. limnaeum con-
tains two or possibly three active 1,2-reductases, even though it
exclusively synthesizes carotenoids that cannot be reduced at
these positions. Additionally, cruI genes are common in GSB
genomes, but 1�,2�-dihydrocarotenoids have not been docu-
mented in these strains. It may be that 1�,2�-dihydrocarote-
noids play an important role in light harvesting or quenching
under as-yet-untested growth conditions in GSB, which may
induce their synthesis in the strains that appear not to produce
them under laboratory growth regimes. In C. tepidum, reduc-
tion of the 1�,2� double bond would prevent hydroxylation by
CrtC and thus prevent further modification, such as glucoside
esterification (Fig. 1), which may be advantageous at irradi-
ances analogous to those found deep in the water column. Sim-
ilarly, in brown-colored GSB like C. limnaeum, the reduction of
this bond may prevent cyclization at the �-end, resulting in the
accumulation of monocyclic carotenoids; this method may be
employed to tailor the absorption properties of the organism
under specific growth conditions in which dicyclic carotenoids
do not provide a growth advantage. We intend to explore this
further in both green- and brown-colored GSB.

1,2-Dihydroneurosporene and 1,2-dihydrolycopene, found
in B. viridis, have identical spectral properties to the common
neurosporene and lycopene carotenoids found in purple pho-
totrophic bacteria. This suggests that the necessity to reduce
the 1,2 C�C bonds of these carotenoids may be structural
rather than spectroscopic. Saturation of this bond would make
the carotenoid more flexible at the reduced end, which may be
required for assembly of the RC–LH1 complex; thus, loss of the
gene encoding the carotenoid 1,2-reductase unrelated to CruI
in the obligate phototroph B. viridis may be lethal. The native
BChl a biosynthesis pathway of R. sphaeroides can be diverted
toward the production of BChl b (47), and we have demon-
strated that the expression of an active GSB cruI (in particular
cruI1Clim) in a �crtC background of the same organism results
in the production of the same complement of carotenoids pro-
duced by B. viridis. Thus, it may be possible to test the assembly
of the B. viridis RC–LH1 complex in a strain of R. sphaeroides
producing BChl b and dihydrocarotenoids and thereby deter-
mine the effect of the loss of a carotenoid 1,2-reductase in this
background.

Experimental procedures

Growth conditions

Strains of GSB were grown in liquid CL medium or on solid
CP medium as previously described (13, 48) and were incubated
at 25 °C (or 42 °C for C. tepidum) under incandescent illumina-
tion (150 �mol photons�m�2�s�1). Cells for pigment analysis
were grown in 25-ml cultures to early stationary phase before
analysis. All strains and plasmids used in this study are listed in
Table S2.

R. sphaeroides strains were grown under microoxic condi-
tions in the dark in a rotary shaker at 30 °C in liquid M22�
medium (49) supplemented with 0.1% casamino acids, and
kanamycin at 30 �g�ml�1 when required, with agitation at 150
rpm. Escherichia coli strains �-Select (Bioline) and S17-1 (50)
transformed with plasmids described in the text were grown in
a rotary shaker at 37 °C in LB medium supplemented with 30
�g�kanamycin ml�1.

B. viridis was grown phototrophically in anoxic sodium
succinate medium 27 (N medium) (51) under incandescent illu-
mination (100 �mol�photons�m�2�s�1) at 30 °C as previously
described (47). When required, the medium was supplemented
with kanamycin or spectinomycin at 30 �g�ml�1.

Construction of a bchO mutant of C. tepidum

Sequences encompassing the upstream and 5� end, the 3�
end and the downstream regions, of the CT1232 locus
of C. tepidum were amplified with primer pair CT1232UpF
and CT1232UpR and primer pair CT1232DownF and
CT1232DownR, respectively. An aadA cassette, encoding ami-
noglycoside 3	-adenylyltransferase and conferring resistance
to streptomycin and spectinomycin, was amplified together
with the promoter region from pSRA81 (13) with primer pair
CT1232aadAF and CT1232aadAR. The three resulting ampli-
cons were fused by overlap extension PCR, and the linear DNA
fragment was transformed into C. tepidum as previously
described (52, 53). The resulting transformants were analyzed
for complete segregation by PCR analysis and sequencing with
primer pair CT1232UpF and CT1232DownR.

