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Abstract

The Dicke model is a fundamental model of quantum optics, which describes the interac-

tion between light and matter. In the Dicke model, the light component is described as a sin-

gle quantum mode, while the matter is described as a set of two-level systems. When the

coupling between the light and matter crosses a critical value, the Dicke model shows a

mean-field phase transition to a superradiant phase. This transition belongs to the Ising

universality class and was realized experimentally in cavity quantum electrodynamics

experiments. Although the superradiant transition bears some analogy with the lasing insta-

bility, these two transitions belong to different universality classes.

The model and its symmetries

The Dicke model is a quantum mechanical model that describes the coupling between a sin-

gle-mode cavity and N two-level systems, or equivalently N spin-½ degrees of freedom. The

model was first introduced in 1973 by K. Hepp and E. H. Lieb [1]. Their study was inspired by

the pioneering work of R. H. Dicke on the superradiant emission of light in free space [2] and

named after him.

Like any other model in quantum mechanics, the Dicke model includes a set of quantum

states (the Hilbert space) and a total-energy operator (the Hamiltonian). The Hilbert space of

the Dicke model is given by (the tensor product of) the states of the cavity and of the two-level

systems. The Hilbert space of the cavity can be spanned by Fock states with n photons, denoted

by |ni. These states can be constructed from the vacuum state |n = 0i using the canonical ladder

operators, a† and a, which add and subtract a photon from the cavity, respectively. The states of

each two-level system are referred to as up and down and are defined through the spin operators

sj
!¼ ðsxj ; s

y
j ; s

z
j Þ, satisfying the spin algebra ½sxj ; s

y
k� ¼ iℏszj di;k. Here ℏ is the Planck constant

and j = (0,1,2,. . .,N) indicates a specific two-level system. (Note that the spin operators are often

represented Pauli matrices ~s through the relation sa ¼ ℏ~sa. In some References, the Hamilto-

nian of the Dicke model is represented in terms of Pauli matrices, rather than spin operators).

The Hamiltonian of the Dicke model is

H ¼ ℏoca
yaþ oz

PN
j¼0
szj þ

2l
ffiffiffiffi
N
p aþ ayð Þ

P
js

x
j : ð1Þ

Here, the first term describes the energy of the cavity and equals to the product of the

energy of a single cavity photon ℏωc (where ωc is the cavity frequency), times the number of

photons in the cavity, nc = a†a. The second term describes the energy of the two-level systems,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0235197 September 4, 2020 1 / 8

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Roses MM, Dalla Torre EG (2020) Dicke

model. PLoS ONE 15(9): e0235197. https://doi.

org/10.1371/journal.pone.0235197

Editor: Kaden Hazzard, Rice University, UNITED

STATES

Published: September 4, 2020

Copyright: © 2020 Roses, Dalla Torre. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: This work is supported by the Israel

Science Foundation, grants number 151/19 and

154/19.

Competing interests: The authors declare no

competing interests.

http://orcid.org/0000-0003-2637-1750
https://en.wikipedia.org/wiki/Quantum_optics
https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Matter
https://en.wikipedia.org/wiki/Two-state_quantum_system
https://en.wikipedia.org/wiki/Phase_transition
https://en.wikipedia.org/wiki/Superradiant_phase_transition
https://en.wikipedia.org/wiki/Ising_critical_exponents
https://en.wikipedia.org/wiki/Ising_critical_exponents
https://en.wikipedia.org/wiki/Cavity_quantum_electrodynamics
https://en.wikipedia.org/wiki/Laser
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Two-state_quantum_system
https://en.wikipedia.org/wiki/Spin-%C2%BD
https://en.wikipedia.org/wiki/Klaus_Hepp
https://en.wikipedia.org/wiki/Elliott_H._Lieb
https://en.wikipedia.org/wiki/Robert_H._Dicke
https://en.wikipedia.org/wiki/Superradiance
https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Operator_(physics
https://en.wikipedia.org/wiki/Hamiltonian
https://en.wikipedia.org/wiki/Fock_states
https://en.wikipedia.org/wiki/Photon
https://en.wikipedia.org/wiki/Ladder_operator
https://en.wikipedia.org/wiki/Ladder_operator
https://en.wikipedia.org/wiki/Spin
https://en.wikipedia.org/wiki/Planck_constant
https://en.wikipedia.org/wiki/Pauli matrices
https://doi.org/10.1371/journal.pone.0235197
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235197&domain=pdf&date_stamp=2020-09-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235197&domain=pdf&date_stamp=2020-09-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235197&domain=pdf&date_stamp=2020-09-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235197&domain=pdf&date_stamp=2020-09-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235197&domain=pdf&date_stamp=2020-09-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235197&domain=pdf&date_stamp=2020-09-04
https://doi.org/10.1371/journal.pone.0235197
https://doi.org/10.1371/journal.pone.0235197
http://creativecommons.org/licenses/by/4.0/


