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ABSTRACT
Mulberry (Morus, Moraceae) is an important economic plant with nutritional,
medicinal, and ecological values. Lignin in mulberry can affect the quality of forage
and the saccharification efficiency of mulberry twigs. The availability of the Morus
notabilis genome makes it possible to perform a systematic analysis of the genes
encoding the 11 protein families specific to the lignin branch of the phenylpropanoid
pathway, providing the core genes for the lignin toolbox in mulberry. We performed
genome-wide screening, which was combined with de novo transcriptome data for
Morus notabilis and Morus alba variety Fengchi, to identify putative members of the
lignin gene families followed by phylogenetic and expression profile analyses.
We focused on bona fide clade genes and their response to zinc stress were further
distinguished based on expression profiles using RNA-seq and RT-qPCR. We finally
identified 31 bona fide genes in Morus notabilis and 25 bona fide genes in Fengchi.
The putative function of these bona fide genes was proposed, and a lignin toolbox
that comprised 19 genes in mulberry was provided, which will be convenient for
researchers to explore and modify the monolignol biosynthesis pathway in mulberry.
We also observed changes in the expression of some of these lignin biosynthetic
genes in response to stress caused by excess zinc in Fengchi and proposed that the
enhanced lignin biosynthesis in lignified organs and inhibition of lignin biosynthesis
in leaf is an important response to zinc stress in mulberry.
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INTRODUCTION
Lignin is an important component of plant cell walls and has important functions in
plant growth and stress resistance (Chun et al., 2019). In turn, owing to its recalcitrant
nature and complexity, lignin limits the efficient conversion of lignocellulosic biomass
to ethanol (Ragauskas et al., 2014; Zabed et al., 2016). The modification of trees with less
lignin or with more-degradable lignin along with normal growth, which can improve the
quality of forage and saccharification efficiency, has become a hot topic (Dixon, Reddy &
Gallego-Giraldo, 2014; Umezawa, 2018).
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The lignin biosynthesis pathway has been deciphered and revised since its discovery
decades ago (Whetten & Sederoff, 1995). As of now, a total of 11 enzymes have been
identified to play a role in monolignol biosynthesis (Zhao, 2016). The monolignol
biosynthesis pathway generally refers to the branch of phenylpropanoid pathway starting
with the deamination of phenylalanine and leading to the production of hydroxycinnamyl
alcohols. The general phenylpropanoid pathway contains phenylalanine ammonia-lyase
(PAL), cinnamate 4-hydroxylase (C4H) and 4-coumarate: CoA ligase (4CL) and
provides hydroxycinnamoyl-CoA esters as precursors for a wide range of end products,
including lignin, flavonoids, anthocyanins and condensed tannins. In the monolignol-specific
biosynthesis pathway, hydroxycinnamoyl-CoA esters undergo successive hydroxylation
and O-methylation of their aromatic rings, as well as redox reactions, to produce
the monolignols (Zhao, 2016). Coumaroyl shikimate 3′-hydroxylase (C3′H) and
ferulate 5-hydroxylase (F5H) are responsible for the hydroxylation process. Shikimate
O-hydroxycinnamoyl -transferase (HCT), caffeoyl CoA 3-O-methyltransferase
(CCoAOMT) and caffeate/5-hydroxyferulate O-methyltransferase (COMT) are involved
in the O-methylation process. Caffeoyl shikimate esterase (CSE) was recently discovered
to convert caffeoyl shikimate into caffeate and consists of a bypass with 4CL (Saleme
et al., 2017; Vanholme et al., 2013). Redox reactions are catalyzed successively by
cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) to achieve
the conversion of the side-chain carboxyl to an alcohol group. CCR and CAD constitute
the primary pathway for monolignol biosynthesis (Zhao, 2016).

Mulberry (Morus, Moraceae) is an important economic plant in Asia with considerable
nutritional and medicinal values (Yuan & Zhao, 2017). Moraceae is one of the closest
relatives of Rosaceae and mulberry diverged from Cannabis sativa (Cannabaceae)
63.5 Mya, from apple/strawberry (Rosaceae) 88.2 Mya and from Medicago truncatula
(Fabales) 101.6 Mya (He et al., 2013; Jiao et al., 2020). Many studies have shown the great
potential of this plant in the energy, food and pharmaceutical industries. Mulberry has
long been cultivated for sericulture, which shaped the world’s history through the
Silk-Road. Furthermore, a large number of by-products of branches twigs have been
produced from the large-scale cultivation of mulberry trees in traditional sericulture, and
mulberry has been gradually considered a potentially new energy plant providing biomass
for the production of biofuels (Łochy�nska, 2015; Tang, Liu & Chen, 2012). Studies of
lignin biosynthesis have been widely reported for energy plants and forage plants, such as
poplar, Medicago sativa L. and Eucalyptus grandis (Carocha et al., 2015; Hamberger et al.,
2007; Lee et al., 2011; Shi et al., 2010). Recently, Wang et al. characterized four Ma4CL
genes from M. atropurpurea cv. Jialing No. 40. and revealed the functional divergence of
Ma4CL (Wang et al., 2016).

