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THE NATURAL HISTORY OF MODEL ORGANISMS

The biology of C. richardii 
as a tool to understand 
plant evolution
Abstract:  The fern Ceratopteris richardii has been studied as a model organism for over 50 years because it is 
easy to grow and has a short life cycle. In particular, as the first homosporous vascular plant for which genomic 
resources were developed, C. richardii has been an important system for studying plant evolution. However, we 
know relatively little about the natural history of C. richardii. In this article, we summarize what is known about this 
aspect of C. richardii, and discuss how learning more about its natural history could greatly increase our under-
standing of the evolution of land plants.

SYLVIA P KINOSIAN* AND PAUL G WOLF

Introduction
The genus Ceratopteris has a long and compli-
cated taxonomic history. It was first described 
by Linnaeus under the genus Acrostichum 
(Linnaeus, 1764), and the name Ceratopteris 
was later assigned by Brongniart (Brongniart, 
1821). Since then, Ceratopteris has been placed 
in a number of different families, with the number 
of species within the genus ranging between 
one and twelve (Lloyd, 1974). Today it is placed 
within Pteridaceae, one of the largest and most 
diverse fern families (PPG, 2016; Figure 1).

There are about ten species within Cera-
topteris, which can be found throughout the 
tropics (Figure 2; Masuyama and Watano, 2010; 
Zhang et  al., 2020; Yu et  al., 2021). The clas-
sification of these species was made difficult by 
their inconsistent morphologies, and molecular 
methods were needed to reconstruct a backbone 
phylogeny for the genus (Adjie et al., 2007; Kino-
sian et al., 2020a). Recent work has shown that 
cryptic and hybrid species may be quite common 
in Ceratopteris, warranting a more rigorous eval-
uation of the relationships between species in the 
genus (e.g., Kinosian et al., 2020b).

Ceratopteris richardii was first developed 
as a model system for ferns in the 1960s and 
70s, primarily because it was easy to grow in 
the lab and had a short life cycle (Figure 2; Pal 
and Pal, 1962; Pal and Pal, 1963; Klekowski, 

1970; Stein, 1971; Hickok, 1973; Hickok 
and Klekowski, 1973; Lloyd and Warne, 
1978). Many studies used spores from a Cuban 
vouchered collection, now known as the Hnn 
strain or C- fern (Hickok, 1977). Additional strains 
of C. richardii and the species C. thalictroides 
and C. pteridoides have since been developed 
(Hickok and Klekowski, 1974; Nakazato et al., 
2006; Muthukumar et al., 2013). In the past few 
decades, Ceratopteris has become an important 
model in the study of sex determination (Eberle 
et al., 1995; Ganger et al., 2019; Atallah et al., 
2018; Banks, 1997), apogamy (Bui et al., 2017; 
Cordle et  al., 2010), genome structure (Naka-
zato et  al., 2006; Baniaga and Barker, 2019), 
hybridization (Hickok and Klekowski, 1974; 
Adjie et al., 2007), reproductive barriers (Naka-
zato et al., 2007), developmental biology (Hou 
and Hill, 2002; Conway and Di Stilio, 2020; Sun 
and Li, 2020; Aragón- Raygoza et al., 2020), and 
transgenic studies in ferns (Plackett et al., 2018; 
Bui et al., 2015; Cannon et al., 2018).

Ceratopteris richardii is one of few spore- 
bearing model systems (e.g., Physcomitrella: 
Cove, 2005; Rensing et  al., 2008; Selaginella: 
Banks et al., 2011) and the only vascular spore- 
bearing homosporous model species, making 
it a critical evolutionary lineage in comparative 
studies (see Box 1 for a glossary of terms used 
in this article). Compared to other model plants, 
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Ceratopteris has a large genome (~11 GB) and 
high base chromosome number (n = 39), which 
has partly caused genetic resources for C. rich-
ardii to lag behind those of other plant model 
systems, delaying such comparative work.

