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Obesity is intrinsically linked with the gut microbiome, and studies have identified several obesity-associated microbes. The
microbe-microbe interactions can alter the composition of the microbial community and influence host health by producing
secondary metabolites (SMs). However, the contribution of these SMs in the prevention and treatment of obesity has been largely
ignored. We identified several SM-encoding biosynthetic gene clusters (BGCs) from the metagenomic data of lean and obese
individuals and found significant association between some BGCs, including those that produce hitherto unknown SM, and
obesity. In addition, the mean abundance of BGCs was positively correlated with obesity, consistent with the lower taxonomic
diversity in the gut microbiota of obese individuals. By comparing the BGCs of known SM between obese and nonobese samples,
we found that menaquinone produced by Enterobacter cloacae showed the highest correlation with BMI, in agreement with a
recent study on human adipose tissue composition. Furthermore, an obesity-related nonribosomal peptide synthetase (NRPS) was
negatively associated with Bacteroidetes, indicating that the SMs produced by intestinal microbes in obese individuals can change
themicrobiome structure.This is the first systemic study of the association between gutmicrobiome BGCs and obesity and provides
new insights into the causes of obesity.

1. Introduction

Recent studies show that gut microbes play an important role
in the pathogenesis of obesity [1, 2]. Diet-induced alteration
of the gut microbiota alleviated obesity in children [3, 4],
and several intestinal microbes (e.g., Actinobacteria) have
been significantly associated with obesity [5]. Occasionally,
an obesity-associated microbe detected in one study cannot
be validated in other studies. For example, some studies
report an increased Firmicutes to Bacteroidetes ratio in obese
patients [6, 7], whereas others found no association between
the above phyla and obesity [8, 9].

Microbial interactions can alter the composition of the
community by producing secondary metabolites (SMs).
SMs are organic compounds that are produced by bacte-
ria and fungi that can mediate microbial competition and
interaction and therefore influence the composition of the
gut microbiota. The biosynthesis of SMs is controlled by
enzymes encoded by biosynthetic gene clusters (BGCs).

Genomic mining of gut microbiota BGCs has helped identify
numerous bioactive SMs with antimicrobial potential [10,
11]. Most microbial BGCs that have been identified so far
contain genes encoding core biosynthetic enzymes such as
polyketide synthase (PKS) and nonribosomal peptide syn-
thetase (NRPS). More than 3000 small molecule BGCs were
identified in the NIH Human Microbiome Project [12], of
which lactocillin showed similar structure to some clinically
tested antibiotics, and the in vivo expression was validated
by the metatranscriptome sequencing analysis. These small
molecules not only inhibit the growth of competing bacteria
but also alter the composition of the gut microbiome. In
addition, microbial SMs have also been implicated in human
physiology, although their precise role in obesity is unclear.

In our previous study, we used a systematic approach
to detect putative BGCs enriched in Parkinson’s disease
from raw metagenomic data, of which many originated
from microbes that were not abundant in the corresponding
patients [13]. In this study, we analyzed the differences in the
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BGCs of nonobese and obese individuals using human fecal
metagenomic data, in order to identify obesity-associated
BGCs. Our findings illustrate the widespread distribution of
SM-encoding BGCs in the human microbiome and provide
new insights into the causes of obesity.

2. Methods

2.1. Data Collection and Construction of Human-Related BGC
Protein Database. A total of 10,042 genomes were identified
from the IMG-ABC website (Version 4.560) using “Homo
sapiens” as the host name, and 246,188 human-related BGCs
and 2,640,191 protein sequences were extracted from these
genomes [14]. The gut metagenomic data was extracted
from the European Bioinformatics Institute-Sequence Read
Archive database using the accession number ERP003612,
which initially was used to analyze the correlation between
the colonic microbiota and metabolic disorders in a Danish
cohort of 123 nonobese and 169 obese individuals [15]. In the
quality control step, we only kept the first 70bp of the reads
for each sample, and samples with read length less than 70bp
were discarded. The remaining 278 samples were analyzed
further.

2.2. Identification of Putative BGCs. To determine the abun-
dance of each putative BGC per sample, the metagenomic
reads were first aligned against the protein sequence database
of the human-related BGCs using the DIAMOND tool with
an E-value of 1e-05 [16], and the top hit proteins per read
were subsequently analyzed. To avoid contamination of the
nonbiosynthesis genes, a list of biosynthesis and nonbiosyn-
thesis related Pfam domains was, respectively, extracted from
AntiSMASH [17] and a recent study [12]. A database was
constructed using these Pfam domains and queried against
the top hit proteins, and the biosynthesis genes were validated
using the hmmscan program in the HMMER package with
an E-value of 0.01. Finally, the abundance scores of the
biosynthesis genes of each BGC per sample were calculated,
and the BGCs with at least 50% biosynthesis genes that were
detected in more than 10 samples with a frequency of reads ≥
10 were selected for the following analysis [13].

