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Insulin injection is currently the main therapy for type 1 diabetes (T1D) or late stage of
severe type 2 diabetes (T2D). Human pancreatic islet transplantation confers a significant
improvement in glycemic control and prevents life-threatening severe hypoglycemia in
T1D patients. However, the shortage of cadaveric human islets limits their therapeutic
potential. In addition, chronic immunosuppression, which is required to avoid rejection of
transplanted islets, is associated with severe complications, such as an increased risk of
malignancies and infections. Thus, there is a significant need for novel approaches to the
large-scale generation of functional human islets protected from autoimmune rejection in
order to ensure durable graft acceptance without immunosuppression. An important step
in addressing this need is to strengthen our understanding of transplant immune tolerance
mechanisms for both graft rejection and autoimmune rejection. Engineering of functional
human pancreatic islets that can avoid attacks from host immune cells would provide an
alternative safe resource for transplantation therapy. Human pluripotent stem cells
(hPSCs) offer a potentially limitless supply of cells because of their self-renewal ability
and pluripotency. Therefore, studying immune tolerance induction in hPSC-derived
human pancreatic islets will directly contribute toward the goal of generating a
functional cure for insulin-dependent diabetes. In this review, we will discuss the current
progress in the immune protection of stem cell-derived islet cell therapy for
treating diabetes.
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INTRODUCTION

Diabetes is a complex disease that affects more than 30 million people in the US alone and over 463
million people worldwide. Individuals with diabetes are subject to an increased risk for mortality
due to cancers, infectious diseases, and other complications (1–6). The current COVID-19
pandemic has additionally highlighted that diabetes is a major risk factor for severe bouts of
disease (7–18). In particular, type 1 diabetes (T1D) is a significant burden that typically appears
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during adolescence and requires life-long insulin administration
and blood glucose monitoring (19). T1D is a chronic disease
characterized by the autoimmune destruction of pancreatic islet
b cells (20). This irreversible loss of insulin-producing b cells
impairs crucial glucose uptake in peripheral tissues, resulting in
hyperglycemia and subsequent life-threatening microvascular
and macrovascular complications (21). Though the etiology of
T1D remains unclear, it is known that both environmental risk
factors and genetic susceptibility contribute to disease
pathogenesis (22). The multifactorial nature of the disease
precludes the discovery of a cure. However, the increasing
global T1D prevalence, as well as the significant economic and
social burdens, demands a solution (23). Currently, T1D and
late-stage type 2 diabetes (T2D), a condition triggered by severe
peripheral insulin resistance and b cell dysfunction, comes in the
form of exogenous insulin administration. However, this
method of insulin delivery is not an accurate substitute for
normal pancreatic islet function, largely due to the lack of
precise temporal glucose control (24). In comparison,
allogeneic pancreatic islet transplantation offers a minimally
invasive treatment option for T1D patients, which significantly
improves glycemic control while preventing severe hypoglycemia
(25). Although clinical trials indicate that pancreatic islet
transplantation is a promising b cell replacement therapy (26,
27), there are two key issues that prevent its widespread
therapeutic utilization. The first issue is a chronic shortage of
human islets; the shortage of cadaveric pancreatic islets and the
low yield of pancreatic islet purification directly limits
transplantation use, whose efficacy depends on the number of
functional islets that survive engraftment (28). Additionally, the
cumulative cost of islet transplantation is exceedingly high,
amounting to more than $120,000 in 2009 per surgical
treatment (29), limiting the use of this therapy to only wealthy
patients in high-income countries. The second issue is the
immune rejection and loss of function of transplanted grafts;
patients who have undergone pancreatic islet transplantation
require immunosuppressive agents, such as thymoglobulin and
basiliximab, to avoid graft rejection of transplanted islets (30–
32). Chronic immunosuppression can lead to increased risks of
infection, autoreactivity, and the induction of malignancies
(33–35).

The shortage of human cadaveric islets, the high cost of islet
transplantation, and the complications associated with life-long
immunosuppression collectively demonstrate the crucial need
for novel approaches to pancreatic islet transplantation. One
promising avenue of research is the generation of functional
pancreatic islets from human pluripotent stem cells (hPSCs)
such as embryonic pluripotent stem cells (ESCs) (36) and
induced pluripotent stem cells (iPSCs) (37), which possess
indefinite self-renewal and pluripotency.

Chemically defined stepwise differentiation by using small
molecules and recombinant proteins enables us to induce
glucose-responsive, functional insulin-producing cells from
hPSCs in a reproducible manner. hPSC-derived pancreatic islet
b cells hold great promise as an alternative source of primary
islets for treating diabetes, although there remain major
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limitations in maturity and graft survival due to immune
rejection. In vivo, b cells become functionally mature via a
long-term of postnatal maturation process. This process has
not yet been duplicated in vitro to transform hiPSCs into fully
functional b cells equivalent to primary b cells, indicating that
further improvements in the hPSC-derived b cell maturation
process are required. In addition, even though islet cells delivered
from hiPSCs are by definition autologous (and thus MHC-
matched), life-long immune suppression may still be required
to protect against autoimmune rejection of transplanted islet
cells due to a hyperactive immune reaction in T1D patients.