Recently, however, the first draft genome 
sequence for C. richardii was published 
(Marchant, 2019a), which was the first for a 
homosporous fern. Ceratopteris richardii was 
chosen for sequencing because, although it has a 
large genome compared to other plants, it is rela-
tively small for a homosporous fern (Sessa et al., 
2014; Marchant et al., 2019b).

Having a reference genome for C. richardii 
expands its research potential and builds on 
decades of previous work. A homosporous plant 
genome provides the opportunity for exploring 
and comparing various aspects of plant biology 
such as the alternation of generations, sex deter-
mination, and reproductive modes between 
heterosporous and homosporous plants. In addi-
tion, a reference genome for Ceratopteris is 
beneficial for the development of new markers 
in targeted gene sequencing or whole- genome 
resequencing. In turn, this makes incorporating 
wild collections into genomic research much 
easier and will help us gain a more nuanced 

understanding of the biology, ecology, and 
evolutionary history of Ceratopteris.

The variable natural history of 
Ceratopteris
The model species Ceratopteris richardii orig-
inates in the Caribbean and Western Africa, 
and grows rooted or floating in shallow water 
(Figure 2). Indeed, all species within Ceratopteris 
grow in or near areas in the tropics that become 
inundated seasonally (Figures  2 and 3), mostly 
growing in fresh water, though they can tolerate 
salt water (Lloyd, 1974; Warne and Hickok, 
1987).

Its sister genus, Acrostichum, is well- known 
for being able to tolerate high levels of salt as 
it grows in tidal and intertidal habitats (Zhang 
et  al., 2013; Medina et  al., 1990). The extent 
of natural salt tolerance in Ceratopteris is not 
fully understood, but salt- tolerant mutants of C. 
richardii are easy to generate in the lab (Chasan, 
1992; Warne et al., 1995). Continuing to study 
salt tolerance in Ceratopteris may be beneficial 
in understanding the genetic mechanisms of this 
trait, or applying such findings to crop systems in 
the future.

Figure 1. Cartoon phylogeny of land plants. Within the Polypodiopsida (ferns), the estimated number of genera 
and species (genera/species) are noted for each major group. Black stars show the three extant independent 
evolutions of heterospory (Bateman and DiMichele, 1994). In the family Pteridaceae, the five major groups are 
shown, including the Ceratopteridoid clade (in bold) which includes the genera Acrostichum and Ceratopteris. 
Within Ceratopteris, there are about ten species found throughout the world’s tropics (see Figures 2 and 3).

https://doi.org/10.7554/eLife.75019
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Through much of its range, Ceratopteris 
inhabits ephemeral water sources. To reproduce 
in this fleeting habitat C. richardii has a short life 
cycle of about 120 days (Stein, 1971), which is 
much shorter than almost all ferns’ annual or 
multi- year life cycles. The fern life cycle, like 
that of all land plants, is characterized by the 
alternation of generations between the diploid 
sporophyte and haploid gametophyte. Following 
fertilization, a diploid zygote is formed that is 
temporarily reliant on the gametophyte and 
becomes self- sufficient over time. In the fern life 
cycle, the gametophyte and sporophyte genera-
tions are completely separate at certain stages. 
Comparatively, in bryophytes, the sporophyte 
generation is entirely dependent on the game-
tophyte, and the opposite is true in seed plants. 
The fern life cycle provides an opportunity to 

study sporophyte and gametophyte generation 
separately, something that is not possible in 
other lineages of plants.

Because ferns have independent and free- 
living sporophytic and gametophytic phases, 
there are multiple ways in which the life cycle of 
Ceratopteris can proceed (Haufler et al., 2016). 
Fertilization can occur via gametes from different 
plants (sporophytic outcrossing), gametes from 
the same plant but different gametophytes 
(gametophytic outcrossing), and also gametes 
from the same gametophyte (gametophytic 
selfing). Studies show evidence of outcrossing 
within (Nakazato et  al., 2007) and among 
species of Ceratopteris (i.e., hybridization, Adjie 
et al., 2007; Kinosian et al., 2020a; Hickok and 
Klekowski, 1974).