2.3. Detection of Known SM-Encoding BGCs. A database of
13460 protein sequences extracted from all SM-encoding
BGCs was constructed, and the trimmedmetagenomic reads
from ERP003612 were aligned against this database using the
DIAMOND tool with an E-value of 1e-05 [16]. The putative
BGCs encoding known SMs were detected the same way
as the human-related BGCs. For each known secondary
metabolite BGC,we compared their abundancewith the body
mass index (BMI).

2.4. Normalization and Comparison. The abundance of these
putative BGCs and known SM-encoding BGCs was further
assessed across different samples. Each BGC was normalized
as NBGC = FBGC ∗ 10

6 /∑total , where FBGC is the sum of reads
aligned to all biosynthetic genes in a particular BGC and
∑total is the total number of reads in themetagenomic data. A
BGC absent in a specific sample was assigned a value of 0.01.
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Figure 1: Distribution of the detected 4,640 BGCs in 278 samples.

Spearman’s rank correlation analysis was used to evaluate the
correlation between BMI and the BGCs, and the p-values
were corrected by the Benjamini-Hochberg method.

2.5. NRPS Analysis. NRPS is a class of peptide SMs produced
by bacteria and fungi and has been successfully used as antibi-
otics [18]. AntiSMASH 4.0 was used to predict the domain
information and core chemical structure of putative NRPS
[17], NRPSsp was used to find the subunit of NRPS [19], and
NaPDoS was used to define the class of condensation domain
[20]. In order to determine the potential effect of NRPS
on the obesity-related (positively or inversely) microbes, we
evaluated the distribution of NRPS using the taxonomic
profile of the ERP003612 data and the Human Microbiome
Project (HMP) data [8, 21]. The taxonomic profiling of
metagenomic reads was performed using metaphlan2 [22].

3. Results
3.1. Overview of BGCs in the Gut Microbiome of Obese Sub-
jects. The IMG-ABC is the largest freely accessible database
of predicted and experimental BGCs that includes more
than one million reads isolated from both genomes and
metagenomes. After mapping the BGC reads from the
obesity-related metagenomics extracted from the IMG-ABC
database with the DIAMOND tool, we calculated the abun-
dance of these BGCs by normalizing the aligned metage-
nomic reads from at least 10 samples with frequency of reads
≥ 10. A total of 4,640 BGCs, corresponding to∼2% of the total
human-related BGCs, were finally selected, of which 2183
were detected in at least 80% of the samples (Figure 1). Most
BGCs are species specific, mirroring the individual-specific
taxonomic profiles of the gut microbiome [23].

Interestingly, there was a significant positive correlation
between the mean abundance of BGCs and the BMI of
corresponding subjects (Figure 2(a)). The gut microbiota
of obese individuals exhibited reduced taxonomic diversity
compared to that of lean individuals [5]. It seems that
obesity-associated SMs play a role in inhibiting the growth
of competing species and reduce the diversity of the gut
microbiota of obese individuals.
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Figure 2: Plot showing correlation between the BMI and BGCs in 278 samples. (a) Correlation between the BMI with the mean BGC and (b,
c, d) correlation of BMI with BGC 160477684, 160625038, and 160336495, respectively.

Spearman’s rank correlation analysis was used to deter-
mine the correlation of some of the detected BGCs with BMI.
The most significantly correlated BGCs are shown in Table 1,
and most of them are located in metagenomic data (Genome
ID with prefix “70000”), indicating that they originate from
microbial species that have not been identified so far [24].
For the unknown species-derived BGCs, we defined the
putative host organism by the best hit genome using NCBI-
BLAST [13], and, not surprisingly, most of them belonged
to obese-related genera like Akkermansia, Ruminococcus,
Bacteroides, and Prevotella [4, 7, 25]. However, the association
between the BGCs and BMI did not do that between the
host and obesity. For example, Bacteroides and Prevotella
were positively associated with BMI (Table 1), but these
two genera are usually negatively associated with obesity
[26]. Furthermore, many species listed in Table 1 have not
been linked with obesity, e.g., Gastranaerophilaceae MH 37
(Figure 2(b)).

3.2. Obese Individuals Have Characteristic BGCs with Known
SM. We also determined the correlation between obesity
and BGCs encoding known SMs using Spearman’s rank
correlation analysis (Table 2). Menaquinone produced by
Enterobacter cloacae showed the strongest correlation to BMI
(Figure 2(c)). This is consistent with the high concentration
of menaquinone detected in the adipose tissues of obese
adults [27]. In addition, Enterobacter cloacae B29 isolated
from the gut of morbidly obese individuals induced obesity
in germfree mice [28], and reduction in Enterobacteriaceae
and other bacteria could decrease fecal levels ofmenaquinone
[29]. Taken together, our approach can identify obesity-
associated BGCs and SMs.