The availability of the Morus notabilis genome and an increasing number of
transcriptomic data for mulberry allows comprehensive genome-wide analyses of lignin
biosynthesis genes in this species (Li et al., 2014). In addition, a recent study has been
reported to reveal the chromosome-level genome of Morus alba (Jiao et al., 2020).
Genome-wide screening, combined with de novo transcriptome data, was performed in
this study onMorus notabilis and Morus alba variety Fengchi to obtain the genes putatively
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included in the 11 monolignol gene families. M. alba is one of the most widely cultivated
mulberry in China. M. alba variety Fengchi is a new variety created by Sericultural
Research Institute, Chinese Academy of Agricultural Sciences, expected to spread and
grow in extreme environment conditions and used as heavy metal hyperaccumulators and
forage. A phylogenetic tree and expression profile were used to further identify the bona
fide genes involved in lignin biosynthesis, and finally, we provided a lignin toolbox
consisting of 19 genes in Morus notabilis and 17 genes in Morus alba variety Fengchi,
which will be convenient for researchers to explore and modify the monolignol
biosynthesis pathway in this genus. We also assessed the potential roles of lignin
biosynthetic genes in response to stress caused by the excess of zinc in Fengchi and
proposed that the promotion of lignification in lignifying organs, associated with the
inhibition of lignin deposition in leaves, is an important response to zinc stress in
mulberry.

MATERIALS AND METHODS
Plant materials
The materials used in this study were obtained from the National Germplasm Resource
Nursery of the Institute of Sericulture, Chinese Academy of Agricultural Sciences. Annual
seedlings,Morus alba L. variety Fengchi, were transplanted into plastic flowerpots, and the
potted plants were irrigated with 400 ml/kg of Murashige and Skoog (MS) medium to
provide nutrients (Susheelamma et al., 1996). Zinc sulfate powder was applied near the
roots of the mulberry trees as excess zinc stress treatment (450 mg/kg). Changes of proline
and superoxide dismutase (SOD) concentration were determined on the 15th day (Fig. S1).
The root, stem and leaf tissues were quickly frozen in liquid nitrogen and stored at
−80 �C. This experiment was performed using three biological replicates. These collected
samples were used for both RNA-seq and RT-qPCR (quantitative real-time PCR) analysis.

Genome-wide screening of candidate genes for the lignin toolbox in
mulberry
Bona fide genes involved in lignin biosynthesis with functional characterization from
different plants were collected as a query sequence for an HMMer search using MorusDB
online (https://morus.swu.edu.cn/morusdb) (Li et al., 2014). The sequence identity
(>45%), e-value (<e-100) and full score (>400) were used to screen for candidate gene
family members. For some gene family members such as CSE and CCoAOMT, the
thresholds were flexible to obtain as many as possible candidate genes. A local blastp
search was also performed to identify the Selaginella moellendorffii SmF5H and Fengchi
homologs (Camacho et al., 2009). All of the query sequences used and candidate genes
obtained are available in Table S1.

D. novo transcriptome assembly of Morus alba variety Fengchi
Transcriptome de novo assembly was carried out with the short reads assembling program
Trinity (Grabherr et al., 2011). Unigenes were aligned by BLASTx (e < 0.00001) to protein
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databases in nr, Swiss-Prot, KEGG and COG/KOG. The best alignment results were
chosen to determine the sequence direction of unigenes. When a unigene could not be
aligned to any of these protein databases, the protein coding sequence and sequence
direction were confirmed using ESTscan (Iseli, Jongeneel & Bucher, 1999). The data set is
available with accession number PRJNA660559 in the National Center for Biotechnology
Information (NCBI).

Sequence alignment and phylogenetic analysis
Putative protein sequences of different plant species were used for alignment and
phylogenetic analysis. Sequences used for phylogenetic analysis were screened from various
sources based on the platform PLAZA 3.0 (http://bioinformatics.psb.ugent.be/plaza/).
Sequences from the gymnosperm Picea sitchensis and the fern Selaginella moellendorffii were
obtained using BlastP in the NCBI database. Bona fide lignin related genes in different
plants were obtained based on published studies (Carocha et al., 2015; Raes et al., 2003).
Alignment was performed using DNAman 8.0 (Lynnon BioSoft, San Ramon, CA, USA)
with default parameters. Phylogenetic trees were constructed using Mega 7.0 with the
maximum-likelihood method (Kumar, Stecher & Tamura, 2016). The phylogenetic tree
was assessed by bootstrapping using 1000 bootstrap replicates and marked above nodes
only if greater than 50. The JTT substitution model and G+I rates among sites model
were selected as parameters for building the tree. The putative protein sequences used
are listed in Table S2.

Expression profile analysis
The gene expression based on the large-scale transcriptome data was calculated and
normalized to RPKM (reads per kb per million reads). Transcriptome data of different
tissues and organs (root, bark, leaves, winter bud, male-flower) in Morus notabilis was
obtained from Mrousdb (https://morus.swu.edu.cn/morusdb) (Li et al., 2014). RNA-seq
data for Fengchi different organs (root, stem and leaf) was aligned to de-novo
transcriptome assembly ofMorus alba variety Fengchi using bowtie2 and RPKM values for
unigenes were calculated using deptools v2.0 based on the bam files (Langdon, 2015;
Ramirez et al., 2014). RT-qPCR (quantitative real-time PCR) was also performed to
validate gene expressions of 23 bona fide clade genes in different organs and the change of
their expression levels after zinc treatment using ABI StepOnePlusTM Real-Time PCR
System (USA). Genes that showed preferential expression in lignifying tissue or organs
(bark, root and stem) were considered as candidate lignin-related genes. Primers based on
the coding sequences of these genes were designed using Primer-Blast. The primers are
available in Table S3 and the melt curve of each gene is provided in Fig. S2. Actin was used
as reference gene according to previous studies (Shukla et al., 2019). Tbtools was used to
visualize the expression profile (Chen et al., 2020), and Graphpad Prism8.0 was used to
visualize the RT-qPCR results. SPSS19.0 was used to perform T-test and ANOVA, p < 0.05
was marked as significant. Three biological replicates were considered for transcriptome
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data and two biological replicates with three technical replicates respectively were
performed for RT-qPCR.