Cloning of GSB bchP genes and their paralogs

GSB bchP genes and paralogous open reading frames were
amplified from genomic DNA of described GSB strains (see text
and Table S1) or from gBlocks synthesized by Integrated DNA
Technologies, Inc. (Coralville, IA) with the relevant primer
pairs (Table S3), digested with BglII/BamHI and SpeI, and
ligated in place of the DsRed gene in pBBRBB–Ppuf843–1200–
DsRed (26) digested with BglII and SpeI.

Transformation of R. sphaeroides

Sequenced clones in the pBBRBB–Ppuf843–1200 vector back-
bone were conjugated into R. sphaeroides from E. coli S17-1,
and transconjugants were selected on M22� medium supple-
mented with kanamycin.

Construction of a bchP mutant of B. viridis

Sequences �600 bp upstream and downstream of BVIR_564
were amplified with primer pair bchPBvUpF and bchPBvUpR
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and primer pair bchPBvDownF and bchPBvDownR, respec-
tively. The resulting amplicons were fused by overlap extension
PCR, digested with EcoRI and HindIII, and ligated into similarly
digested pK18mobsacB (54). The aadA gene was amplified
from pSRA81 with bchPBvaadAF and bchPBvaadAF, digested
with NdeI and XbaI, and ligated between these sites in the
overlap between the upstream and downstream regions of
BVIR_564 in the pK18mobsacB construct, such that BVIR_564
would be precisely replaced with aadA between the corre-
sponding start and stop codons. The resulting plasmid was ver-
ified by DNA sequencing and conjugated into B. viridis using a
method previously described (55). Transconjugants in which
the plasmid had integrated into the genome by homologous
recombination were selected on N medium supplemented with
kanamycin and spectinomycin (see above). A second recombi-
nation event was then promoted by sacB-mediated selection on
N medium supplemented with 5% (w/v) sucrose, containing
spectinomycin but lacking kanamycin. Sucrose- and spectino-
mycin-resistant, kanamycin-sensitive colonies had excised the
allelic exchange vector through the second recombination
event, and replacement of BVIR_564 with aadA was confirmed
by colony PCR and sequencing using bchPBvCheckF and
bchPBvCheckR primers.

Extraction of pigments

Pigments were extracted from cell pellets with 7:2 acetone/
methanol (v/v) as previously described (56). Carotenoids were
further processed by addition of a drop of 5 M NaCl and an equal
volume of hexane to the clarified acetone/methanol extract.
The sample was mixed, and the phases were allowed to separate
(57). The upper hexane phase was transferred to a glass vial,
dried in a vacuum concentrator at 30 °C, and reconstituted in a
small volume of 0.2% (v/v) ammonia in methanol (for analy-
sis of carotenoids in GSB) or acetonitrile (for analysis of
carotenoids in R. sphaeroides or B. viridis) prior to analysis
by reversed-phase, HPLC.

Analysis of pigments by reversed-phase HPLC

Pigments were separated at a flow rate of 1 ml�min�1 at room
temperature on a Supelco Discovery HS C18 (5-�m particle
size, 120 Å pore size, 250 
 4.6 mm) on an Agilent 1100 HPLC
system. BChl b species were separated using a method modified
from that of Ortega-Ramos et al. (28). Solvents A and B were
64:16:20 (v/v/v) methanol/acetone/H2O and 80:20 (v/v) meth-
anol/acetone, respectively. Pigments were eluted with a linear
gradient of 50 –100% solvent B over 10 min, followed by further
elution with 100% solvent B for 25 min. Elution of species of
BChl b was monitored by checking the absorbance at 795 nm.

Carotenoids extracted from C. tepidum were separated and
identified as previously described (13). Solvents A and B were
42:33:25 (v/v/v) methanol/acetonitrile/H2O and 50:20:30
(v/v/v) methanol/acetonitrile/ethyl acetate, respectively. Pig-
ments were eluted with a linear gradient of 30% to 100% solvent
B over 52 min, followed by further elution with 100% solvent B
for 6 min. Elution of carotenoid species was monitored by mon-
itoring the absorbance at 490 nm.

Carotenoids extracted from R. sphaeroides and B. viridis
were separated using a method modified from that of Magda-

ong et al. (58). Pigments were eluted on an isocratic gradient of
58:35:7 (v/v/v) acetonitrile/methanol/THF. Elution of carote-
noid species was monitored at 470 and 505 nm.

