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A B S T R A C T   

As the current COVID-19 pandemic develops and epidemiological data reveals differences in geographical spread 
as well as risk factors for developing a severe course of illness, hypotheses regarding possible underlying me-
chanisms need to be developed and tested. In our hypothesis, we explore the rational for a role of MTHFR 
polymorphism C677T as a possible explanation for differences in geographical and gender distribution in disease 
severity. We also discuss the role of the resulting hyper-homocysteinemia, its interaction with the C677T 
polymorphism and its influence on immune state as well as risk factors for severe disease. Finally, we consider 
possible dietary ways to influence the underlying pathomechanisms prophylactically and supportively.    

Originating from China at the end of 2019, the severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak evolved into 
a pandemic. Patients with SARS-CoV-2 infection can develop cor-
onavirus disease 2019 (COVID-19), which is associated with an 8.8% 
mortality rate in the cohort aged 60 years and above in comparison to 
0.46% for patients aged below 60 years [1]. Countries with the highest 
mortality rates are Italy, Spain, Iran, France, and the USA [1]. A very 
recent report from Italy including 1591 critically ill COVID-19 patients 
showed that the vast majority were older men [2]. This is consistent 
with the mortality rate worldwide showing a predilection for the male 
gender (M:F = 1.7:1) [1] and presence of at least one comorbidity in 
68% of cases. Similar to previous reports [1], hypertension was the 
most common comorbidity, followed by cardiovascular disease, hy-
percholesterolemia and diabetes [2]. Compared to other western 
countries, in Italy high rates of ICU admission (9%) and ICU mortality 
(26%) were observed [2] while the death rate of 12.8% for the whole 
country appears to be quite high [2]. Sharply increased values of neu-
trophils and pro-inflammatory cytokines such as IL-6 and TNF-alpha  
[1], abnormal coagulation tests and disseminated intravascular coa-
gulation are frequently observed in deaths from COVID-19 [3]. 

The 5,10-methylenetetrahydrofolic acid reductase (MTHFR) en-
zyme is most important in the one-carbon-methionine pathway reg-
ulating fundamental processes in cell physiology such as DNA repair, 
neurotransmitter functions and membrane transport [4]. The T allele of 
the MTHFR-gene (C677T polymorphism), in which cytosine is replaced 

by thymine at the 677th position, has been suggested to be protective 
against malignancies such as colon cancer and acute lymphatic leu-
kemia [4,5]. This mutation leads to a thermolabile enzyme variant in 
which the dissociation rate of the cofactor flavin adenine dinucleotide 
(FAD) is increased reducing its activity to an extent of 50% or more  
[4,5]. In people possessing a medium skin tone, which evolutionarily 
developed in Eurasia under moderate UV radiation, the basic MTHFR 
function is largely preserved as long as there is sufficient dietary folic 
acid [4,5]. However, with insufficient folate intake the reduced activity 
of the MTHFR enzyme leads to reduced levels of 5-methyltetrahy-
drofolate (5-MTHF) and thus reduced activity of methionine synthetase 
culminating in accumulation of the key metabolite homocysteine (Hc) 
to toxic levels [4]. MTHFR C677T polymorphism is the most common 
MTHFR single nucleotide polymorphism (SNP) and the most common 
genetic cause of hyper-homocysteinemia (H-Hcy) [4]. The global pre-
valence of both the CT and TT genotype was found to be highest in 
Europeans (54,0%) and North Americans (42,8%) and lowest in Asians 
(35,4%) and Africans (19,6%) [5]. However, subgroup analysis showed 
remarkable regional differences. Among East Asian countries, both 
genotypes were found to be most prevalent in China (67,1%) and least 
prevalent in India (20,3%). In European countries the highest pre-
valence was found in Italy (66,3%), the lowest in Finland (44,2%) [5,6]. 
While the TT genotype was found significantly more often in males of 
the Indian cohort [5], generally, the C677T polymorphism seems to be 
distributed equally between genders [7]. However, low folate status 
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resulted in significant higher levels of Hc only in male subjects [7,8]. 
Further, the C677T mutation seems to be associated with a significantly 
increased risk for coronary artery disease only in homozygous men [9]. 

Regardless of the folate plasma level, other risk factors for the de-
velopment of H-Hcy are chronic renal failure, hypothyroidism and 
malignant tumors of the breast, ovary, and pancreas [10]. Furthermore, 
adverse lifestyle factors such as smoking, alcohol consumption, and 
physical inactivity can elevate Hcy levels [11]. Additionally, H-Hcy is 
more often found in the elderly and in men [10] which may in part be 
caused by lower serum levels of folic acid and vitamin B12, reduced 
methionine metabolism, and higher serum creatinine levels in men 
compared to women [12]. 

H-Hcy is associated with the development of atherosclerotic vas-
cular disease including arterial hypertension and congestive heart 
failure [10]. The underlying mechanisms are nitric oxide (NO) antag-
onism, production of reactive oxygen species (ROS), pro-thromboplastic 
activity, loss of blood vessel vasorelaxation and alterations in the 
elastin/collagen ratio [10]. Further, there is a correlation between H- 
Hcy and arterial hypertension that especially applies to males as an-
drogen hormones, in contrast to estrogen, increase ACE and angio-
tensin-receptor-1 (AT1R) activity [13,14]. Altogether, these changes 
result in vascular cell dysplasia, endothelial dysfunction and a pro-
coagulant state [10]. 