RESULTS
Genome-wide screening of monolignol biosynthesis pathway-related
genes
Morusdb (https://morus.swu.edu.cn/morusdb), which provides the genome and
transcriptome information for Morus notabilis, was used to perform genome-wide
screening of candidate genes involved in monolignol biosynthesis. Finally, we obtained
56 candidate genes based on the HMMer search and blastp results (Table S1). In addition,
we identified their homologs in Fengchi, a Morus alba variety bred by our institute, based
on our de novo transcriptome data. Most (49/56) of the corresponding homologs were
identified in Fengchi using candidate genes in Morus notabilis as a reference sequence.

Phenylalanine ammonia-lyase (PAL)
PAL (EC: 4.3.1.5) catalyzes the deamination of phenylalanine to produce cinnamic acid
and is the initial step in the general phenylpropanoid pathway. We constructed a
phylogenetic tree (Fig. 1A) using both (Morus notabilis Mn) MnPAL and (Fengchi Fc)
FcPAL and bona fide PAL data reported in other species. Seven MnPALs were identified
and clustered as bona fide PALs. However, only three homologs, FcPAL3, FcPAL6 and
FcPAL7, were found in Fengchi based on de novo transcriptome data. MnPAL7 and
FcPAL7 were quite divergent compared with other PALs in angiosperms and are closer to
PALs from gymnosperms, which is similar to EgrPAL2 in Eucalyptus grandis (Carocha
et al., 2015). Both MnPAL7 and FcPAL7 showed a low expression level in various
tissues and organs and exhibited no obvious preference in the lignified tissues and organs
(Fig. 1B). MnPAL1, 2, 4, and 5 are phylogenetically close to AtPAL1 and AtPAL2,
which have been reported to be mainly involved in anthocyanin production (Cochrane,
Davin & Lewis, 2004; Huang et al., 2010). MnPAL1 and 5 were preferentially expressed
in lignifying organs and tissues (root and bark), which differed from the expression
patterns of MnPAL2 and 4 (Fig. 1B). MnPAL1, 2, 4, and 5 (L484_024371, L484_024373,
L484_024372, L484_024369) have high sequence identity (Aligned protein sequence
identity >99%) and are located close to each other in the genome, forming a gene cluster.
Although MnPAL1, 2, 4 and 5 showed high expression levels in the studied organs and
tissues inMorus notabilis, we could not find or distinguish homologs ofMnPAL1, 2, 4, and
5 in Fengchi. Mn PAL3, 6 and FcPAL3, 6 are phylogenetically close to AtPAL4, 5 and
PtrPAL4, 5, which are reported to express more specifically in xylem tissues (Raes et al.,
2003). MnPAL3 and FcPAL3 also showed an expression preference in the root, stem or
bark, with a high overall expression level, while MnPAL6 and FcPAL6 showed low overall
expression levels in all of the examined organs and tissues (Fig. 1B). RT-qPCR results
also validated the expression preference of FcPAL3 in stems (Fig. S3). Based on the
above facts, MnPAL1, 3,5 and FcPAL3 are the PAL genes most likely to be involved in
lignification.
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4-Coumaric acid coenzyme A ligase (4CL)
4CL (EC: 6.2.1.12) belongs to the ANL (AMP-producing adenylating superfamily of
enzymes) superfamily and catalyzes the formation of CoA thiol esters of 4-coumarate and
other 4-hydroxycinnamates, which are important input metabolites, especially for lignin
biosynthesis and flavonoid biosynthesis (Ehlting et al., 1999). The bona fide 4CL clade
in angiosperm comprises three classes. Clade I contains 4CLs, which are mainly involved
in lignin biosynthesis, including At4CL1, 3, 4, Pto4CL1, 3, 4, 5, Mn4CL1, 2, 4 and Fc4CL1,
2, 4 (Fig. 1C). The expression profiles of Mn4CL1, 2, 4 and Fc4CL1, 2, 4 also indicated
preferential expression in the root, stem or bark (Fig. 1D and Fig. S3). Mn4CL3 and
Fc4CL3 were clustered in Clade II together with At4CL3, Pto4CL2 and Os4CL2, which
have been reported to be associated with flavonoid and soluble phenolic biosynthesis