Phylogenetic analysis of BchP paralogs

BchP and paralogous protein sequences from six GSB, three
purple bacteria, two green filamentous bacteria (Chloroflexi),
one acidobacterium (Chloracidobacterium thermophilum),
and one member of the Gemmatimonadetes were used, with
ChlP sequences from one higher plant and one cyanobacterium
used as outgroup members (Table S1). The obtained amino
acid sequences were aligned using MUSCLE (59) with default
settings, and phylogenies were obtained with RAxML (60)
version 8.2.4, using the automated protein model assign-
ment algorithm and a gamma model of rate heterogeneity
(-m PROTGAMMAAUTO).

Author contributions—D. P. C. and D. A. B. conceptualization;
D. P. C., J. L. T., A. G. M. C., C. N. H., and D. A. B. resources; D. P. C.
and D. A. B. formal analysis; D. P. C., C. N. H., and D. A. B. funding
acquisition; D. P. C. validation; D. P. C. visualization; D. P. C. and
A. G. M. C. methodology; D. P. C. writing-original draft; J. L. T. and
A. G. M. C. investigation; J. L. T., A. G. M. C., C. N. H., and D. A. B.
writing-review and editing; D. A. B. supervision; D. A. B. project
administration.

References
1. Bryant, D. A., and Frigaard, N.-U. (2006) Prokaryotic photosynthesis and pho-

totrophy illuminated. Trends Microbiol. 14, 488–496 CrossRef Medline
2. Frank, H. A., and Cogdell, R. J. (1996) Carotenoids in photosynthesis.

Photochem. Photobiol. 63, 257–264 CrossRef Medline
3. Paulsen, H. (1999) Carotenoids and the assembly of light-harvesting com-

plexes. In The Photochemistry of Carotenoids (Frank, H. A., Young, A. J.,
Britton, G., and Cogdell, R. J., eds) pp. 123–135, Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands

4. Gisriel, C., Sarrou, I., Ferlez, B., Golbeck, J. H., Redding, K. E., and Fromme,
R. (2017) Structure of a symmetric photosynthetic reaction center-photo-
system. Science 357, 1021–1025 CrossRef Medline

5. Moran, N. A., and Jarvik, T. (2010) Lateral transfer of genes from fungi
underlies carotenoid production in aphids. Science 328, 624 – 627
CrossRef Medline

6. Yabuzaki, J. (2017) Carotenoids database: structures, chemical finger-
prints and distribution among organisms. Database bax004

7. van Gemerden, H., and Mas, J. (1995) Ecology of phototrophic sulfur
bacteria. In Photosynthesis and Respiration: Vol. 2. Anoxygenic Photosyn-
thetic Bacteria (Blankenship, R. E., Madigan, M. T., and Bauer, C. E., eds)
pp. 49 – 85, Kluwer Academic Publishers, Dordrecht, The Netherlands

8. Bryant, D. A., and Canniffe, D. P. (2018) How nature designs light-harvest-
ing antenna systems: design principles and functional realization in chlo-
rophototrophic prokaryotes. J. Phys. B At. Mol. Opt. Phys. 51, 033001
CrossRef

9. Takaichi, S., Wang, Z. Y., Umetsu, M., Nozawa, T., Shimada, K., and Ma-
digan, M. T. (1997) New carotenoids from the thermophilic green sulfur
bacterium Chlorobium tepidum: 1�,2�-dihydro-�-carotene, 1�,2�-dihydro-
chlorobactene, and OH-chlorobactene glucoside ester, and the carote-
noid composition of different strains. Arch. Microbiol. 168, 270 –276
CrossRef Medline

10. Hirabayashi, H., Ishii, T., Takaichi, S., Inoue, K., and Uehara, K. (2004)
The role of carotenoids in the photoadaptation of the brown-colored
sulfur bacterium Chlorobium phaeobacteroides. Photochem. Photobiol.
79, 280 –285 CrossRef Medline

11. Frigaard, N.-U., Takaichi, S., Hirota, M., Shimada, K., and Matsuura, K.
(1997) Quinones in chlorosomes of green sulfur bacteria and their role in