Outcrossing and gametophytic sex expression 
in ferns is often controlled by pheromones known 
as antheridiogens. These gibberellin- related 
chemicals are released by early- germinating 
archegoniate gametophytes to promote anther-
idiate gametophyte development in immature 
gametophytes. This pheromone system confers 
some of the benefits of heterospory to homo-
sporous plants, namely outcrossing (Bateman 
and DiMichele, 1994; Hornych et  al., 2021). 
In the case of Ceratopteris, however, solitary 
gametophytes can also become bisexual and 
self- fertilize; therefore, theoretically, only one 
spore can colonize new habitats (Schedlbauer 
and Klekowski, 1972). This is the case for many 
ferns and aids Ceratopteris as a model organism 
because studies can be designed around this 
flexible life history.

In addition, asexual reproduction (apomixis) 
can be induced in C. richardii in the lab (Cordle 
et  al., 2007). The variation within the life cycle 
of Ceratopteris makes it a powerful system in 
which to study reproduction in ferns, as well as an 
evolutionary point of reference for understanding 
reproduction in seed plants.

Ceratopteris was developed as a model 
organism for many of the same reasons as other 
model systems. It is easy to grow in a lab setting, 
has a rapid life cycle that makes experiments 
tangible, and is tractable for genetic transforma-
tions (Eberle et al., 1995; Hickok et al., 1995). 
Model organisms are often chosen for conve-
nience, but that can make them poor representa-
tive taxa (Alfred and Baldwin, 2015).

In the case of Ceratopteris, it has several traits 
that are very unusual among ferns. For example, 
it is one of only a handful of semi- aquatic species 
out of around 12,000 extant ferns (PPG, 2016). 
The life cycle of Ceratopteris, while beneficial 

Figure 2. Phylogenetic and geographic representation of the genus Ceratopteris. (A) 
Phylogenetic reconstruction of Ceratopteris, with the sister genus Acrostichum as the 
outgroup, based on Kinosian et al., 2020a; Adjie et al., 2007; Yu et al., 2021 Zhang 
et al., 2020. Absent from this phylogeny is the Brazilian species C. froesii, for which no 
genetic sequence data is available. (B) Distribution map of ten Ceratopteris species: pink, 
C. richardii; orange, C. shingii; green, C. cornuta; light blue, C. thalictroides; dark blue, C. 
oblongiloba; purple, C. gaudichaudii; grey, C. pteridoides; black, C. froesii; brown, C. chingii, 
and red C. chunii. Shaded areas show where a species is common, colored dots show where 
species occur outside their most common range, or multiple species are found in a small 
area. Location data from Kinosian et al., 2020a; Lloyd, 1974; Masuyama and Watano, 
2010; Zhang et al., 2020; Yu et al., 2021 https://gbif.org/.

https://doi.org/10.7554/eLife.75019
https://gbif.org/


   Feature article    

Kinosian and Wolf. eLife 2022;11:e75019. DOI: https:// doi. org/ 10. 7554/ eLife. 75019  4 of 12

The Natural History of Model Organisms | The biology of C. richardii as a tool to understand plant evolution

for lab experiments, is incredibly short for a fern 
(Stein, 1971). Finally, it has half or a quarter of the 
number of spores typical for a leptosporangiate 
fern: most leptosporangiate ferns produce 64 
spores per sporangium, whereas species in Cera-
topteris produce 32 or 16 spores per sporangium 
(Lloyd, 1974). This is important because a spore 
number of 32 or 16 is often indicative of apogamy 
(Grusz, 2016), but no natural apogamous taxa 
have been described in Ceratopteris. These char-
acteristics, among others, make Ceratopteris a 
good model species but not necessarily an accu-
rate representation of all ferns.