Figure 1 Phylogenetic analysis and expression profile of PAL and 4CL gene family in mulberry.
(A) Phylogenetic analysis of PALs; (B) Expression profiles of PAL gene family in different tissues or
organs inMorus notabilis and Fengchi; (C) Phylogenetic analysis of 4CLs; (D) Expression profiles of 4CL
gene family in different tissues or organs inMorus notabilis and Fengchi. Red full circles indicating PALs
or 4CLs from dicots, blue full circles indicating PALs or 4CLs frommonocots, green full circles indicating
PALs or 4CLs from gymnosperms and yellow full circles indicating PALs from ferns or moss. Putative
protein sequences were used for phylogenetic analysis and the sequences information is available in
Table S2. Mn indicating Morus notabilis and Fc indicating Fengchi. L0, leaf without Zinc treatment; S0,
stem without zinc treatment; R0, root without zinc treatment. Bona fide clades were marked using dif-
ferent color shading. Full-size DOI: 10.7717/peerj.11964/fig-1
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(Gui, Shen & Li, 2011; Li et al., 2015; Rao et al., 2015). Mn4CL3 showed a high
expression level in male flowers but a low expression level in winter buds, consistent with
its possible function in flavonoid biosynthesis. The third clade only contained Os4CLs
(Os4CL1/3/4/5), which are thought to be distinct from the lignin-associated clade I 4CLs
found in dicots. We also found that Mn4CL5, 6 and Fc4CL5, 6 were in a separate
cluster and were phylogenetically close to (Plagiochasma appendiculatum) Pa4CL, the
liverwort Plagiochasma appendiculatum. Mn4CL5 showed a similar expression pattern to
Mn4CL3 and a high expression in male flowers and bark. Mn4CL6 had an expression
specific to male flowers. These facts indicate that Mn4CL5, 6 may also be involved in
flavonoid and soluble phenolic biosynthesis, given the high flavonoid content in mulberry.
Mn4CL5, 6 and Fc4CL5, 6 are divergent from 4CLs in angiosperms and still need to
be further studied to identify their roles in mulberry. Therefore, Mn4CL1, 2, 3, 4 and
Fc4CL1, 2, 3, 4 are the 4CL genes most likely to be involved in lignification.

Hydroxylation steps in the general phenylpropanoid pathway
C4H (EC: 1.14.13.11) and C3′H (EC: 1.14.14.1) catalyze the hydroxylation steps. C4H and
C3′H belong to the CYP73 and CYP98 families, respectively which are members of the
cytochrome P450 monooxygenase superfamily. C4H is generally encoded by small gene
family, except in Arabidopsis, which has only one AtC4H. Studies in Populus have shown a
C4H–C3′H complex that more efficiently catalyzes hydroxylation steps (Chen et al.,
2011). Here, we identified three candidate C4Hs in mulberry. MnC4H1, 2 and FcC4H1,
2 clustered with AtC4H and PoptrC4H1, 2 as Clade I, which is responsible for lignin
biosynthesis (Fig. 2A). MnC4H1, 2 showed a high expression in all organs and tissues.
FcC4H1, 2 was preferentially expressed in lignified organs (Fig. 2C, Fig. S3). MnC4H3 and
FcC4H3 were grouped with PoptrC4H3 and are distinct from MnC4H1, 2 and FcC4H1, 2.
Similar to PoptrC4H3, MnC4H3 and FcC4H3 had a very low expression level in all of
the studied organs. Therefore,MnC4H1, 2 and FcC4H1, 2 are the C4H genes most likely to
be involved in lignification.

Although C3′H was shown to catalyze the conversion of p-coumaric acid into caffeic
acid in vitro, further studies demonstrated that its activity in vitro is the conversion of
p-coumaroyl shikimate to caffeoyl shikimate (Abdulrazzak et al., 2006; Franke et al., 2002,
Schoch et al., 2001). Based on our phylogenetic analysis, only MnC3′H1 and FcC3′H1
clustered with StC3′Hs as bona fide clade II (Fig. 2B). It is interesting to note that MnC3′
H1 and FcC3H1 are phylogenetically closer to C3′Hs in monocots, other than C3′Hs
such as AtC3′H and PoptrC3′H in dicots (Fig. 2B). Other candidates, including MnC3′
H2-5 or FcC3′H2-5, is in a separate cluster without any C3′H orthologs in other plants.
It seems that C3′H in mulberry is similar to that in A. thaliana, which also has only
one C3′H (Raes et al., 2003). MnC3′H1showed a high expression in all of the studied
organs, and FcC3′H1 was preferentially expressed in the stem, according to both
transcriptome data and RT-qPCR, which likely involves lignification (Fig. 2C and
Fig. S3). Therefore,MnC3′H1 and FcC’3H1 are the C3H genes most likely to be involved
in lignification.
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Hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase
(HCT) and caffeoyl shikimate esterase (CSE)
HCT (EC: 2.3.1.133) combined with C3′H (p-coumarate 3-hydroxylase) catalyzes two
steps to change the carbon flux from H to G and S lignin units. HCT belongs to the BAHD
acyltransferase family and is able to utilize a variety of non-native substrates (Chiang et al.,
2018; D’Auria, 2006). P-coumaroyl-CoA and caffeoyl-CoA are preferential substrates