Dihydrocarotenoid synthesis in Chlorobi

15240 J. Biol. Chem. (2018) 293(39) 15233–15242

http://www.jbc.org/cgi/content/full/RA118.004672/DC1
http://dx.doi.org/10.1016/j.tim.2006.09.001
http://www.ncbi.nlm.nih.gov/pubmed/16997562
http://dx.doi.org/10.1111/j.1751-1097.1996.tb03022.x
http://www.ncbi.nlm.nih.gov/pubmed/8881328
http://dx.doi.org/10.1126/science.aan5611
http://www.ncbi.nlm.nih.gov/pubmed/28751471
http://dx.doi.org/10.1126/science.1187113
http://www.ncbi.nlm.nih.gov/pubmed/20431015
http://dx.doi.org/10.1088/1361-6455/aa9c3c
http://dx.doi.org/10.1007/s002030050498
http://www.ncbi.nlm.nih.gov/pubmed/9297463
http://dx.doi.org/10.1562/WB-03-11.1
http://www.ncbi.nlm.nih.gov/pubmed/15115301


the redox-dependent fluorescence studied in chlorosome-like bacterio-
chlorophyll c aggregates. Arch. Microbiol. 167, 343–349 CrossRef

12. Takaichi, S., and Oh-oka, H. (1999) Pigment composition in the reaction
center complex from the thermophilic green sulfur bacterium, Chloro-
bium tepidum: carotenoid glucoside esters, menaquinone and chloro-
phylls. Plant Cell Physiol. 40, 691– 694 CrossRef

13. Frigaard, N.-U., Maresca, J. A., Yunker, C. E., Jones, A. D., and Bryant,
D. A. (2004) Genetic manipulation of carotenoid biosynthesis in
the green sulfur bacterium Chlorobium tepidum. J. Bacteriol. 186,
5210 –5220 CrossRef Medline

14. Maresca, J. A., and Bryant, D. A. (2006) Two genes encoding new carote-
noid-modifying enzymes in the green sulfur bacterium Chlorobium tepi-
dum. J. Bacteriol. 188, 6217– 6223 CrossRef Medline

15. Maresca, J. A., Graham, J. E., Wu, M., Eisen, J. A., and Bryant, D. A.
(2007) Identification of a fourth family of lycopene cyclases in photo-
synthetic bacteria. Proc. Natl. Acad. Sci. U.S.A. 104, 11784 –11789
CrossRef Medline

16. Maresca, J. A., Romberger, S. P., and Bryant, D. A. (2008) Isorenieratene
biosynthesis in green sulfur bacteria requires the cooperative actions of
two carotenoid cyclases. J. Bacteriol. 190, 6384 – 6391 CrossRef Medline

17. Michel, H., Epp, O., and Deisenhofer, J. (1986) Pigment-protein interac-
tions in the photosynthetic reaction centre from Rhodopseudomonas viri-
dis. EMBO J. 5, 2445–2451 Medline

18. Harada, J., Mizoguchi, T., Satoh, S., Tsukatani, Y., Yokono, M., Noguchi,
M., Tanaka, A., and Tamiaki, H. (2013) Specific gene bciD for C7-methyl
oxidation in bacteriochlorophyll e biosynthesis of brown-colored green
sulfur bacteria. PLoS One 8, e60026 CrossRef Medline

19. Thweatt, J. L., Ferlez, B. H., Golbeck, J. H., and Bryant, D. A. (2017) BciD is
a radical S-adenosyl-L-methionine (SAM) enzyme that completes bacte-
riochlorophyllide e biosynthesis by oxidizing a methyl group into a formyl
group at C-7. J. Biol. Chem. 292, 1361–1373 CrossRef Medline

20. Gomez Maqueo Chew, A., Frigaard, N.-U., and Bryant, D. A. (2008) Iden-
tification of the bchP gene, encoding geranylgeranyl reductase in Chloro-
baculum tepidum. J. Bacteriol. 190, 747–749 CrossRef Medline

21. Edgren, T., and Nordlund, S. (2004) The fixABCX genes in Rhodospi-
rillum rubrum encode a putative membrane complex participating in
electron transfer to nitrogenase. J. Bacteriol. 186, 2052–2060 CrossRef
Medline

22. Addlesee, H. A., Gibson, L. C., Jensen, P.-E., and Hunter, C. N. (1996)
Cloning, sequencing and functional assignment of the chlorophyll biosyn-
thesis gene, chlP, of Synechocystis sp. PCC 6803. FEBS Lett. 389, 126 –130
CrossRef Medline

23. Malhotra, H. C., Britton, G., and Goodwin, T. W. (1970) Occurrence
of 1,2-dihydro-carotenoids in Rhodopseudomonas viridis. J. Chem. Soc.
Chem. Comm. 127–128