In this review, we will outline the current progress in
generating functional human pancreatic islets as well as novel
approaches to protect stem-cell derived islets from immune
rejection. Lastly, we will discuss limitations that presently
hinder the utilization of hPSC-derived b cells as a common
diabetes therapy.
GENERATION OF FUNCTIONAL HUMAN
ISLETS FROM HPSCS

Stem cell biology is a rapidly developing field with immense
implications for regenerative medicine, including the treatment
of diabetes. hPSCs successfully differentiate in vitro into
pancreatic progenitors (PPs) and, more recently b-like cells,
via differentiation protocols that rely on developmental
paradigms and the introduction of small molecules that
regulate stage-specific pathways (38) (Figure 1).

In 2006, D’Amour et al. developed a five-stage differentiation
protocol capable of producing endocrine hormone–expressing
cells from hESCs which is a step forward from their protocol for
hESC-derived definitive endoderm differentiation (39); however,
these insulin-expressing cells largely resemble immature fetal b
cells in their glucose responsiveness, despite their promising
insulin content (40). Differentiation efficacy has been improved
from a few percent to over 10% by identifying significant
pathways that regulate human pancreas development such as
FGFs, WNTs, BMP, PKC and TGFb signaling (41–47). However,
several key differences between primary adult human b cells and
stem cell-derived human b cells have been observed, such as
aberrant populations of polyhormonal cells (48), functionality
(49), transcriptome (50) and epigenetic profiling (51). In 2014,
Pagliuca et al. and Rezania et al. reported a protocol to generate
functional glucose-responsive human b cells (52, 53); a simplified
protocol has also been reported (54). Notably, these insulin-
producing cells reverse diabetes in vivo after transplantation into
rodents (52–54). Although these pioneering protocols recaptured
well-differentiated mono-hormonal b cell features, such as co-
expression of PDX1, NKX6-1 and insulin/c-peptide and high
glucose-stimulated insulin secretion, cells exhibited slow insulin
secretion speeds in response to glucose and aberrant Ca2+