Figure 2 Phylogenetic analysis and expression profile of C3′H and C4H gene families in mulberry.
(A) Phylogenetic analysis of C4Hs; (B) Phylogenetic analysis of C3′Hs. (C) Expression profiles of C3′H
and C4H gene family in different tissues or organs in Morus notabilis and Fengchi. Red full circles
indicating proteins from dicots, blue full circles indicating proteins from monocots, green full circles
indicating proteins from gymnosperms and yellow full circles indicating proteins from ferns or moss.
Bona fide clades were marked using different color shadings. Putative protein sequences were used for
phylogenetic analysis and the sequences information is available in Table S2. Mn indicating Morus
notabilis and Fc indicating Fengchi. L0, leaf without zinc treatment; S0, stem without zinc treatment; R0,
root without zinc treatment. Full-size DOI: 10.7717/peerj.11964/fig-2
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for HCTs and HCTs catalyze the acylation of CoA esters with shikimate, producing shikimate
esters containing coumaric acid or caffeic acid. The reverse reaction for the formation of
caffeoyl-CoA from caffeoyl shikimate is also catalyzed by HCT. Hydroxy-cinnamoyl CoA:
quinate hydroxycinnamoyl transferase (HQT) is another acyl transferase that uses quinic acid
instead of shikimic acid as the acceptor compound and is involved in chlorogenic acid
biosynthesis, not lignin biosynthesis (Niggeweg, Michael & Martin, 2004). We constructed a
phylogenetic tree using both HCTs and HQTs to distinguish bona fideHCT clades (Fig. 3A).
Six candidate MnHCTs were grouped as bona fide HCTs with HCTs in angiosperms.
MnHCT2, 3 (L484_000457, L484_018078) and MnHCT5, 6 (L484_017530, L484_017529)
had high sequence similarity (aligned protein sequence identity >95%). We could not
distinguish FcHCT2, 3 and FcHCT5, 6 based only on transcripts; therefore, we named
FcHCT2 and 5 based on their similar expression pattern toMnHCT2 andMnHCT5. Among
all MnHCTs, MnHCT1, 2 and FcHCT1, 2 were preferentially expressed in lignified organs
and tissues (stems, roots and bark) and are likely involved in monolignol biosynthesis
(Fig. 3C, Fig. S3). OtherMnHCTs and FcHCTs showed relatively low expression in all organs
and tissues. MnHCT5, 6 and FcHCT5 are phylogenetically divergent from other MnHCTs
and MnHCTs and showed preferential expression in the leaf (FcHCT5) and in the winter
bud and leaf (MnHCT5), which indicates their possible different roles as opposed to
lignification in mulberry. Therefore, MnHCT1, 2 and FcHCT1, 2 are the HCT genes most
likely to be involved in lignification.

AtCSE was first characterized as lysoPL2, a member of the monoacylglycerol lipase
(MAGL) gene family in Arabidopsis (Kim et al., 2016; Gao et al., 2010). AtCSE was first
reported as caffeoyl shikimate esterase byVanholme et al. (2013) inArabidopsis because of its
ability to convert caffeoyl shikimate into caffeate. Further analysis of an A. thaliana cse-2
(caffeoyl shikimate esterase 2) knockout mutant that presented a reduced lignin content
enriched in H units and depleted in S units indicated the involvement of CSE (EC: 3.1.1.)
in lignin biosynthesis (Vanholme et al., 2013). CSE competes with HCT for the substrate
caffeoyl shikimate. MnCSE1 and FcCSE1 are phylogenetically close to AtCSE,
PoptrCSE1,2 and MtCSE, which have been reported to be involved in lignin biosynthesis
(Fig. 3B) (Ha et al., 2016; Saleme et al., 2017). In addition, FcCSE1 showed preferential
expression in lignified organs and tissues (Fig. 3C, Fig. S3). MnCSE2 and FcCSE2 showed
close relationship with AtGAML1 which was reported to harbor MAG lipase activities
and lysophosphatidylcholine (LPC) and/or lysophosphatidy -lethanolamine (LPE)
hydrolase activities. MnCSE3, without a homolog in Fengchi, was far from the bona fide
CSEs and cluster with AtMAGL9 and 12. MnCSE3 had an expression preference in winter
buds and male flowers. In general, MnCSE1 and FcCSE1 are lignin-related CSEs, but
MnCSE2 and FcCSE2 are monoacylglycerol lipase.

The methylation steps
COMT (EC: 2.1.1.68) and CCoAOMT (EC: 2.1.1.104) are both involved in the
methylation steps of the monolignol pathway (Zhong et al., 1998). CCoAOMT catalyzes
the methylation of caffeoyl CoA to produce feruloyl CoA and is reported to be responsible
for G and S-type lignin. Only one CCoAOMT in mulberry, MnCCoAOMT1 or
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Figure 3 Phylogenetic analysis and expression profile of HCT and CSE gene families in mulberry.
(A) Phylogenetic analysis of HCTs; (B) Phylogenetic analysis of CSEs; (C) Expression profiles of HCT
and CSE gene family in different tissues or organs in Morus notabilis and Fengchi. Red full circles
indicating proteins from dicots, red empty circles indicating HQTs, blue full circles indicating proteins
frommonocots, green full circles indicating proteins from gymnosperms and yellow full circles indicating
proteins from ferns or moss. Bona fide clades were marked using different color shadings. Putative
protein sequences were used for phylogenetic analysis and the sequences information is available in
Table S2. Mn indicating Morus notabilis and Fc indicating Fengchi. L0, leaf without zinc treatment; S0,
stem without zinc treatment; R0, root without zinc treatment.