24. Qian, P., Siebert, C. A., Wang, P., Canniffe, D. P., and Hunter, C. N. (2018)
Cryo-EM structure of the Blastochloris viridis LH1-RC complex at 2.9 Å.
Nature 556, 203–208 CrossRef Medline

25. Chi, S. C., Mothersole, D. J., Dilbeck, P., Niedzwiedzki, D. M., Zhang, H.,
Qian, P., Vasilev, C., Grayson, K. J., Jackson, P. J., Martin, E. C., Li, Y.,
Holten, D., and Hunter, C. N. (2015) Assembly of functional photosys-
tem complexes in Rhodobacter sphaeroides incorporating carotenoids
from the spirilloxanthin pathway. Biochim. Biophys. Acta 1847,
189 –201 CrossRef Medline

26. Tikh, I. B., Held, M., and Schmidt-Dannert, C. (2014) BioBrick™ compat-
ible vector system for protein expression in Rhodobacter sphaeroides.
Appl. Microbiol. Biotechnol. 98, 3111–3119 CrossRef Medline

27. Gong, L., and Kaplan, S. (1996) Translational control of puf operon ex-
pression in Rhodobacter sphaeroides 2.4.1. Microbiology 142, 2057–2069
CrossRef Medline

28. Ortega-Ramos, M., Canniffe, D. P., Radle, M. I., Hunter, C. N., Bryant,
D. A., and Golbeck, J. H. (2018) Engineered biosynthesis of bacteriochlo-
rophyll gF in Rhodobacter sphaeroides. Biochim. Biophys. Acta 1859,
501–509 CrossRef Medline

29. Kumka, J. E., and Bauer, C. E. (2015) Analysis of the FnrL regulon in
Rhodobacter capsulatus reveals limited regulon overlap with orthologues
from Rhodobacter sphaeroides and Escherichia coli. BMC Genomics 16,
895 CrossRef Medline

30. Zeng, Y., Feng, F., Medová, H., Dean, J., and Koblížek, M. (2014) Func-
tional type 2 photosynthetic reaction centers found in the rare bacterial
phylum Gemmatimonadetes. Proc. Natl. Acad. Sci. U.S.A. 111, 7795–7800
CrossRef Medline

31. Zeng, Y., and Koblížek, M. (2017) Phototrophic Gemmatimonadetes: a
new “purple” branch on the bacterial tree of life. In Modern Topics in the
Phototrophic Prokaryotes: Environmental and Applied Aspects (Hallen-
beck, P. C., ed) pp. 163–192, Springer, Cham, Switzerland

32. Zeng, Y., Selyanin, V., Lukeš, M., Dean, J., Kaftan, D., Feng, F., and
Koblížek, M. (2015) Characterization of the microaerophilic, bacteri-
ochlorophyll a-containing bacterium Gemmatimonas phototrophica
sp. nov., and emended descriptions of the genus Gemmatimonas and
Gemmatimonas aurantiaca. Int. J. Syst. Evol. Microbiol. 65,
2410 –2419 CrossRef Medline

33. Liu, L. N., Faulkner, M., Liu, X., Huang, F., Darby, A. C., and Hall, N. (2016)
Revised genome sequence of the purple photosynthetic bacterium Blasto-
chloris viridis. Genome Announc. 4, e01520-15 Medline

34. Drews, G., and Giesbrecht, P. (1966) Rhodopseudomonas viridis, nov.
spec., ein neu isoliertes, obligat phototrophes Bakterium. Arch. Mikrobiol.
53, 255–262 CrossRef Medline

35. Klimov, V. V. (2003) Discovery of pheophytin function in the photosyn-
thetic energy conversion as the primary electron acceptor of photosystem
II. Photosynth. Res. 76, 247–253 CrossRef Medline

36. Scheer, H., Svec, W. A., Cope, B. T., Studier, M. H., Scott, R. G., and Katz,
J. J. (1974) Structure of bacteriochlorophyll b. J. Am. Chem. Soc. 96,
3714 –3716 CrossRef

37. Shpilyov, A. V., Zinchenko, V. V., Shestakov, S. V., Grimm, B., and Lok-
stein, H. (2005) Inactivation of the geranylgeranyl reductase (ChlP) gene in
the cyanobacterium Synechocystis sp. PCC 6803. Biochim. Biophys. Acta
1706, 195–203 CrossRef Medline