signaling, which are critical for insulin exocytosis (52, 53). The
maturity of b cells can be characterized by two separate
components. The first component of maturity is b cell lineage
specification: how b cells express specific functional genes such
August 2021 | Volume 12 | Article 716625
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as INS, IAPP, UCN3, MAFA, MAFB, G6PC2 and SIX2, and
coordinate the proper b cell identity network (55–63). MAFA
regulates INS and G6PC2 gene expression, which are required
for enhancing insulin production, and suppressing insulin
secretion at lower glucose concentrations to enhance the
amplitude of glucose-stimulated insulin secretion (GSIS),
respectively (64–66). Another component of b cell maturity is
physiological metabolic regulation: how b cells regulate
physiological metabolic activity which links to the
amplification of GSIS. b cells exhibit unique features of glucose
metabolism (67, 68). High expression of glucose transporters,
such as GLUT1 in humans and Glut2 in rodents, rapidly
equalizes extra- and intracellular glucose concentrations. Low
glucose affinity glucokinase (GK) expression, instead of
hexokinase (HK) expression, and low lactate dehydorogenese
(LDH) and monocarbohydorate transporter (MCT) expression
accumulates intracellular pyruvate, which is the primary fuel
source of the citric acid cycle and mitochondrial oxidative
phosphorylation to produce ATP (67, 69). The increased ATP/
ADP ratio by glucose-stimulated fuel metabolic utilities triggers
Ca2+ influx and insulin secretion. Fetal and neonatal immature b
cells show poor glucose responsiveness and transition to
postnatal functional maturation with enhanced mitochondrial
metabolic function (70–80). Previously, we have identified a
Frontiers in Endocrinology | www.frontiersin.org 3
critical role for the nuclear receptor estrogen related receptor
gamma (ERRg) in the postnatal maturation of b cells (77).
Coincident with weaning, neonatal b cells become glucose-
responsive, acquiring the ability to secrete insulin in response
to a high glucose challenge. We have previously reported that the
postnatal increase in ERRg expression orchestrates the metabolic
maturation of b cells. Indeed, mice lacking ERRg in b cells are
glucose intolerant and fail to appropriately secrete insulin in
response to a high glucose challenge (77). Furthermore, forced
ERRg expression in hiPSC-derived b-like cells (ERRg-b-like
cells) enhances the capacity for oxidative phosphorylation,
resulting in significantly improved GSIS function in human b-
like cells, both in vitro and in vivo (77). These findings support
the notion that a metabolic maturation step driven by ERRg
provides the energetic capacity necessary for GSIS in hiPSC-
derived b-like cells. Acknowledging the importance of 3-
dimensional (3D) organization and cell-cell communications in
organ function and the terminal differentiation of organ-specific
cell types (81, 82), we also adapted our technology to generate 3D
structured human pancreatic islet tissues called human islet-like
organoids (HILOs) from pluripotent stem cells (83). HILOs
similar in size to human islets (100-500 mm) have been
generated in 5 weeks with newly identified maturation factors
such as non-canonical Wnt family member 4 (WNT4), which
FIGURE 1 | Step by step differentiation and maturation to generate functional human islet-like organoids. By using chemically defined recombinant proteins and
small molecules, hPSCs are introduced pancreatic lineage specification. Islet-like organoids contains insulin producing b-cells, glucagon producing a-cells,
somatostatin producing d-cells, and pancreatic polypeptide producing g-cells. The representative duration and small compounds/recombinant proteins used for b-
cells differentiation are listed in the Figure.
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enhances mitochondrial function to enhance GSIS function. Nair
et al. have found that facilitating endocrine cell clustering in vitro
promotes human stem cell-derived b cell maturation as
demonstrated by increased mitochondrial oxidative respiration
and robust insulin secretion (84). Additionally, circadian
regulation (85), aberrant expression of glycolytic enzymes (86),
and transforming growth factor b (TGF-b) modulation (87)
during hPSC differentiation into b cells have been reported as
key components in achieving GSIS with dynamic insulin
secretion. Recent advances in the single-cell transcriptome
approach have enabled the fine tuning of genomic maps in
human islet maturation, while further studies to identify the
effects of peripheral nerve innervation (88), mesenchymal
stromal cell contributions (89) and other microenvironmental
cues in human islet maturation are required to overcome the
current limitations regarding the efficacy of differentiation and
maturation of stem cell-derived islets. Instead of fully functional
primary islets or functionally mature stem cell derived islets,
pancreatic progenitors from hPSCs have been acknowledged as
an alternative source for islet cell therapy. In 2008, Kroon et al.
showed that hESC-derived PPs undergo further differentiation
and maturation in vivo a few months post-transplantation (90),
suggesting that transplantation of hPSCs derived PPs can
recapitulate functional organogenesis in vivo. The idea to use
hPSC derived PPs for transplantation to ameliorate T1D became
popular and it remains open for discussion whether hPSC
derived PPs or fully mature b cells are the better source for
transplantation (91). A clinical trial using hPSC derived PP for
treating diabetes is ongoing (ClinicalTrials.gov: NCT03163511,
NCT02239354). Although Chromatin remodeling (51) and
systemic gene regulation (92) provides the mechanistic
insights, the particular cues which lead to in vivo functional
maturation of hPSC derived PP has not been elucidated yet. Sex
differences (93) as well as species differences (94) in functional
maturation have been observed, suggesting that the efficacy of
hPSC derived PP for treating preexisting diabetes may rely on the
condition of patients. Advances in the generation of more
functionally matured hPSC derived b cell enriched clusters or
islets may offer less variation in efficacy for diabetic patients.
However, the effort for generating fully mature bona fide human
islets has not been ended yet. A better grasp on the complex
mechanism of postnatal maturation, include unveiling precise
collaboration of transcriptional factors (95) is crucial to optimize
in vitro differentiation protocols.
IMMUNE PROTECTION BY
IMMUNOSUPPRESSANTS AND MACRO/
MICRO ENCAPSULATION DEVICE