A transgenic model for seed-free 
plants
Free- living generations and a flexible life cycle 
make Ceratopteris an important model for 
evolutionary developmental studies. A refer-
ence ontogenetic framework for the Hnn strain 
of C. richardii (C- fern; Hickok et al., 1995) was 
recently published, detailing the development 
of the gametophyte and sporophyte, providing 
an important reference for future work (Conway 
and Di Stilio, 2020). This reference, in combina-
tion with stable transformation techniques, plus 
a C. richardii transcriptome (Geng et al., 2021; 
Atallah et  al., 2018) and genome (Marchant 
et  al., 2022; Marchant et  al., 2019b) now 
provide the necessary suite of tools for compar-
ative work.

In the Hnn strain of Ceratopteris richardii stable 
transgenic lines have been established in both 
the gametophyte and sporophyte generations. 
Transformation of the tissue in these plants has 
been accomplished by bombardment of sporo-
phytic tissue by tungsten microparticles (Plackett 
et  al., 2014; Plackett et  al., 2015a), Agrobac-
terium infection of haploid gametophyte tissue 
(Bui et al., 2015), and agrobacterium infection of 
haploid spores (Muthukumar et al., 2013).

Transformation on gametophytes provides 
an important perspective on gene function in 
the haploid generation, something that is not as 
easy in seed plants. Another benefit of working 
with transformed gametophytes is that they can 
self- fertilize to produce sporophytes that are 
stable homozygotes. However, this can also be 
accomplished if transformation is done on sporo-
phytes. Spores can be collected and screening 
of resulting gametophytes can then be used to 
produce stable homozygous transgenic lines via 
gametophytic selfing.

Thus, transgenic lines of C. richardii have been 
developed, and allow for comparative studies of 

gene function and evolution across land plants in 
both the gametophyte and sporophyte genera-
tions. The ability to have transgenic lines in both 
generations provides a unique perspective for 
studying how genes, growth conditions, or other 
factors affect sporophytes and gametophytes 
differently.

A recent study using both transgenic gameto-
phytes and sporophytes of Ceratopteris investi-
gated the role of the LEAFY transcription factor 
(LFY) in development (Plackett et al., 2018). LFY 
is important for cell division in moss embryos 
(Tanahashi et  al., 2005) and angiosperm floral 
meristem development (Carpenter and Coen, 
1990). While it is known to be important in both 
of these lineages, there is no functional overlap 
between mosses and angiosperms, so under-
standing the evolutionary history of LFY has been 
challenging.

Ceratopteris provides an evolutionary and 
functional midpoint with which to study the role 
of the LFY gene in development. Using several 
transgenic lines of C. richardii, Plackett et al. 
evaluated the role of LFY in sporophyte devel-
opment. They also reported, for the first time in 
any land plant, that LFY function is required for 
C. richardii gametophyte development (Plackett 
et  al., 2018). This suggests that LFY was 
important for gametophyte development for the 
last common ancestor of ferns and seed plants, 
but this function was lost in seed plants where 
the gametophyte is greatly reduced (Plackett 
et  al., 2018). Incorporating other vegetative 
developmental systems into further studies with 
C. richardii (e.g., Vasco et al., 2013; Vasco et al., 
2016; Hernández- Hernández et  al., 2021) will 
help us gain a more nuanced understanding of 
these processes across land plants.

Similarly, there is a growing body of work 
on the developmental patterns associated 
with reproduction using Ceratopteris. It is well- 
established that apogamy can be induced 
in C. richardii (Cordle et  al., 2007), but the 
genetic mechanism responsible was unknown 
until recently. In flowering plants, BABY- BOOM 
(BBM) genes promote somatic embryogenesis 
(Boutilier et  al., 2002; Soriano et  al., 2013). 
These genes are absent in non- seed plants, but 
an ortholog of the BBM gene AINTEGUMENTA 
was identified in C. richardii (Bui et  al., 2017). 
Using Agrobacterium- mediated transformations, 
Bui et al., created C. richardii gametophytes 
with both over- and knockdown- expression of 
the apogamy- inducing gene, CrANT. This was 
the first such study conducted in a non- seed 
plant and provides evidence for conserved gene 

https://doi.org/10.7554/eLife.75019
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function in apomixis across land plant lineages 
(Bui et al., 2017).