3.3. A NRPS Found Increased with BMI. We also detected
an NRPS-encoding BGC (Cluster ID: 160336495) that was
significantly correlated with BMI (Figure 2(d)). The best
match genome of this NRPS is Clostridium leptum DSM 753,



4 BioMed Research International

Table 1: Description of the top 25 correlated BGCs with BMI (p-value <0.001).

Genome ID BGC ID Best hit genome P-value Rho
2522572068 160477684 Gastranaerophilaceae MH 37 2.50E-06 -0.28
7000000081 161367537 Gastranaerophilaceae Zag 1 4.19E-05 -0.24
7000000111 161369749 Lachnospiraceae bacterium sp. 8 1 57FAA 1.51E-04 0.23
646206266 160358802 Bacteroides sp. 2 2 4 1.65E-04 0.22
7000000093 161368122 Lachnoclostridium fimetarium DSM 9179 1.94E-04 -0.22
7000000063 161366183 Alloprevotella tannerae ATCC 51259 2.03E-04 0.22
7000000036 161364337 Proteiniborus ethanoligenes DSM 21650 2.24E-04 -0.22
7000000308 161383461 Bacteroides dorei CL03T12C01 2.44E-04 0.22
641380427 160336495 Clostridium leptum DSM 753 2.77E-04 0.22
7000000532 161400499 Ruminiclostridium cellobioparum termitidis CT1112 3.95E-04 -0.21
7000000716 161411607 Prevotella melaninogenica ATCC 25845 4.81E-04 0.21
7000000532 161400549 Clostridium cellulovorans 743B, ATCC 35296 5.37E-04 -0.21
7000000172 161373025 Clostridium sp. DSM 8431 5.66E-04 -0.21
7000000187 161374310 Ruminococcaceae bacterium AP7 5.67E-04 -0.21
7000000666 161408821 Prevotella melaninogenica ATCC 25845 6.76E-04 0.20
7000000171 161372603 Anaerotruncus rubiinfantis MT15 7.48E-04 -0.20
7000000332 161385164 Ruminococcus bromii L2-63 8.60E-04 0.20
7000000579 161403195 Barnesiella intestinihominis YIT 11860 8.77E-04 0.20
7000000100 161368698 Bacteroides vulgatus NLAE-zl-G202 8.78E-04 0.20
7000000333 161385387 Clostridium sp.Marseille-P299 8.85E-04 -0.20
7000000213 161376660 Bacteroides vulgatus mpk 9.34E-04 0.20
7000000417 161390983 Akkermansia muciniphila ATCC BAA-835 9.37E-04 -0.20
7000000549 161401581 Barnesiella intestinihominis YIT 11860 9.43E-04 0.20
2548876788 160755921 Bacteroides faecis MAJ27 9.75E-04 0.20
7000000624 161405348 Gastranaerophilaceae Zag 1 9.92E-04 -0.20

Table 2: Correlation of all known SM-encoding BGCs detected in this study with BMI.

Genome ID BGC ID Genome description SM P-value Rho
651717061 160625038 Enterobacter cloacae Menaquinone 0.005 0.17
651716797 160624794 Escherichia coli Yersiniabactin 0.045 0.12
2582581495 160962548 Azospirillum brasilense Cd L-Rhamnose 0.052 0.12
2582581623 160962746 Burkholderia glumae Toxoflavin 0.106 0.10
651716745 160624742 Escherichia coli Lipopolysaccharide 0.149 0.09
2582581704 160962493 Pasteurella multocida CHEBI:59393 0.177 0.08
651717167 160625143 Lactobacillus plantarum L-Citrulline 0.194 -0.08
651717142 160625119 Streptomyces chattanoogensis Pimaricin 0.229 0.07
651716887 160624883 Salmonella enterica GDP-mannose 0.239 0.07
2563366797 160938787 Escherichia coli KTE111 Enterochelin 0.472 0.04
651716864 160624860 Escherichia coli Lipopolysaccharide 0.587 0.03
651716612 160624612 Escherichia coli Lipopolysaccharide 0.639 0.03
2582581365 160962702 Klebsiella pneumoniae Lipopolysaccharide 0.655 -0.03
2563366674 160938831 Aneurinibacillus migulanus GRAMICIDIN 0.981 0.00

which is associated with both obesity and weight loss [30].
The structure of this NRPS was analyzed by antiSMASH
(Figure 3), and its putative substrate was identified as pheny-
lalanine by NRPSsp. Finally, both condensation domains of
this NRPS were recognized as being of the LCL class by
NapDoS.