Pancreatic islet transplants are subject to both alloimmune and
autoimmune reactivities, which can cause graft rejection or the
progressive loss of islet function. To combat graft rejection,
previous immunosuppression regimens for allogeneic islet
recipients consisted of an induction phase targeting T
Frontiers in Endocrinology | www.frontiersin.org 4
lymphocytes, followed by the delivery of immunosuppressive
maintenance agents such as calcineurin inhibitors, DNA
antimetabolites, and corticosteroids (96). Although these drugs
bolstered pancreatic islet allogeneic graft survival, they also
displayed diabetogenic effects and direct toxicity toward
pancreatic b cells (96–101). Moreover, whole body immune
suppression increases the risk of cancer development,
infectious diseases and other complications, limiting the
enthusiasm for islet cell therapy (102). The publication of the
Edmonton Protocol in 2000 illustrated that islet transplantation
from multiple donors accompanied by a glucocorticoid-free
immunosuppressive regimen could achieve graft survival and
insulin independence in patients with T1D (103). This steroid-
free protocol included an IL-2 receptor antagonist (daclizumab),
sirolimus, and low-dose tacrolimus (103). However, researchers
at the University of Chicago who assessed the short- and long-
term outcomes of the Edmonton protocol concluded that
although the patients remained insulin-free for five or more
years after the initial transplantation, they suffered recurrent side
effects as a result of immunosuppression (104). Recent strategies
for immunosuppression have shown clinical improvements
derived from modifications made to the Edmonton protocol.
Hering et al. employed antithymocyte globulin, daclizumab, and
etanercept as an induction protocols, along with a
mycophenolate mofetil, sirolimus, and no or low-dose
tacrolimus maintenance regimen (30). All eight study
participants became insulin- independent, with five out of the
eight achieving insulin independence for over a year;
importantly, none of the study participants experienced
immunosuppression-related adverse events (30). A follow-up
phase 3 clinical trial examining human islet transplantation in
T1D patients utilized a similar induction immunosuppression
regimen of antithymocyte globulin (eventually replaced by
basiliximab) and etanercept in addition to sirolimus and low-
dose tacrolimus maintenance agents (31). At the 1-year mark,
87.5% of patients achieved an HbA1c < 53 mmol/mol, with
HbA1c > 50 mmol/mol indicating diabetes (31, 105). An
alternate immunosuppression regimen combined Fc receptor
non-binding humanized anti-CD3 monoclonal antibody
hOKT3g 1 (Ala-Ala) and sirolimus induction agents followed
by sirolimus and reduced‐dose tacrolimus for maintenance
immunosuppression, resulted in a prolonged reduction in
CD4+ T-cell expression in islet transplant recipients (106).
Bellin et al. illustrated the efficacy of the anti-CD3 monoclonal
antibody alone, as well as antithymocyte globulin combined with
tumor necrosis factor-alpha (TNF-a) inhibition, over the
previously used interleukin-2 receptor antibodies (IL-2RAb)
(107). Several studies showed that an effective calcineurin
inhibitor-free immunosuppression protocol using the co-
stimulation blocker belatacept, achieved insulin independence
in transplanted patients (108, 109). Kim et al. found that
replacement of tacrolimus with the JAK3 inhibitor tofacitinib
effectively suppresses immune responses in diabetic monkeys
transplanted with MHC-mismatched allogeneic islets (110).
All these efforts contribute to our understanding of
immunosuppression strategies to avoid acute immune rejection
August 2021 | Volume 12 | Article 716625
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of transplanted islets, although chronic rejection still remains a
major issue (111). Therefore, modern studies on islet
transplantation have focused on the development of protective
encapsulation biomaterials and immune tolerance induction,
particularly with regard to stem cell-derived b cells to
overcome both the shortage of functional islet supply and
immune rejection.

Many studies have examined the efficacy of transplanting
encapsulated pancreatic islets to treat or cure T1D. Cell
encapsulation in biomaterials with low immunogenic profiles
directly protects grafts from rejection by the host immune
system. Encapsulation systems such as the TheraCyte
macroencapsulation device system, enable protection of the
grafts from host immune cell infiltration via a physical barrier
(112–116). A gas exchangeable enhanced O2 supply device has
been developed to aim for enhancing the graft survival (117–
119). This macroencapsulation device system is being utilized in
an ongoing clinical trial of stem cell-derived pancreatic
progenitor cells or primary human islets in T1D patients (116,
118). Alternatively, the naturally derived hydrogel alginate is the
most common biomaterial employed in microencapsulation
(120–129). When combined with divalent ions at physiological
concentrations, alginate develops into a gel matrix suitable for
cellular encapsulation. This biomaterial provides a selectively
permeable membrane, which allows for the diffusion of oxygen,
nutrients, and insulin as well as protects transplanted islets from
intrinsic immune cell infiltration. This technology was first
employed over 40 years ago and demonstrated that implanted
alginate-microencapsulated islets could ameliorate diabetes for 2
to 3 weeks in a streptozotocin-induced diabetic rat model (120).
In 1994, Soon-Shiong et al. reported that the intraperitoneal
injection of alginate-microencapsulated human islets with low-
dose cyclosporine normalized blood glucose over 9 months in a
patient with T1D without affecting the function of a previously
transplanted kidney (123). However, the capsules are prone to
destruction by the foreign body response, which leads to fibrosis
and loss of islet function, and therefore short-lived glycemic
correction (122, 125, 128, 130, 131). Innovations in
encapsulation technology have enabled major improvements
in transplant function longevity. Altering the spherical
dimensions of capsules, reducing transplant volume, and
chemically modifying alginate biomaterials have improved
biocompatibility and sustained graft function for long-term
periods (124, 126, 132–135). Incorporating stem cell
technology, Vegas et al. demonstrated that implanting hPSC-
derived b cells encapsulated with triazole-thiomorpholine
dioxide alginate corrects diabetes in immunocompetent mice,
without any immunosuppression (134). The implanted islets
exhibited appropriate glucose responsiveness and, upon
removal at 174 days, still contained functional b cells (134).
Bochenek et al. showed that chemically modified alginate
derivatives reduce foreign body immune responses and
improve graft survival and GSIS in allogeneic islets of non-
human primates (NHP) for 4 months without the need for
immunosuppression (135). Alagpulinsa et al. reported that
CXCL12-containing sodium alginate-encapsulated hPSC-
Frontiers in Endocrinology | www.frontiersin.org 5
derived b cells transplanted into immunocompetent mice
enhance insulin secretion, normalize hyperglycemia, and
remain fully functional for more than 150 days without
immunosuppression (136). The preliminary success of hPSC-
derived b cell encapsulation and transplantation into diabetic
mouse models and NHP provides a proof-of concept for treating
T1D in humans using the same strategy. Additionally, in some
cases of optimized pancreatic islet encapsulation technology,
continuous immunosuppression in transplant recipients,
including patients with T1D, is unnecessary (126, 134, 137–
139). Further refinement of O2 and nutritional supplies with or
without functional vascularization for long-term stability, as well
as inquiries into human auto- and alloreactivity toward these
alginate compositions, including newly developed nanofiber
technologies (140, 141) will be necessary steps toward future
clinical significance.
TRANSPLANT PRECONDITIONING