where ℏωz is the energy difference between the states of each two-level system. The last term

describes the coupling between the two-level systems and the cavity and is assumed to be pro-

portional to a constant, λ, times the inverse of the square root of the number of two-level sys-

tems. This assumption allows one to obtain a phase transition in the limit of N!1 (see

below). The coupling can be written as the sum of two terms: a co-rotating term that conserves

the number of excitations and is proportional to aσ++a†σ− and a counter-rotating term propor-

tional to aσ−+a†σ+, where σ± = σx±iσy are the spin ladder operators.

The Hamiltonian in (Eq 1) assumes that that all the spins are identical (i.e. have the same

energy difference and are equally coupled to the cavity). Under this assumption, one can

define the macroscopic spin operators Sa ¼
PN

j¼0
saj , with α = x,y,z, which satisfy the spin

algebra, [Sx,Sy] = iℏSz. Using these operators, one can rewrite the Hamiltonian (Eq 1) as

H ¼ ℏoc þ ozS
z þ

2l
ffiffiffiffi
N
p aþ ayð ÞSx: ð2Þ

This notation simplifies the numerical study of the model because it involves a single spin-S

with S�N/2, whose Hilbert space has size 2S+1, rather than N spin-1/2, whose Hilbert space

has size 2N.

The Dicke model has one global symmetry,

P : ða; s�Þ ! ð� a; � s�Þ: ð3Þ

Because P squares to unity (i.e. if applied twice, it brings each state back to its original

state), it has two eigenvalues, 1 and −1. This symmetry is associated with a conserved quantity:

the parity of the total number of excitations, P ¼ ð� 1Þ
Nex where

Nex ¼ ayaþ
PN

j¼0
szj : ð4Þ

This parity conservation can be seen from the fact that each term in the Hamiltonian pre-

serves the excitation number, except for the counter-rotating terms, which can only change

the excitation number by ±2. A state of the Dicke model is said to be normal when this symme-

try is preserved, and superradiant when this symmetry is spontaneously broken.

Related models

The Dicke model is closely related to other models of quantum optics. Specifically, the Dicke

model with a single two-level system, N = 1, is called the Rabi model. In the absence of

counter-rotating terms, the model is called Jaynes-Cummings for N = 1 and Tavis-Cummings

for N>1. These two models conserve the number of excitations Nex and are characterized by a

U(1) symmetry. The spontaneous breaking of this symmetry gives rise to a lasing state (see

below).

The relation between the Dicke model and other models is summarized in Table 1 [3].

The superradiant phase transition

Early studies of the Dicke model considered its equilibrium properties [1]. These works con-

sidered the limit of N!1 (also known as the thermodynamic limit) and assumed a thermal

partition function, Z = exp(−H/kBT), where kB is the Boltzmann constant and T is the

temperature. It was found that, when the coupling λ crosses a critical value λc, the Dicke model

undergoes a second-order phase transition, known as the superradiant phase transition. In

their original derivation, Hepp and Lieb [1] neglected the effects of counter-rotating terms

and, thus, actually considered the Tavis-Cummings model (see above). Further studies of the
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full Dicke model found that the phase transition still occurs in the presence of counter-rotating

terms, albeit at a different critical coupling [4].

The superradiant transition spontaneously breaks the parity symmetry, P, defined in Eq 3.

The order parameter of this phase transition is hai=
ffiffiffiffi
N
p

. In the thermodynamic limit, this

quantity tends to zero if the system is normal, or to one of two possible values, if the system is

superradiant. These two values correspond to physical states of the cavity field with opposite

phases (see Eq 3 and, correspondingly, to states of the spin with opposite x components).

Close to the superradiant phase transition, the order parameter depends on λ as hai=
ffiffiffiffi
N
p
�

ðlc � lÞ
� 1=2

(see Fig 1). This dependence corresponds to the mean-field critical exponent β =

1/2.