We compared the NRPS with each phylum in the
ERP003612 data and found that the Acidobacteria, Bac-
teroidetes, and Chlorobi were negatively associated with the
abundance of this NRPS (Table 3). To further determine
the potential role of this NRPS on gut microbiome of obese
individuals, we calculated its abundance in HMP data and
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Table 3: Table showing the correlation between the NRPS with each phylum in the ERP003612 data.

Phylum P-value FDR Rho
Acidobacteria 1.74E-05 1.13E-04 -0.25
Actinobacteria 1.20E-11 1.56E-10 0.39
Bacteroidetes 6.60E-04 1.72E-03 -0.2
Candidatus Saccharibacteria 0.013 0.024 0.15
Chlorobi 3.17E-03 6.87E-03 -0.18
Deinococcus-Thermus 1.86E-04 8.06E-04 -0.22
Firmicutes 0.065 0.106 0.11
Fusobacteria 0.412 0.524 -0.05
Proteobacteria 0.755 0.755 0.02
Spirochaetes 0.648 0.702 -0.03
Synergistetes 0.444 0.525 0.05
Tenericutes 0.345 0.498 -0.06
Verrucomicrobia 3.36E-04 1.09E-03 0.21

Table 4: Table showing the correlation between the NRPS with each phylum in the HMP data.

Phylum P-value FDR Rho
Acidobacteria 0.090 0.106 0.07
Actinobacteria 2.20E-16 9.53E-16 0.35
Bacteroidetes 2.20E-16 9.53E-16 -0.52
Candidatus Saccharibacteria 1.85E-05 4.81E-05 0.16
Chloroflexi 0.481 0.521 0.03
Deinococcus-Thermus 0.858 0.858 -0.01
Firmicutes 1.10E-03 2.05E-03 0.12
Fusobacteria 3.14E-04 6.81E-04 0.14
Proteobacteria 6.34E-07 2.06E-06 0.19
Spirochaetes 0.028 0.045 0.08
Synergistetes 0.044 0.057 0.08
Tenericutes 0.035 0.051 0.08
Verrucomicrobia 2.20E-16 9.53E-16 -0.33
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Figure 3: The detailed annotation of the NRPS by antiSMASH. (a) Domain annotation. (b) Predicted core chemical structure based on
assumed PKS/NRPS collinearity.

correlated it with each phylum per sample (Table 4). The
phyla Bacteroidetes and Verrucomicrobia were negatively
associated with the abundance of this NRPS.

4. Discussion

We identified several obesity-associated BGCs by comparing
the metagenomics data of obese and lean individuals. In

agreement with previous studies [31], the BGCs were highly
host specific, with only half of them detected in at least 80%
of the individuals. In addition, most of these BGCs encode
for unknown secondary metabolites, thereby indicating a
potential source for antimicrobials. Studies have largely
focused on the effects of externally administered drugs on
the human body [32], and those of endogenously produced
antibiotics are virtually unknown. We found that obesity,
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measured in terms high BMI, was associated with increased
BGC abundance, indicating lower complexity of the gut
microbiome due to the inhibitory function of encoded SMs.
This is consistent with a previous study which identified
decreased microbial complexity of the gut as one of the
factors promoting obesity [5]. This could be due to obesity-
associated SMs that kill the competing bacteria and reduce
diversity. In addition, an obesity associated NRPS identified
in this study was negatively correlated with Bacteroidetes, an
obesity-associated bacterial phylum, in both ERP003612 data
and HMP data [4].

Comparison of the BGCswith known SMs between obese
and nonobese individuals showed the strongest correlation
of menaquinone with high BMI. In addition, many obesity-
associated BGCs encoded for SMs hitherto unrelated to
obesity, indicating potential biomarkers for obesity. Several
BGCs are associated with mobile genetic elements like trans-
posons that are involved in horizontal gene transfer [33] and
can account for their spread across multiple genomes. This
could explain the correlation of these BGCs with even the
bacteria not associated with obesity. For example, the role
of Bacteroidetes in obesity has been largely ambiguous [4],
whereas we found an inversely association of some BGCs
from this phylum with BMI. It is possible that only some
species of Bacteroidetes are associated with obesity, while
the rest have gained BGCs encoding for SMs that inhibit
the obesity-associated species. In addition, the Clostridium
genus of the phylumFirmicutes has beenpositively associated
with obesity [34], especially the pathogenic C. difficile [35].
However, some species like C. bolteae [7] are more abundant
in lean individuals. Faecalibacterium prausnitzii is another
obesity-related member of family Clostridiaceae and can
decrease adipose tissue inflammation and improve hepatic
health [36].

To summarize, we identified obesity-related BGCs from
metagenomics data and provided novel insights into gut
microbial SMs as potential markers for obesity.

5. Conclusions

We identified 4640 BGCs in the human gut microbiota,
which provides novel insights into the role of the intestinal
microbial community in obesity.
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