Transplant preconditioning has been investigated to improve
islet transplantation outcomes. Early graft failure in pancreatic
islet transplant recipients led to inquiries into the complex
mechanisms underlying this process. While T-cell recognition
of mismatched human leukocyte antigens (HLA) is a major cause
of allogeneic graft rejection in T1D patients, hypoxia and
inhospitable transplant microenvironments are additional
barriers to transplant success. A key trigger of early graft
failure, islet embolism during intraportal pancreatic islet
transplantation is known to cause liver ischemia and
subsequent apoptosis of transplanted pancreatic b cells via
induction of pro-inflammatory cytokines (142). Paradoxically,
exposing the liver to ischemic conditions prior to transplantation
was found to significantly reduce early graft failure in mice by
decreasing the mRNA levels of the pro-inflammatory cytokine
interleukin-1b (IL-1b) as well as tumor necrosis factor-a (TNF-
a) and by increasing the plasma levels of Interleukin-10 (IL-10),
an anti-inflammatory cytokine (142–146). This stress-induced
resistance induction may not only be beneficial by direct
exposure, but also beneficial by indirect exposure to co-
cultured cells. Hypoxia-preconditioned mesenchymal stem cells
or primary hepatocytes were shown to significantly reduce
reactive oxygen species (ROS) production and induce pro-
apoptotic proteins, such as Bcl-2, to improve islet survival
when co-cultured with human islets (147, 148). Alternatively,
pancreatic islets can be directly preconditioned via strategic drug
delivery. Rat and human pancreatic islets preconditioned with
diazoxide, a potassium channel activator, and subsequently
exposed to hypoxic conditions are protected from hypoxia-
induced necrosis by an unknown mechanism and ameliorate
hyperglycemia in STZ-induced diabetic rats and immune
deficient mice, respectively (149). Transplanted mouse
pancreatic islet allografts preconditioned with mitomycin c, an
antitumor antibiotic, experience a median survival duration of 28
days without immunosuppression compared to 13 days in the
control group (150). In an in vitromodel, mitomycin c treatment
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suppressed allograft proinflammatory cytokine expression,
decreased inflammatory cell infiltration, and upregulation of
CD4+-suppressing regulatory T cells (150). A green tea
polyphenol and anti-inflammatory agent, epigallocatechin 3-
gallate (EGCG), also improves pancreatic islet transplant
viability (151). Mouse pancreatic islets cultured in 100 µM
EGCG-containing medium and transplanted under the kidney
capsules of STZ-induced diabetic mice demonstrated preserved
insulin secretion and decreased ROS production as a function of
the Nrf2 pathway (151). Taken together, these findings indicate
multiple avenues for further studies focusing on pancreatic islet
protection against inflammatory immune responses, hypoxia,
and the transplant microenvironment. Additionally, regulatory
T-cell (Treg) therapies offer a personalized approach to
transplant immune tolerance. Tregs play an important role in
preventing autoimmunity, while their antigen specificity ensures
that tumor and pathogen immunosurveillance is not hampered
(152). After identifying and isolating graft-specific patient Tregs,
these cells have been cultured in vitro to generate a clinically
useful population (152). An alternate therapy utilizes chimeric
antigen receptor (CAR) T-cells, patient-derived T-cells
engineered to express a synthetic receptor targeted against a
specific antigen (153). CAR-T cells also develop into Tregs with
graft-specific antigen receptors (154). Importantly they can be
utilized to combat HLA mismatches in transplant graft
recipients. Since HLA-A2 population expression is significant
and develops a substantial number of HLA-A2-mismatched
transplants, HLA-A2-specific CAR-T cells have been developed
in a mouse transplant model, which has successfully prevented
HLA-A2+ T-cell-initiated graft versus host disease (155).
However, challenges remain with CAR-T cell-related toxicity,
which must be addressed before application in human transplant
cases (156, 157). Nevertheless, these preconditioning approaches
may be promising in the context of hPSC-derived b cells, whose
culturing methodology can be adapted to optimize graft survival.
PERSONALIZED MEDICINE