Full-size DOI: 10.7717/peerj.11964/fig-3
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FcCCoAOMT1, clusters in the bona fide clade with AtCCoAOMT and PtoCCoAOMT1
and 2 (Fig. 4A). Both MnCCoAOMT1 and FcCCoAOMT1 showed a high expression level
in the lignified organs (Fig. 4C, Fig. S3). FcCCoAOMT1 had the highest expression level in
the stems, about 50-fold higher than that in the leaves (Fig. 4C). MnCCoAOMT1 had
high expression in the root, bark and male flowers, with the highest expression in the root
(two-fold higher than the expression in the bark or male flower, five-fold higher than the

Figure 4 Phylogenetic analysis and expression profile of CCoAOMT and COMT gene families
in mulberry. (A) Phylogenetic analysis of CCoAOMTs; (B) Phylogenetic analysis of COMTs;
(C) Expression profiles of CCoAOMT and COMT gene family in different tissues or organs in Morus
notabilis and Fengchi. Red full circles indicating proteins from dicots, blue full circles indicating proteins
frommonocots, green full circles indicating proteins from gymnosperms and yellow full circles indicating
proteins from ferns or moss. Bona fide clades were marked using different color shadings. Putative
protein sequences were used for phylogenetic analysis and the sequences information is available in
Table S2. Mn indicating Morus notabilis and Fc indicating Fengchi. L0, leaf without zinc treatment; S0,
stem without zinc treatment; R0, root without zinc treatment.

Full-size DOI: 10.7717/peerj.11964/fig-4
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expression in the leaf). Two other candidates, MnCCoAOMT2, 3 and FcCCoAOMT2, 3
belong to the CCoAOMT-like clade and had a low expression level in all organs and
tissues. Therefore, MnCCoAOMT1 and FcCCoAOMT1 are the CCoAOMT1 genes most
likely to be involved in lignification.

In angiosperms, COMT (EC: 2.1.1.68) is involved in the synthesis S precursors and is
now considered to be primarily involved in the synthesis of S units through the preferential
methylation of 5-hydroxyconiferyl aldehyde into sinapaldehyde based on functional
analysis in several species (Davin et al., 2008) In mulberry, only one COMT, MnCOMT4
or FcCOMT4 was identified as a bona fide COMT together with AtCOMT and
PoptrCOMT1,2, based on our phylogenetic analysis (Fig. 4B). MnCOMT4 and FcCOMT4
showed obvious expression preference in the lignified organs and tissues (Fig. 4C,
Fig. S3) and should be responsible for lignin biosynthesis in mulberry. Other candidate
MnCOMTs and FcCOMTs were in a separate cluster and phylogenetically far from the
bona fide clade. MnCOMT2, 5 showed a relatively high expression in male flowers
compared with that in the leaf, winter bud and bark. MnCOMT1 and 6 showed a very
low expression in all of the detected organs, and the RPKM of MnCOMT6 based on the
published transcriptome data is not available. FcCOMT1, 2, 3, 5, and 6 had similar
expression patterns, with overall low expression in all organs and a relatively high
expression in roots compared with the stem and leaf. These COMT-like genes need more
evidence and functional analysis for elucidating their roles in mulberry. Therefore,
MnCOMT4 and FcCOMT4 are the COMT genes most likely to be involved in lignification.

Hydroxylation step specific for S lignin production
F5H (EC:1.14.13) belongs to the CYP84 family and is similar to C3H and C4H as a
member of the cytochrome P450 monooxygenases. F5H (EC: 1.14.13), also called CAld5H
because of its substrate preference for coniferaldehyde/coniferyl alcohol (Humphreys,
Hemm & Chapple, 1999), catalyzes the hydroxylation step specific for the production of
sinapyl alcohol and, ultimately, S lignin. The discovery of SmF5H in the lycophyte
Selaginella moellendorffii revealed a novel P450 (CYP788A1) (Weng et al., 2008). SmF5H
shares only 37% amino acid sequence identity with its angiosperm counterparts and can
also use p-coumaraldehyde and p-coumaryl alcohol as substrates to efficiently produce
caffeoyl aldehyde and caffeoyl alcohol. Therefore, SmF5Hs can divert G-substituted
intermediates toward S lignin synthesis through related but distinct pathways compared
with angiosperms (Weng & Chapple, 2010). In addition to the genome-wide screening
using F5Hs from angiosperms, we carried out blastp using SmF5H as a query to find more
F5H-like sequences MnF5H1, 2 and FcF5H1, 2 were identified as candidate F5H based on
a Hmmer search using F5Hs from angiosperms. MnF5H1 and FcF5H1 clustered with
AtF5H and PoptrF5H1, 2 and belong to the bona fide clade in angiosperms (Fig. 5A).
MnF5H1 and FcF5H1 showed obvious expression preference in lignified organs and
tissues and are likely to be involved in lignin biosynthesis (Fig. 5B, Fig. S3). In contrast,
MnF5H2 and FcF5H2 were far from the bona fide clade and had very low expressions in
all organs and tissues. Other candidate F5Hs named MnF5H3(Sm), MnF5H4(Sm) or
FcF5H3(Sm), FcF5H4(Sm) were identified, sharing about 45% protein sequence identity
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with SmF5H. MnF5H3(Sm), MnF5H4(Sm) and FcF5H3(Sm), FcF5H4(Sm) showed
relatively high expression in the root, andMnF5H3(Sm) also had a high overall expression
in the bark, male flowers and leaf. These SmF5H-like proteins in mulberry may be
involved in the response to zinc stress since FcF5H3(Sm) and FcF5H4(Sm) both showed a
decreased expression in the leaf after zinc treatment (Fig. S4). Therefore, MnF5H1 and
FcF5H1 are the F5H genes most likely to be involved in lignification.