Future work using transgenic lines of Cera-
topteris richardii has the potential to connect 
gene expression and function across land plants. 
Work has already been done on many gene fami-
lies in model bryophytes, the lycophyte Selagi-
nella, and seed plants. As mentioned above, 
however, there is not always functional overlap 
between these lineages. Including Ceratopteris 
may provide such a functional or developmental 
link. It is important to note that ferns like Cera-
topteris are an independent lineage with unique 
development characteristics that have continued 
to evolve since diverging from other land plants, 
as are bryophytes and seed plants (Plackett 
et al., 2015b; McDaniel, 2021). However, Cera-
topteris does share many characteristics with 
bryophytes (e.g., spores, independent gameto-
phyte generation) and seed plants (e.g., vascula-
ture, independent sporophyte generation), which 
make it a key lineage to include in comparative 
work.

Many model and non- model plants have 
recently established CRISPR/Cas9 gene- editing 
systems. Developing CRISPR in Ceratopteris 
is promising because C. richardii (and the Hnn 
strain) is diploid with a short life cycle and 

homozygotes can be easily created in one gener-
ation of gametophytic selfing (Shan et al., 2020). 
One potential avenue of study with CRISPR could 
be the apogamy pathway in C. richardii (Bui et al., 
2017), investigating the connection between 
apogamy and spore number in C. richardii. This 
species produces 16 spores per sporangium, 
a number often indicative of apogamy in ferns 
(Grusz, 2016); C. richardii reproduces sexually 
but apogamy can be easily induced. If a CRISPR 
system could be established in Ceratopteris, 
one might be able to extend such technology 
to other members of the Pteridaceae known 
for apogamy (Grusz et al., 2021; Grusz, 2016; 
Grusz et  al., 2009), or for application in other 
non- model ferns.

The environmental influence on 
development
Ceratopteris richardii is a well- known model 
system for studying sex determination (Banks, 
1997) and the alternation of generations in 
homosporous plants (Eberle et  al., 1995). 
However, there are some steps in its life cycle 
that are poorly understood. Almost nothing is 
known about how Ceratopteris gametophytes 
are established in the wild. It is unknown if 

Box 1. Glossary

Homosporous: Plants that produce one type of spore, which germinates into a gametophyte 
capable of producing both eggs and sperm. This group comprises most ferns, and some 
lycophytes, and all non- vascular plants.
Heterosporous: Plants that produce separate spores, which produce sperm and eggs 
respectively. This includes all seed plants, as well as a few lineages of ferns and lycophytes.
Apomixis: A form of asexual reproduction in plants. It can proceed by ‘apogamy’, where 
unreduced spores germinate into gametophytes from which sporophytic tissue can grow 
without fertilization; the alternative is ‘apospory’, where no spore is produced and a 
gametophyte grows directly from the parent sporophytic tissue.
Sporophyte: The diploid generation of plants that produce spores. In mosses, this generation 
is dependent on the gametophyte. In ferns, lycophytes, and seed plants this generation is 
independent.
Gametophyte: The haploid generation in plants that produce gametes. They can be 
‘archegoniate’ (having archegonia that produce eggs) or ‘antheridiate’ (having antheridia that 
produce sperm), or be ‘hermaphroditic’ (producing both egg and sperm). Gametophytes are 
free- living in mosses, ferns, and lycophytes, but dependent on the sporophyte generation in 
seed plants.
Sporangium: The structure in plants that create a spore. In ferns, these are found on the 
underside of a leaf, often grouped in small clusters called sori.
Leptosporangiate fern: One of the major lineages of ferns, in the subclass Polypodiidae. These 
ferns have sporangia with long stalks that produce (typically) 64 spores, all derived from a 
single initial cell (PPG, 2016).

https://doi.org/10.7554/eLife.75019
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Ceratopteris spores must germinate on soil, or if 
they can germinate and establish gametophytes 
in standing or slow- moving water.