The emergence of hiPSC technology, which is derived from
various somatic cells, has popularized the idea of personalized
treatments in regenerative medicine. One such idea is autologous
transplantation by using patients’ self-derived hiPSCs. There are
several immunological barriers for transplant technologies,
particularly in patients with T1D who intrinsically possess
hyperactive immune responses targeted against pancreatic b
cells. However, because hiPSCs can be derived from adult
tissues, they unlock a powerful form of personalized medicine:
fibroblast cells taken from patients, converted into hiPSCs, and
differentiated into pancreatic islet b cells could be transplanted
autologously. This practice reduces the risk of graft versus host
disease by accounting for immune identity (158, 159).
Unfortunately, autologous hiPSC production is expensive and
time-consuming. To attempt to overcome these disadvantages,
there has been the generation of a bank of stringently selected
HLA-homozygous hiPSC lines, which can be differentiated and
Frontiers in Endocrinology | www.frontiersin.org 6
transplanted to a broad group of patients (160–163). Using this
strategy, healthy donors with homozygous HLA-A, HLA-B, and
HLA-DR have been selected and, according to the frequent HLA
haplotypes in the population, hiPSCs have been selectively
generated and preserved via cryopreservation (163). Although,
this approach may be effective in certain countries with less
diversity, it is anticipated that a large-scale bank will be needed to
cover the entire global population. Moreover, even with
autologous delivery strategies, transplanted hiPSC-derived
insulin-producing cells would eventually be rejected due to the
hyperactive immune reaction in which activated T-cells are
presented insulin as antigens. This autoimmunity is, in some
cases, connected to the HLA haplotypes HLA-DR4-DQ8
and HLA-DR3-DQ2, which have been identified as two major
genetic risk factors for T1D development (21). Naturally,
introducing pancreatic islets with mismatched HLA to
transplant recipients compounds this innate immune response
by activating T-cells (111). Therefore, in addition to MHC
matching strategies, protecting transplanted insulin-producing
cells from hyperactive T-cells in T1D may be required.
Ultimately, the development of a universal hPSC population
that evades immune detection is a major goal of T1D
translational research.
ENGINEERING STEM CELL
DERIVED ISLET-ORGANOIDS FOR
IMMUNE EVASION