Mean-field description of the transition

The simplest way to describe the superradiant transition is to use a mean-field approximation,

in which the cavity field operators are substituted by their expectation values. Under this

approximation, which is exact in the thermodynamic limit, the Dicke Hamiltonian of Eq 1

becomes a sum of independent terms, each acting on a different two-level system, which can

be diagonalized independently. At thermal equilibrium (see above), one finds that the free

energy per two-level system is [5]

F
hai
ffiffiffiffi
N
p ¼ a

� �

¼ oca
2 � kBT ln 2 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2
z þ 16l

2
a2

q

2kBT

0

@

1

A

0

@

1

A: ð5Þ

The critical coupling of the transition can be found by the condition dF/dα(α = 0) = 0, lead-

ing to

lc ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ocoz coth
ℏoz

2kBT

� �s

: ð6Þ

For λ<λc F has one minimum, while for λ>λc, it has two minima (see the inset of Fig 1). In

the limit of T!0 one obtains an expression for the critical coupling of the zero-temperature

superradiant phase transition, lc ¼
ffiffiffiffiffiffiffiffiffiffi
ocoz
p

=2.

The open Dicke model

The Dicke model of Eq 1 assumes that the cavity mode and the two-level systems are perfectly

isolated from the external environment. In actual experiments, this assumption is not valid:

the coupling to free modes of light can cause the loss of cavity photons and the decay of the

two-level systems (i.e. dissipation channels). It is worth mentioning, that these experiments

use driving fields (e.g. laser fields) to implement the coupling between the cavity mode and the

two-level systems. The various dissipation channels can be described by adding a coupling to

Table 1. Relation between the Dicke model and other models.

Model’s name Counter-rotating terms? Symmetry Number of two-level systems

Jaynes-Cummings No U(1) N = 1

Tavis-Cummings No U(1) N>1

Rabi model Yes P N = 1

Dicke Yes P N>1

https://doi.org/10.1371/journal.pone.0235197.t001
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additional environmental degrees of freedom. By averaging over the dynamics of these exter-

nal degrees of freedom one obtains equations of motion describing an open quantum system.

According to the common Born-Markov approximation, one can describe the dynamics of the

system with the quantum master equation in Lindblad form [6]

dr
dt
¼ �

i
ℏ
H; r½ � þ

P
a
ga LarL

y

a
�

1

2
fLy

a
La; rg

� �

: ð7Þ

Here, ρ is the density matrix of the system, Lα is the Lindblad operator of the decay channel

α, and γα the associated decay rate. When the Hamiltonian H is given by Eq 1, the model is

referred to as the open Dicke model.

Some common decay processes that are relevant to experiments are given in Table 2.

In the theoretical description of the model, one often considers the steady state where dρ/

dt = 0. In the limit of N!1, the steady state of the open Dicke model shows a continuous

phase transition, often referred to as the nonequilibrium superradiant transition. The critical

exponents of this transition are the same as the equilibrium superradiant transition at finite

temperature (and differ from the superradiant transition at zero temperature).

The superradiant transition and Dicke superradiance

The superradiant transition of the open Dicke model is related to, but differs from, Dicke

superradiance (see Fig 2).

Dicke superradiance is a collective phenomenon in which many two-level systems emit

photons coherently in free space [2, 7]. It occurs if the two-level systems are initially prepared

Fig 1. Schematic plot of the order parameter of the Dicke transition, which is zero in the normal phase and finite

in the superradiant phase. The inset shows the free energy in the normal and superradiant phases, see Eq 5.

https://doi.org/10.1371/journal.pone.0235197.g001

Table 2. Common decay processes.

- Cavity decay Atomic decay Atomic dephasing Collective decay

Lindbladian L = a L ¼ s�i L ¼ szi L ¼
X

i

s�i

Decay rate κ γ# γϕ Γ#
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in their excited state and placed at a distance much smaller than the relevant photon’s wave-

length. Under these conditions, the spontaneous decay of the two-level systems becomes much

faster: the two-level systems emit a short pulse of light with large amplitude. Under ideal con-

ditions, the pulse duration is inversely proportional to the number of two-level systems, N, and

the maximal intensity of the emitted light scales as N2. This is in contrast to the spontaneous

emission of N independent two-level systems, whose decay time does not depend on N and

where the pulse intensity scales as N.