Recently the effect of soil bacteria on sex deter-
mination in C. richardii was investigated for the 
first time (Ganger et al., 2019). In the presence 
of a soil bacterium, there were more hermaphro-
ditic (compared to antheridiate) gametophytes as 
well as increased growth (Ganger et al., 2019). 
Ceratopteris uses an antheridiogen pheromone 
system to control sex determination (Scott and 
Hickok, 1987; Banks, 1997), and soil bacteria 
may be influencing sex determination in a similar 
way. Additional experiments would benefit our 
understanding of how natural conditions might 
affect gametophyte establishment and sex deter-
mination in Ceratopteris, outside of the known 
role of antheridiogens. The establishment of new 
plants is particularly important as climate change 
is a threat to the current habitat of Ceratopteris, 
both as sea levels rise and rainfall becomes less 
predictable.

In addition to the establishment of new plants, 
climate change may influence the morphology, 
ecology, and physiology of Ceratopteris. There 
is dramatic variation in frond morphology within 
Japanese C. thalictroides based on the growing 
season length (Masuyama, 1992); such intra-
species variety has not been systematically 
characterized in any other species in the genus. 
This is important to understand because leaves 
have been used by some authors as the primary 
method of identification in Ceratopteris (Bene-
dict, 1909; Lloyd, 1974), despite this being one 
of the most variable traits. Understanding the 
model species C. richardii and its relatives in the 
wild is important for conservation efforts, as well 
as to understand what natural variation exists in 
these species that may be informative to future 
work.

Systematics and hybridization
Hybridization among Ceratopteris species is 
well- documented (Hickok and Klekowski, 1974; 
Nakazato et  al., 2007; Hickok, 1977; Hickok, 
1973), and these hybrid taxa as well as progen-
itor species can be morphologically cryptic (Adjie 
et  al., 2007). Lloyd predicted the presence of 
multiple cryptic lineages in C. thalictroides, but 
detecting these taxa was not possible at the time 
without genetic analysis (Lloyd, 1974).

During the 1990s and early 2000 s, Masuyama 
and colleagues examined cryptic variation within 
C. thalictroides from Asia and Oceania. They used 
a combination of work on allozymes and cross- 
breeding experiments (Masuyama et al., 2002), 
chromosome counts (Masuyama and Watano, 
2005), morphology of wild and cultivated plants 
(Masuyama and Adjie, 2008; Masuyama, 1992), 
along with plastid and nuclear markers (Adjie 
et  al., 2007) to describe three cryptic species 
(Masuyama and Watano, 2010). More recently, 
Zhang et al. described another cryptic species of 
C. thalictroides endemic to Hainan Province in 
China. This taxon, Ceratopteris shingii, has some 
unique characteristics in the genus: a creeping 
rhizome, terrestrial growth on volcanic rock, and 
is sister to all other species in the genus (Zhang 
et  al., 2020). Its phylogenetic placement and 
unique characteristics could provide some new 
hypotheses for trait evolution and an updated 
perspective on the life history and ecology of the 
genus.