38. Addlesee, H. A., and Hunter, C. N. (1999) Physical mapping and functional
assignment of the geranylgeranyl-bacteriochlorophyll reductase gene,
bchP, of Rhodobacter sphaeroides. J. Bacteriol. 181, 7248 –7255 Medline

39. Gibson, J., Pfennig, N., and Waterbury, J. B. (1984) Chloroherpeton thala-
ssium gen. nov. et spec. nov., a non-filamentous, flexing and gliding green
sulfur bacterium. Arch. Microbiol. 138, 96 –101 CrossRef Medline

40. Permentier, H. P., Schmidt, K. A., Kobayashi, M., Akiyama, M., Hager-
Braun, C., Neerken, S., Miller, M., and Amesz, J. (2000) Composition and
optical properties of reaction centre core complexes from the green sulfur
bacteria Prosthecochloris aestuarii and Chlorobium tepidum. Photosynth.
Res. 64, 27–39 CrossRef Medline

41. Galperin, M. Y., Walker, D. R., and Koonin, E. V. (1998) Analogous en-
zymes: independent inventions in enzyme evolution. Genome Res. 8,
779 –790 CrossRef Medline

42. Ouchane, S., Steunou, A. S., Picaud, M., and Astier, C. (2004) Aerobic and
anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bac-
teria: a strategy adopted to bypass the repressive oxygen control system.
J. Biol. Chem. 279, 6385– 6394 CrossRef Medline

43. Suzuki, J. Y., Bollivar, D. W., and Bauer, C. E. (1997) Genetic analysis of
chlorophyll biosynthesis. Annu. Rev. Genet. 31, 61– 89 CrossRef Medline

44. Liu, Z., and Bryant, D. A. (2011) Multiple types of 8-vinyl reductases for
(bacterio)chlorophyll biosynthesis occur in many green sulfur bacteria. J.
Bacteriol. 193, 4996 – 4998 CrossRef Medline

45. Bryant, D. A., Liu, Z., Li, T., Zhao, F., Garcia Costas, A. M., Klatt, C. G.,
Ward, D. M., Frigaard, N.-U., and Overmann, J. (2012) Comparative and
functional genomics of anoxygenic green bacteria from the taxa Chlorobi,
Chloroflexi, and Acidobacteria. In Advances in Photosynthesis and Respi-
ration: Vol. 35. Functional Genomics and Evolution of Photosynthetic Sys-
tems (Burnap, R. L., and Vermaasl, W., eds) pp. 47–102, Springer, Dor-
drecht, The Netherlands

46. Armstrong, G. (1999) Carotenoid genetics and biochemistry. In Iso-
prenoids including Carotenoids and Steroids (Cane, D. E., ed) Vol. 2, pp.
321–352, Elsevier, Amsterdam, The Netherlands

47. Canniffe, D. P., and Hunter, C. N. (2014) Engineered biosynthesis of bac-
teriochlorophyll b in Rhodobacter sphaeroides. Biochim. Biophys. Acta
1837, 1611–1616 CrossRef Medline