The last two reductive steps
CCR (EC: 1.2.1.44) is the first committed enzyme for a specific branch of monolignol
biosynthesis and converts various cinnamoyl-CoA esters (p-coumaroyl-CoA, caffeoyl-CoA,
feruloyl-CoA and sinapoyl-CoA) to produce their corresponding hydroxycinnamaldehydes,
which are further reduced into different monolignols by another reductase called
cinnamyl-alcohol dehydrogenase (CAD EC: 1.1.1.195). CCR and CAD are involved in
the primary pathway of monolignol biosynthesis. A recent study showed that

Figure 5 Phylogenetic analysis and expression profile of F5H gene family in mulberry. (A) Phylo-
genetic analysis of F5Hs; (B) Expression profiles of F5H gene family in different tissues or organs in
Morus notabilis and Fengchi. Red full circles indicating F5Hs from dicots, blue full circles indicating F5Hs
from monocots, green full circles indicating F5Hs from gymnosperms and yellow full circles indicating
F5Hs from ferns or moss. Bona fide clades were marked using different color shadings. Putative protein
sequences were used for phylogenetic analysis and the sequences information is available in Table S2.
Mn indicating Morus notabilis and Fc indicating Fengchi. L0, leaf without zinc treatment; S0, stem
without zinc treatment; R0, root without zinc treatment. Full-size DOI: 10.7717/peerj.11964/fig-5
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PoptrCAD1 and PoptrCCR2 can form a complex to regulate monolignol biosynthesis in
Populus (Yan et al., 2019).

Six candidate CCRs from the mulberry genome were screened; phylogenetic analysis
showed that MnCCR1, 2 and FcCCR1, 2 belonged to the bona fide clade with AtCCR1,2,
MtCCR1,2 and PtoCCR1,7 (Fig. 6A). Further motif-aware analysis based on our
previously reported workflow further validated that MnCCR1,2 and FcCCR1,2 belonged to
bona fide CCRs and other candidate CCRs should be CCR-like (Fig. S5) (Chao et al., 2019).
Similar to AtCCR1, 2 and PtoCCR1, 7, different bona fide CCRs in mulberry also had

Figure 6 Phylogenetic analysis and expression profile of CCR and CAD gene families in mulberry.
(A) Phylogenetic analysis of CCRs; (B) Phylogenetic analysis of CADs; (C) Expression profiles of CCR
and CAD gene family in different tissues or organs in Morus notabilis and Fengchi. Red full circles
indicating proteins from dicots, blue full circles indicating proteins from monocots, green full circles
indicating proteins from gymnosperms and yellow full circles indicating proteins from ferns or moss.
Bona fide clades were marked using different color shadings. Putative protein sequences were used for
phylogenetic analysis and the sequences information is available in Table S2. Mn indicating Morus
notabilis and Fc indicating Fengchi. L0, leaf without zinc treatment; S0, stem without zinc treatment; R0,
root without zinc treatment. Full-size DOI: 10.7717/peerj.11964/fig-6
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different expression patterns. MnCCR1 and FcCCR1 had a high overall expression, with
the highest expression level in the bark or stem, while MnCCR2 and FcCCR2 had quite
low expression in all organs and tissues (Fig. 6C, Fig. S3). Therefore,MnCCR1 and FcCCR1
are likely to play a predominant role in monolignol biosynthesis. As both phylogenetic
analysis and motif-aware analysis showed, other MnCCRs and FcCCRs belong to the
CCR-like cluster with unknown functions.

CAD is the last enzyme in monolignol biosynthesis and uses various phenylpropenyl
aldehyde derivatives as substrates to ensure the diversity of lignin. We obtained six
candidate MnCADs, and the corresponding homologs in Fengchi were found except
MnCAD4. FcCAD4 was different from all six candidate MnCADs, with high (73.88%)
protein sequence identity to AtCAD1 which was reported to have very low catalytic
activity in vitro and play roles in lignification of elongating stems (Eudes et al., 2006; Kim
et al., 2004). MnCAD1, 2, 3, 4, 5 and FcCAD1, 2, 3, 5 belong to bona fide clades (Fig. 5B).
MnCAD3, 4 and FcCAD3 clustered with AtCAD4, 5, PtoCAD1, and BdCAD5, which
have been reported to be involved in lignin biosynthesis. Although the expression data for
MnCAD3, 4 were not available in Morusdb, FcCAD3 showed expression specific to
lignified organs based on our transcriptome data and RT-qPCR (Fig. 5C, Fig. S3).
In addition to the above bona fide CADs, there is another kind of bona fide CAD with the
present PtrSAD in Populus (Li et al., 2001). This PtrSAD has been reported to prefer
sinapaldehyde as a substrate,however, our previous study on PtoCAD2 showed no obvious
substrate preference (Chao et al., 2014). MnCAD1,2 and FcCAD1, 2 are phylogenetically
close to the so-called PtrSAD and PtoCAD2 and cluster as another bona fide clade.
MnCAD1 showed no obvious expression preference while FcCAD1 exhibit a preference for
lignified organs based on RT-qPCR results (Fig. 5C, Fig. S3). MnCAD2 and FcCAD2
showed an expression preference for winter-bud or leaf (Fig. 5C, Fig. S3).