In addition to the diversity of Ceratopteris 
in Asia, the Americas may have novel cryptic 
species. Natural hybrids between C. thalictroides 
and C. pteridoides have been described in South 

Figure 3. Morphological diversity of four Ceratopteris 
species. All photos by SPK unless credited otherwise. 
(A) Ceratopteris thalictroides mature plant from 
Townsville, Australia. (B) Detail of a sterile C. 
thalictroides leaf with buds. (C) Detail of a fertile C. 
thalictroides leaf. (D) Leaf bases and fiddleheads of 
C. thalictroides. (E, F) Ceratopteris pteridoides in 
cultivation at the Dr. Cecilia Koo Botanic Conservation 
Center in Taiwan. (G) Vegetative buds on C. pteridoides 
(photo by Christopher Haufler). (H) Ceratopteris 
gaudichaudii in Cairns, Australia. (I) Ceratopteris 
richardii in cultivation (photo by David Randall). (J) 
Ceratopteris richardii gametophytes (photo by Jo Ann 
Banks).

https://doi.org/10.7554/eLife.75019
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America (Hickok and Klekowski, 1974), as well 
as synthesized hybrids between several New 
World species (Hickok, 1973; Hickok, 1978). 
Kinosian et al., found several hybrid individuals 
and potentially a cryptic species of C. thalic-
troides in the Americas (Kinosian et al., 2020a). 
Interestingly, the same study did not find distinct 
wild populations of C. richardii. Future work on 
systematics in the group should focus on detan-
gling cryptic species and identifying the extant 
range and phylogenetic placement of C. richardii.

A robust evolutionary tree is particularly 
important for Ceratopteris following the publica-
tion of the C. richardii genome. The taxonomy of 
model organisms is not always fully understood 
until after they become model systems (e.g., 
Arabidopsis, Al- Shehbaz and O’Kane, 2002; 
Rattus norvegicus, Musser et  al., 2005 and 
Caenorhabditis elegans, Denver et al., 2003; De 
Ley, 2006), and C. richardii is no exception.

Despite having unique characteristics like a 
distinct deltoid leaf shape and only 16 spores 
per sporangium (Lloyd, 1974), C. richardii is not 
often identified correctly. For example, speci-
mens identified as C. richardii from Central and 
South America, as well as western Africa, are each 
more genomically similar to other species than 
they are to one another (Kinosian et al., 2020b). 
This could be due to misidentification of collec-
tions, a poor understanding of its native range, or 
the extinction of C. richardii in the wild. This last 
possible explanation is troubling because, as we 

discuss above, it is important to have wild popu-
lations to best understand the potential of model 
organisms. Revisiting the localities of known C. 
richardii collections (detailed in Lloyd, 1974) 
should be a goal for future fieldwork. New wild 
collections will help elucidate the outstanding 
questions about the taxonomy and natural history 
of C. richardii, but may also provide novel popu-
lations or strains to include in lab studies.

Plant genome structure and 
evolution
On average, heterosporous plants have fewer 
chromosomes and smaller genomes than homo-
sporous plants. Ceratopteris richardii is the first 
homosporous fern with the genomic resources to 
address why these differences between hetero- 
and homosporous genomes exist. Nakazato et al. 
generated a genetic linkage map for C. richardii 
which showed that it is likely not repeated rounds 
of polyploidization that leads to larger genomes 
in ferns, but rather small- scale gene duplications 
(Nakazato et al., 2006). More recently, Marchant 
et al. published the first draft genome assembly 
for C. richardii and found additional support 
for genetic diploidy and limited rounds of poly-
ploidization (Marchant et  al., 2019b). These 
data further support the theory that homospo-
rous fern genomes are large not because of 
whole- genome duplication, but because they 
do not have the same mechanisms for genome 

Box 2. Outstanding questions about the natural history 
of Ceratopteris

• What is the evolutionary history of C. richardii? Kinosian et al., 2020b were unable to 
find a consistent genetic identity for C. richardii; is this due to poor sampling, extirpation 
of C. richardii from its native range, and/or misidentification of specimens?

• Why do some species of Ceratopteris produce 32 spores per sporangium, and C. richardii 
produces only 16? This is substantially less than the typical leptosporangiate fern which 
produces 64 spores per sporangium.

• What is the genetic population structure of Ceratopteris species? Plants are typically 
locally abundant but regionally rare; is this due to environmental conditions, spore 
dispersal, or other factors? How does it affect genetic diversity across a landscape?