Dihydrocarotenoid synthesis in Chlorobi

J. Biol. Chem. (2018) 293(39) 15233–15242 15241

http://dx.doi.org/10.1007/s002030050453
http://dx.doi.org/10.1093/oxfordjournals.pcp.a029594
http://dx.doi.org/10.1128/JB.186.16.5210-5220.2004
http://www.ncbi.nlm.nih.gov/pubmed/15292122
http://dx.doi.org/10.1128/JB.00766-06
http://www.ncbi.nlm.nih.gov/pubmed/16923888
http://dx.doi.org/10.1073/pnas.0702984104
http://www.ncbi.nlm.nih.gov/pubmed/17606904
http://dx.doi.org/10.1128/JB.00758-08
http://www.ncbi.nlm.nih.gov/pubmed/18676669
http://www.ncbi.nlm.nih.gov/pubmed/16453713
http://dx.doi.org/10.1371/journal.pone.0060026
http://www.ncbi.nlm.nih.gov/pubmed/23560066
http://dx.doi.org/10.1074/jbc.M116.767665
http://www.ncbi.nlm.nih.gov/pubmed/27994052
http://dx.doi.org/10.1128/JB.01430-07
http://www.ncbi.nlm.nih.gov/pubmed/17993528
http://dx.doi.org/10.1128/JB.186.7.2052-2060.2004
http://www.ncbi.nlm.nih.gov/pubmed/15028689
http://dx.doi.org/10.1016/0014-5793(96)00549-2
http://www.ncbi.nlm.nih.gov/pubmed/8766814
http://dx.doi.org/10.1038/s41586-018-0014-5
http://www.ncbi.nlm.nih.gov/pubmed/29618818
http://dx.doi.org/10.1016/j.bbabio.2014.10.004
http://www.ncbi.nlm.nih.gov/pubmed/25449968
http://dx.doi.org/10.1007/s00253-014-5527-8
http://www.ncbi.nlm.nih.gov/pubmed/24509770
http://dx.doi.org/10.1099/13500872-142-8-2057
http://www.ncbi.nlm.nih.gov/pubmed/8760918
http://dx.doi.org/10.1016/j.bbabio.2018.02.006
http://www.ncbi.nlm.nih.gov/pubmed/29496394
http://dx.doi.org/10.1186/s12864-015-2162-4
http://www.ncbi.nlm.nih.gov/pubmed/26537891
http://dx.doi.org/10.1073/pnas.1400295111
http://www.ncbi.nlm.nih.gov/pubmed/24821787
http://dx.doi.org/10.1099/ijs.0.000272
http://www.ncbi.nlm.nih.gov/pubmed/25899503
http://www.ncbi.nlm.nih.gov/pubmed/26798090
http://dx.doi.org/10.1007/BF00446672
http://www.ncbi.nlm.nih.gov/pubmed/5991629
http://dx.doi.org/10.1023/A:1024990408747
http://www.ncbi.nlm.nih.gov/pubmed/16228584
http://dx.doi.org/10.1021/ja00818a092
http://dx.doi.org/10.1016/j.bbabio.2004.11.001
http://www.ncbi.nlm.nih.gov/pubmed/15694347
http://www.ncbi.nlm.nih.gov/pubmed/10572128
http://dx.doi.org/10.1007/BF00413007
http://www.ncbi.nlm.nih.gov/pubmed/11536588
http://dx.doi.org/10.1023/A:1026515027824
http://www.ncbi.nlm.nih.gov/pubmed/16228441
http://dx.doi.org/10.1101/gr.8.8.779
http://www.ncbi.nlm.nih.gov/pubmed/9724324
http://dx.doi.org/10.1074/jbc.M309851200
http://www.ncbi.nlm.nih.gov/pubmed/14617630
http://dx.doi.org/10.1146/annurev.genet.31.1.61
http://www.ncbi.nlm.nih.gov/pubmed/9442890
http://dx.doi.org/10.1128/JB.05520-11
http://www.ncbi.nlm.nih.gov/pubmed/21764919
http://dx.doi.org/10.1016/j.bbabio.2014.07.011
http://www.ncbi.nlm.nih.gov/pubmed/25058304


48. Wahlund, T. M., and Madigan, M. T. (1995) Genetic transfer by conjuga-
tion in the thermophilic green sulfur bacterium Chlorobium tepidum. J.
Bacteriol. 177, 2583–2588 CrossRef Medline

49. Hunter, C. N., and Turner, G. (1988) Transfer of genes coding for apopro-
teins of reaction centre and light-harvesting LH1 complexes to Rhodobac-
ter sphaeroides. J. Gen. Microbiol. 134, 1471–1480

50. Simon, R., Priefer, U., and Pühler, A. (1983) A broad host range mobiliza-
tion system for in vivo genetic engineering: transposon mutagenesis in
Gram negative bacteria. Nat. Biotechnol. 1, 784 –791 CrossRef

51. Claus, D., and Schaub-Engels, C. (eds) (1977) German Collection of Mi-
croorganisms: Catalogue of Strains, 2nd ed., pp. 279 –280 DSMZ Cata-
logue of Microorganisms, Braunschweig, Germany

52. Frigaard, N.-U., and Bryant, D. A. (2001) Chromosomal gene inactivation
in the green sulfur bacterium Chlorobium tepidum by natural transforma-
tion. Appl. Environ. Microbiol. 67, 2538 –2544 CrossRef Medline

53. Frigaard, N.-U., Sakuragi, Y., and Bryant, D. A. (2004) Gene inactiva-
tion in the cyanobacterium Synechococcus sp. PCC 7002 and the green
sulfur bacterium Chlorobium tepidum using in vitro-made DNA con-
structs and natural transformation. Methods Mol. Biol. 274, 325–340
Medline

54. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., and Pühler,
A. (1994) Small mobilizable multi-purpose cloning vectors derived from
the Escherichia coli plasmids pK18 and pK19: selection of defined dele-

tions in the chromosome of Corynebacterium glutamicum. Gene 145,
69 –73 CrossRef Medline

55. Chen, G. E., Canniffe, D. P., Martin, E. C., and Hunter, C. N. (2016) Ab-
sence of the cbb3 terminal oxidase reveals an active oxygen-dependent
cyclase involved in bacteriochlorophyll biosynthesis in Rhodobacter spha-
eroides. J. Bacteriol. 198, 2056 –2063 CrossRef Medline

56. Hitchcock, A., Jackson, P. J., Chidgey, J. W., Dickman, M. J., Hunter, C. N.,
and Canniffe, D. P. (2016) Biosynthesis of chlorophyll a in a purple bacte-
rial phototroph and assembly into a plant chlorophyll-protein complex.
ACS Synth. Biol. 5, 948 –954 CrossRef Medline

57. Canniffe, D. P., Chidgey, J. W., and Hunter, C. N. (2014) Elucidation of the
preferred routes of C8-vinyl reduction in chlorophyll and bacteriochloro-
phyll biosynthesis. Biochem. J. 462, 433– 440 CrossRef Medline

58. Magdaong, N. C., Niedzwiedzki, D. M., Goodson, C., and Blankenship,
R. E. (2016) Carotenoid-to-bacteriochlorophyll energy transfer in the
LH1-RC core complex of a bacteriochlorophyll b containing purple
photosynthetic bacterium Blastochloris viridis. J. Phys. Chem. B 120,
5159 –5171 CrossRef Medline

59. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 CrossRef
Medline

60. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313
CrossRef Medline

Dihydrocarotenoid synthesis in Chlorobi

15242 J. Biol. Chem. (2018) 293(39) 15233–15242

http://dx.doi.org/10.1128/jb.177.9.2583-2588.1995
http://www.ncbi.nlm.nih.gov/pubmed/7730296
http://dx.doi.org/10.1038/nbt1183-784
http://dx.doi.org/10.1128/AEM.67.6.2538-2544.2001
http://www.ncbi.nlm.nih.gov/pubmed/11375161
http://www.ncbi.nlm.nih.gov/pubmed/15187290
http://dx.doi.org/10.1016/0378-1119(94)90324-7
http://www.ncbi.nlm.nih.gov/pubmed/8045426
http://dx.doi.org/10.1128/JB.00121-16
http://www.ncbi.nlm.nih.gov/pubmed/27215788
http://dx.doi.org/10.1021/acssynbio.6b00069
http://www.ncbi.nlm.nih.gov/pubmed/27171912
http://dx.doi.org/10.1042/BJ20140163
http://www.ncbi.nlm.nih.gov/pubmed/24942864
http://dx.doi.org/10.1021/acs.jpcb.6b04307
http://www.ncbi.nlm.nih.gov/pubmed/27218197
http://dx.doi.org/10.1093/nar/gkh340
http://www.ncbi.nlm.nih.gov/pubmed/15034147
http://dx.doi.org/10.1093/bioinformatics/btu033
http://www.ncbi.nlm.nih.gov/pubmed/24451623

	A paralog of a bacteriochlorophyll biosynthesis enzyme catalyzes the formation of 1,2-dihydrocarotenoids in green sulfur bacteria
	Results
	Disruption of bchO prevents the synthesis of 1',2'-dihydrochlorobactene in C. tepidum
	Expression of certain GSB bchO genes in Rhodobacter sphaeroides results in the accumulation of 1,2-dihydrocarotenoids
	Phylogenetic analysis of BchP, CruI, and paralogous proteins
	R. sphaeroides strains expressing additional GSB cruI homologs do not synthesize 1,2-dihydrocarotenoids
	The B. viridis carotenoid 1,2-reductase is unrelated to CruI

	Discussion
	Experimental procedures
	Growth conditions
	Construction of a bchO mutant of C. tepidum
	Cloning of GSB bchP genes and their paralogs
	Transformation of R. sphaeroides
	Construction of a bchP mutant of B. viridis
	Extraction of pigments
	Analysis of pigments by reversed-phase HPLC
	Phylogenetic analysis of BchP paralogs

	References