Generating universal hPSCs that resist both allogenic and
autoimmune rejection would constitute a clear advance in
regenerative medicine. The self-renewal function of hPSCs
provides a superior opportunity for genomic modification in
vitro. Genome engineering technologies such as TALEN (164,
165) or CRISPR (166–171)-based genetic modification offer more
flexible HLA design and immune evasive function in both hESCs
and hiPSCs. HLA-A and HLA-B deletion reduces antigen
presentation, while sustaining HLA-C or HLA-E suppresses NK
cell lysis, which reduces allogeneic responses in hPSCs (172–174).
In addition to MHC matching, enhancing the ability of
transplanted b cells to evade immune detection could be an
alternative strategy for reducing the risk of autoimmune rejection.
The major question is how b-cells can attain immune tolerance
and thus evade autoimmune rejection by T-cells. Anecdotally,
one T1D patient who successfully survived for 50 years with
intensive insulin injection therapy still retained at least some
functional glucose-responsive b-cells, which were surrounded by
T-cells because of the presence of antigenic insulin but retained
their function (175). Although the limited number of these cells
was insufficient to rescue this T1D patient, the mechanism
through which these b-cells evade T cell-mediated immune
rejection remain unknown. b-cells manifest slow turnover,
undergo limited proliferation, and thus lack regenerative
capacity (176–178). Cancer cells evade T-cell recognition and
autoimmune rejection by expressing the immune checkpoint
molecule programmed death 1 ligand 1 (PD-L1/CD274), the
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ligand of the T-cell inhibitory receptor programmed death 1 (PD-
1/CD273) ligand (179). Similarly, a correlation between immune
tolerance and PD-1/PD-L1 has been observed in diabetic rodents
(180). PD-L1 is expressed in pancreatic islet cells, where it
suppresses self-antigen-reactive CD8+ T cells (181–183). In
vitro PD-L1 expression in human islet cells and EndoC-bH1
cells is upregulated in response to stimulation with the interferon-
g (IFN-g), and interferon-a (IFN-a) stimulation (184, 185).
Interestingly, when islets isolated from PD-L1-deficient C57BL/
6j mice are transplanted into STZ-induced diabetic BALB/c mice,
there is increased allograft rejection, inflammatory cell tissue
infiltration, and T cell alloreactivity (186). It was also shown
that PD-L1 + murine b cells have also been found during immune
tolerance in murine b cells in the non-obese spontaneous type 1
diabetic (NOD) mice model (180), however they evidently
dedifferentiated and, hence, were non-functional. We have
previously shown that forced PD-L1 expression significantly
Frontiers in Endocrinology | www.frontiersin.org 7
reduced immune cell infiltration into transplanted HILOs,
ameliorated diabetes in a xenograft, and humanized allogenic
immunocompetent environment for more than ~50 days,
significantly longer than their PD-L1-lacking counterparts (83).
Notably, PD-L1-expressing grafts contain less CD45+ immune
cells, such as T-cells (83). Similarly, it has been shown that PD-L1
overexpression by a CRISPR knock-in system enabled partial
protection from autoreactive T-cells modeled with CD19-
expressing stem cell-derived functional human b like cells with
CAR-T cells (187). Using an alternate approach, pancreatic islet
grafts have been engineered with chimeric PD-L1/streptavidin
oligomers (SA-PD-L1) (188, 189). More than 90% of these SA-
PD-L1 grafts have been retained for over a 100-day observation
period after transplantation into STZ-induced diabetic C57BL/6
mice undergoing a 15-day rapamycin course as transient immune
suppression (188). Immune cell phenotyping has revealed that
SA-PD-L1 induces peri-islet infiltration of FOXP3+ regulatory
FIGURE 2 | Strategies for immune protection of hPSC derived islets. To protect the transplanted hPSC derived islets graft: 1. Immunosuppressants, 2. Macro
encapsulation devices (e.g. Theracyte Device), 3. Micro encapsulation gels (e.g. Alginate-coating), 4. MHC-matching, 5. Genome engineering of immune checkpoint
molecules and/or HLAs, 6. Induction of immune tolerance by preconditioning or trained immunity.
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T-cells, serving as a practical local immune modulation to
support long-term graft survival without chronic immune
suppression (189). Thus, induction of PD-L1 and other
immune-tolerance-aiding protein-induction presents an
innovative approach to improving pancreatic islet graft longevity.

PD-L1 + b-cells possess immune tolerance in non-obese
diabetic (NOD) mice (180), a common mouse model for T1D.
However, these immune tolerant murine b-cells exhibit defective
GSIS function, and even their b-cell identity is unclear (180). Our
recent findings revealed that constitutive PD-L1 expression in
HILOs rapidly ameliorates diabetes in an immune-competent
environment (83). In healthy primary human islet b-cells, only a
few b-cells express PD-L1. However, IFNg induces PD-L1
expression in both cadaveric human islets and b-cells or non-
b-cell clusters (GFP+ or -) in mature HILOs. However, in
agreement with previous reports of cytokine-induced b-cell
dysfunction (190–192), stimulation with >10 ng IFNg for 24
hours significantly reduces gene expression governing GSIS
function and b-cell identity such as INS-1, UCN3 and STY4 in
HILOs. This suggests that IFNg signaling paradoxically regulates
b-cell dysfunction (defects in GSIS and b-cell identity gene
expression) and protection (enhanced PD-L1 expression).
Therefore, we hypothesized that short-term IFNg stimulation is
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sufficient to induce PD-L1 expression while preserving b-cell
function. Interestingly, short term (2 hours) exposure of low dose
IFNg (<10ng/ml) is sufficient to induce PD-L1 expression in
HILOs, but the expression of PD-L1 was not sustained for more
than 3 days (83). Innate immune mechanisms have evolved into
a type of built-in memory (193). This memory is important for
maintaining cellular adaptability, which in turn helps with
preparedness for similar future events. For example, multiple
LPS injections induce differential LPS responsiveness and modify
the pathological features after stroke (194). Recent studies have
also revealed that innate immune memory is induced not only
immune cells but also other differentiated cells such as skin
fibroblasts and neuronal cells to alter the transcriptional and
physiological immune responses against second or third similar
stimulation (194–196). To achieve stable PD-L1 expression
without long-term IFNg exposure, we hypothesized that
multiple short-term (2 hours) IFNg stimulation (MPS) causes
transcriptional memory for sustainable PD-L1 expression,
ideally without affecting functionality. We found that MPS by
IFNg induces sustainable PD-L1 expression in HILOs (MPS-
HILOs) without adversely affecting insulin secretion (83).
Furthermore, transcriptome analyses in MPS-HILOs revealed
“de novo” anti-inflammatory gene induction by MPS (83).
ABLE 1 | Summary of immune protection studies for stem cell-derived islets or primary islets.