• How are Ceratopteris gametophytes established in the wild?

• What is the biogeographic history of the genus? How might that be influencing current 
species distributions and hybridization?

• How does the habit (aquatic vs. semi- aquatic) of different Ceratopteris species influence 
population structure, breeding system, or genetic structure and function?

https://doi.org/10.7554/eLife.75019
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downsizing as heterosporous plants (Clark et al., 
2016; Szövényi et al., 2021).

The draft genome of Ceratopteris richardii is 
an important stepping stone for studying land 
plant evolution (Marchant et al., 2019b); a more 
complete genome is on the way that will be a 
better resource for genomic work (Marchant 
et al., 2022). A high- quality genome for C. rich-
ardii will also aid in the development of targeted 
enrichment or whole- genome resequencing. This 
latter advancement in sequencing resources for 
ferns will help us understand reticulate evolution 
and polyploidy in ferns, as phylogenies can be 
estimated with hundreds of genes.

In addition to the Ceratopteris richardii 
genome, there are many other fern genomes that 
have been recently published or will be available 
soon. Several heterosporous fern and lycophyte 
genomes have been published in the last few 
years, including the heterosporous ferns Azolla 
filiculoides and Salvinia cucullata (Li et al., 2018), 
and the heterosporous lycophytes Selaginella 
moellendorffii (Banks et al., 2011), S. lepidophylla 
(VanBuren et al., 2018), and Isoëtes taiwanensis 
(Wickell et al., 2021). In the near future, several 
additional homosporous fern genomes will be 
available, including Adiantum capillus- veneris 
(Polypodiales), Alsophila spinulosa (Cyatheales), 
Dipteris conjugata (Gleichinales), Ptisana robusta 
(Marattiales), Huperzia asiatica and Diphasias-
trum complanata (Lycopodiales; Drs. F.-W. Li and 
M. Barker, personal communication). As more 
homosporous fern genomes become available, 
the preliminary work with the C. richardii genome 
will be tested in a more rigorous phylogenetic 
context, hopefully leading to a clearer picture of 
land plant genome evolution.

Conclusion
Although Ceratopteris richardii has been used as 
a model for decades, fundamental aspects of its 
natural history are still unknown. A few examples 
include basic taxonomy, origins of spore number, 
salt tolerance, origins of polyploids, phenotypic 
plasticity, and intraspecies morphological varia-
tion (see Box 2). Many of these topics are ripe 
for undergraduate or graduate student projects 
and could be integrated into existing research 
programs to answer fundamental aspects of fern 
biology.

Additionally, C. richardii is a useful tool for 
teaching students at all grade levels about plant 
biology (https://www.c-fern.org/). As detailed 
by Marchant, the C- fern can be incorporated 
into curriculum topics ranging from basic plant 

biology to evolution and development to bioin-
formatics. In the lab, field, or classroom, the 
recently published C. richardii genome provides a 
new window into the study of this fern (Marchant 
et al., 2019b). As more fern genomic resources 
become available, having Ceratopteris as a well- 
established model system will only become more 
important to test novel hypotheses about land 
plant evolution.
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2020a, https://doi.org/10.1016/j.ympev.2020.106938), 
and in Ceratopteris Brongn. in GBIF Secretariat (2021). 
GBIF Backbone Taxonomy. Checklist dataset https:// 
doi.org/10.15468/39omei (accessed via GBIF.org on 
2021- 10- 4).

The following previously published datasets 
were used:

Author(s) Year Dataset URL
Database and 
Identifier

GBIF 
Secretariat

2021 https:// doi. org/ 
10. 15468/ 39omei

GBIF, 
10.15468/39omei

Kinosian 
SP, Pearse 
WD, Wolf 
PG

2020 https:// 
github. com/ 
sylviakinosian/ 
ceratopteris- map

GitHub, 02f4523
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