As explained above, the open Dicke model rather models two-level systems coupled to a

quantized cavity and driven by an external pump (see Fig 2). In the normal phase, the intensity

of the cavity field does not scale with the number of atoms N, while in the superradiant phase,

the intensity of the cavity field is proportional to ha†ai~N.

The scaling laws of Dicke superradiance and of the superradiant transition of the Dicke

model are summarized in Table 3.

Experimental realizations of the Dicke model

The simplest realization of the Dicke model involves the dipole coupling between two-level

atoms in a cavity (see Fig 2, right panel). In this system, the observation of the superradiant

transition is hindered by two possible problems: (1) The bare coupling between atoms and cav-

ities is usually weak and insufficient to reach the critical value λc, see Eq 6 [8]. (2) An accurate

modelling of the physical system requires to consider A2 terms that according to a no-go

Fig 2. Schematic representation of the difference between Dicke superradiance and the superradiant transition of

the open Dicke model.

https://doi.org/10.1371/journal.pone.0235197.g002

Table 3. Scaling laws of Dicke superradiance and of the superradiant transition of the Dicke model.

Dicke superradiance [2] Superradiant transition of the Dicke model [1]

Environment Free space Cavity

Duration Transient Steady state

Intensity of the field (normal) N 1

Intensity of the field (superradiant) N2 N

https://doi.org/10.1371/journal.pone.0235197.t003
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theorem, may prevent the transition. Both limitations can be circumvented by applying exter-

nal pumps on the atoms and creating an effective Dicke model in an appropriately rotating

frame [9, 10].

In 2010, the superradiant transition of the open Dicke model was observed experimentally

using neutral Rubidium atoms trapped in an optical cavity [11]. In these experiments, the cou-

pling between the atoms and the cavity is not achieved by a direct dipole coupling between the

two systems. Instead, the atoms are illuminated by an external pump, which drives a stimu-

lated Raman transition. This two-photon process causes the two-level system to change its

state from down to up, or vice versa, and emit or absorb a photon into the cavity (see Fig 3).

Experiments showed that the number of photons in the cavity shows a steep increase when the

pump intensity crosses a critical threshold. This threshold was associated with the critical cou-

pling of the Dicke model.

In the experiments, two different sets of physical states were used as the down and up states.

In some experiments [11–13], the two states correspond to atoms with different velocities, or

momenta: the down state had zero momentum and belonged to a Bose-Einstein condensate,

while the up state had a momentum equal to sum of the momentum of a cavity photon and the

momentum of a pump photon [14]. In contrast, later experiments [15–16] used two different

hyperfine levels of the Rubidium atoms in a magnetic field. The latter realization allowed the

researchers to study a generalized Dicke model (see below). In both experiments, the system is

time-dependent and the (generalized) Dicke Hamiltonian is realized in a frame that rotates at

the pump’s frequency.

The generalized Dicke model and lasing

The Dicke model can be generalized by considering the effects of additional terms in the Ham-

iltonian of Eq 1 [5]. For example, a recent experiment [16] realized an open Dicke model with

independently tunable rotating and counter-rotating terms. In addition to the superradiant

transition, this generalized Dicke model can undergo a lasing instability, which was termed

Fig 3. Schematic representation of two schemes to experimentally realize the Dicke model: On the left, the

equilibrium approach based on the dipole coupling between the two levels and, on the right, the nonequilibrium

approach based on two-photon processes, namely stimulated Raman scattering. Only the latter scheme is used to

realize the Dicke model.

https://doi.org/10.1371/journal.pone.0235197.g003
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inverted lasing or counter-lasing [5]. This transition is induced by the counter-rotating terms

of the Dicke model and is most prominent when these terms are larger than the rotating ones.

The nonequilibrium superradiant transition and the lasing instability have several similari-

ties and differences. Both transitions are of a mean-field type and can be understood in terms

of the dynamics of a single degree of freedom. The superradiant transition corresponds to a

supercritical pitchfork bifurcation, while the lasing instability corresponds to a Hopf

instability. The key difference between these two types of bifurcations is that the former gives

rise to two stable solutions, while the latter leads to periodic solutions (limit cycles). Accord-

ingly, in the superradiant phase the cavity field is static (in the frame of the pump field), while

it oscillates periodically in the lasing phase [5].
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