Summary of the lignin toolbox for mulberry and the response to zinc
ion stress
Genes considered the lignin toolbox in mulberry were annotated in Table S4. Hierarchical
clustering depicted a similar expression pattern for bona fide lignin biosynthetic genes we
described above, which differed from that of genes identified as ‘like’ genes (candidate genes
excluded from bona fide clade) (Fig. S6A). It was obvious that the bona fide genes had a
higher overall expression in the studied organs than the ‘like’ genes. 21 of total 31 bona fide
genes in mulberry can be classified as two main clusters based on their expression patterns.
Cluster I (indicated as a blue star r) includes genes with obvious expression preferences
in lignified organs such as stem and bark, and cluster II (indicated as a red star) includes
genes with a high expression but no obvious preference in lignified organs and tissues.
RT-qPCR also validated the expression preference in lignified organs for the lignin-related
genes comprise the lignin toolbox for mulberry (Fig. S6B, Fig. S3 and Table S4).

Mulberry has been reported as heavy metal hyperaccumulators. Our results showed that
lignin-related genes play important roles in responding to zinc stress. All we detected bona
fide clade genes (22/23) including 16 core genes in lignin toolbox in Fengchi show
significant expression change in at least one organ (Fig. 7A). Only FcCCoAOMT1showed
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no significant change in any detected organs after zinc excess treatment (Fig. 7A, Fig. S3,
Table S4). Monolignol biosynthesis pathway in Fengchi showed overall up-regulation
in root and stem but down-regulation in leaf (Fig. 7B). Most of these bona fide clade genes
(13/22) were down-regulated in leaves. Five genes showed up-regulation in both leaf
and lignified organs (Fig. 7C). It is likely that the promotion of lignin biosynthesis in
lignified organs in mulberry is an important way to respond to zinc stress.

DISCUSSION
Lignification toolbox in mulberry
Genes involving in secondary metabolism in mulberry were reported to have faster
evolutionary rate (Jiao et al., 2020). Lignin biosynthesis is important pathway in land
plants. Genome-wide screening of candidate genes involving in monolignol biosynthesis
was performed here in mulberry. In total, 31 bona fide clade genes were obtained in

Figure 7 Expression change of bona fide clade genes in response to excess zinc stress in mulberry.
(A) Fold change of expression levels of 23 bona fide genes in Fengchi after excess zinc treatment;
(B) Overall change of monolignol pathway in different organs after excess zinc treatment in Fengchi;
(C) Clustering of 23 bona fide clade genes expression pattern in response to Zinc stress. Two biological
replicates with three technical replicates respectively were performed for qRT-PCR. P-value was calcu-
lated using SPSS 19.0. An asterisk (�) indicates 0.01 < p <0.05; two asterisks (��) indicates 0.001 < p < 0.01
and three asterisks (���) indicates p < 0.001. Full-size DOI: 10.7717/peerj.11964/fig-7
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Morus notabilis based on phylogenetic analysis, and 25 bona fide homologs were found in
Fengchi, similar to Populus (25) and E. grandis (38) (Table S4) (Carocha et al., 2015;
Shi et al., 2010). The loss of MnHCT and MnPAL homologs in Fengchi resulted in the
above-mentioned change in the total numbers. The bona fide genes described above had a
similar expression pattern and a higher overall expression in the studied organs compared
with genes identified as ‘like’ genes. Combined with the expression profile in different
organs of Morus notabilis and Fengchi, a total of 19 genes were identified as bona fide
lignification-related genes, which is similar to that in E. grandis (17). These 19 genes were
preferentially expressed in the lignified organs and tissues and probably represent the core
lignification toolbox in mulberry (Fig. S6B, Fig. S3, Table S4).

The lignin biosynthesis pathway plays an important role in the
response to stress caused by excess zinc in mulberry
Zinc is a trace element that is necessary for a healthy immune system and is important for
people to maintain their fitness level. Studies have shown that dietary zinc can act as
sleep modulator and is necessary for brain development and function (Cherasse & Urade
2017; Hambidge, 2000). Mulberry is a woody plant with resistance to zinc ions, and
both leaves and fruits of mulberry are known as sites rich in zinc (Jiang et al., 2017;
Srivastava et al. 2006). Black mulberry (Morus nigra) juice has high amounts of zinc and
iron, which could help to improve the micronutrient status of pregnant women and
children (Khalid, Fawad & Ahmed, 2011) A deficiency or excess zinc leads to oxidative
stress. Moreover, the Zn-deficiency leads to abnormal development of leaves in mulberry
(Kumar Tewari, Kumar & Nand Sharma, 2008).

Mulberry is able to uptake the heavy metal and was reported to immigrate 254,532.8 mg
Zn every square meter plough layer soil (Jiang et al., 2017). The contents of zinc in different
mulberry organs (leaf, root, bark and stem) are greatly different (Jiang et al., 2017).
After excess zinc treatment, 23 core genes involved in lignin biosynthesis except
CCoAOMT1 showed obvious expression changes in different organs (Fig. 7). Monolignol
biosynthesis pathway in Fengchi showed overall up-regulation in root and stem but
down-regulation in leaf (Fig. 7B). Relatively high expression of lignin related genes (total
24 genes) was also reported in response to zinc exposure in roots of Thlaspi caerulescens,
one of the natural zinc hyperaccumulator species (Van de Mortel et al., 2006). Lignin
has been reported to act as a metal-absorbing matrix in response to metal stress (Bhardwaj
et al., 2014). It is likely that the promotion of lignin biosynthesis in lignified organs
association with inhibition of lignin biosynthesis in leaf in mulberry is an important
response to zinc stress. A similar situation was reported for Lens Culinaris and Phaseolus
Mungo subjected to lead stress (Haider & Azmat, 2012).
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