trategy Method Target Cell Type Side Effect(s) Predicted
Efficacy
(Allo or
Auto)

In vivo
transplantation

Reference

ene targeting/
ngineering

PD-L1 overexpression b-cells Unknown Allogeneic
Autoimmune

Yes (Rodents) (83) (187)

mune
uppressants

Induction immunosuppression (e.g.
antithymocyte globulin, basiliximab,
etanercept) with maintenance agents
(e.g. sirolimus, tacrolimus)

T-cells, NKT cells, etc. Induction of
malignancies, greater risk
of infection, autoreactivity

Allogeneic Yes (Rodents) (30) (31)
(107–110)

Autoimmune Yes (Human)
HC matching Generation of HLA-homozygous hiPSC

lines
hiPSCs, hESCs Unknown Allogeneic Yes (Rodents) (172–174)

acro
ncapsulation

Protection of grafts from
host immune cell infiltration
via a physical barrier

Theracyte
device

b-cells Fibrotic responses,
Prevention of
vascularization in the
graft, Hypoxia

Allogeneic Yes (Rodents) (112–116)

bAir
device

Fibrotic responses,
Prevention of
vascularization in the
graft

Autoimmune Yes (Human) (117, 118)

Nanofiber Prevention of
vascularization in the
graft, Hypoxia

(119, 140,
141)

icro
ncapsulation

Encapsulation of grafts in
biomaterials with low
immunogenic profiles

Alginate b-cells Unknown Allogeneic Yes (Rodents) (120, 121,
123–128,
130, 132–
139)

SA-PDL-1 Unknown Autoimmune (188, 189)
reconditioning Exposure of grafts to ischemia, hypoxia,

or co-culturing to enhance immune
tolerance and graft survival

b-cells or co-cultured cells
(e.g. mesenchymal stem
cells, primary hepatocytes)

Unknown Allogeneic Yes (Rodents) (142, 143,
146–151)

ranscriptional
emory

Multi-pulse IFNg stimulation to induce
transcriptional memory to induce PD-L1
expression and De novo cytokine
tolerance

b-cells Unknown Allogeneic Yes (Rodents) (87)
Autoimmune
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Indeed, MPS-HILOs showed resistance to IL1b-induced b cell
dedifferentiation (83). We propose this phenomenon as a novel
transcriptional memory system of b-cells for adaptive immune
tolerance and evasion. Elucidating the specific mechanisms
underlying transcriptional memory in pancreatic islets may
provide a novel and effective strategy for inducing immune
tolerance in transplant recipients. These findings raise the
possibility of generating immune-tolerant mature functional
human islets from hPSCs in vitro, which in turn may offer a
novel therapeutic approach to avoid graft and autoimmune
rejection without immune-suppressive drugs in T1D patients.
CONCLUSION

Immune-evasive human islets derived from hPSCs represent a
promising and renewable cell source with a reduced risk of
chronic immune suppression to treat insulin-dependent
diabetes. The manufacturing scalability of hPSC-derived b cells
or islet organoids must also be addressed before its widespread
clinical application can become a reality. Although, there has
been success in generating a-like cells from hPSCs (197, 198), no
protocol has been successful in generating each endocrine
hormone cell independently. Understanding the fine-tuning
lineage specification as well as the spatial information of
intracellular communication in islet organoids may further
improve the efficacy of differentiation and maturation in stem
cell derived islets for clinical use. Additionally, improvements in
immune protection, particularly with respect to encapsulation
biomaterials, T cell or hPSC engineering, preconditioning, and
immune tolerance induction, will strongly impact the long-term
efficacy of islet cell therapy in both T1D and T2D (Figure 2 and
Table 1). Although creating immune evasive human islets is a
Frontiers in Endocrinology | www.frontiersin.org 9
major goal in achieving standardized islet cell therapy in
diabetes, there are potential concerns to develop unwilling
driverless cells, such as teratomas, with future events of
infection or health complications. A suicide system represented
by induced caspase 9 with chimeric dimers eliminates the hPSC-
derived cells and may therefore be a potential safeguard system
against this concern (199). However, the current suicide system
induces approximately 95% apoptosis in hPSCs and hPSC-
derived cells, suggesting that further improvements of the
system to ensure the 100% elimination of transplanted cells are
required (200). The challenges for the long-term survival of
hPSC-derived immune evasive derived b cells or islet organoids
with improved nutrition and oxygen supply as well as controlled
graft microenvironment will make the safe harbor of stem-cell
derived islets transplanted into patients with diabetes one step
closer to a reality.
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