While these processes are slow and develop over years, acute H-Hcy 
activates a pro-inflammatory cascade through upregulation of the nu-
clear transcription factor (NF-kB) in neutrophils and macrophages, 
which release an ample amount of ROS potentiating oxidative stress  
[11]. This acute H-Hcy can be triggered independently of folate status, 
when a systemic inflammatory process develops [11]. The increased 
production of ROS through an acute respiratory viral infection ad-
ditionally overwhelms the oxidant defense system. The ROS-activated 
NF-kB accelerates viral replication, which has been previously shown in 
SARS CoV-1 infection [15]. Interestingly, in line with these findings 
COVID-19 patients’ plasma homocysteine levels showed a predictive 
value for progression of pathological findings in chest CT-imaging [16]. 
In contrast to the usual definition of H-Hcy with values above 15 µmol/ 
L the cutoff-value of Hcy predicting imaging progression was 
10.58 µmol/L [16]. 

There is also a relationship of MTHFR polymorphisms and reduced 
levels of glutathione as the folate cycle, the methionine cycle and the 
transsulfuration pathway are intricably linked [17]. S-adenosyl-me-
thionine levels are lowered in states of low MTHFR activity which re-
sults in decreased stimulation of cystathionine beta-synthase (CBS), the 
enzyme that shuttles homocysteine into the transsulfuration pathway 
that ultimately leads to the synthesis of glutathione [17]. In an inter-
esting case report, the therapeutic supplementation of glutathione lead 
to rapid symptom improvement of two cases of Covid-19 all of which 
points to the well-known role of glutathione as an important part of the 
anti-oxidative defense system in viral illness [18]. Interestingly, me-
thylome-wide association analyses identified 13 probes significantly 
associated with the interaction of mild H-Hcy and C677T polymorphism  
[19]. The most significant associations were observed with a cluster of 
probes at the angiotensin II receptor associate protein-methylenete-
trahydrofolate reductase-natriuretic peptide A/B (AGTRAP-MTHFR- 
NPPA/B) gene cluster on chromosome 1 [19]. As SARS-CoV-2 enters 
and infects cells through angiotensin II receptors these changes in DNA- 
methylation may result in an increased and specific vulnerability to 
SARS-CoV-2. In addition, differential methylation at that region on 
chromosome 1 is functionally associated with variability in expression 
of the TNFRSF8 gene [19]. As a member of the TNF-receptor super-
family, this gene encodes a protein (CD30) that mediates a signal 
transduction pathway leading to NF-kB activation [19]. Therefore, 
C677T-Hc-interaction may result in an increased activation of NF-kB 
promoting production of ROS and viral replication as outlined above. 

What are the consequences? 

In addition to the MUST- and NRS-2002 criteria evaluating nutri-
tional risks in polymorbid individuals [20], subjects at high risk for 
adverse outcomes when infected with COVID-19, such as the elderly 
with comorbidities, should be screened for H-Hcy. 

Concentrations above 8 µmol/L should lead to the implementation 
of improvements in diet quality (fruit, vegetables, whole grains, fresh 
meats, and seafood) [21] and the additional application of 5-MTHF (the 
most biologically active form of folic acid) which bypasses MTHFR  ±  
B-vitamins [22]. Supplementation of folic acid alone, especially in 

countries practicing dietary folic acid fortification, can even lead to the 
opposite effect in regular subjects and even more pronounced in pa-
tients with MTHFR polymorphism. The proposed mechanism is an ac-
cumulation of unmetabolized folic acid which inhibits MTHFR through 
excess-substrate inhibition and binding competition with 5-MTHF [22]. 
As co-factors of enzymes in Hcy metabolism the vitamins B6 [21] and 
B12 [10] and B2 (riboflavin) (a precursor of FAD which stabilizes 
MTHFR) should be added [23–25]. Vitamin B6 and riboflavin have 
been previously shown to lower Hcy levels [24,26]. 

To test the hypothesis of dietary down-regulation of Hcy levels to 
prevent poor outcomes in Covid-19, a prospective controlled trial in-
cluding genetic testing for MTHFR polymorphism could be helpful. 
Such an interventional study is particularly important since supple-
mentation of synthetic folic acid and vitamins in H-Hcy and cardio-
vascular disease showed mixed and modest preventative effects on final 
outcomes so far [10,11]. 

In active COVID-19 disease, the determination of H-Hcy through 
serum levels as opposed to genetic testing for MTHFR polymorphism 
may be used as an early biomarker for adverse outcomes and higher 
mortality and may serve as indication for vigorous supportive nutri-
tional interventions. In addition to B vitamins, vitamins A, C, D, and E, 
omega-3 polyunsaturated fatty acids (PUFA), selenium, zinc and iron 
have been shown to possess direct antiviral properties [27]. As diet- 
derived antioxidants make the most significant contribution to the 
body‘s antioxidant defense system [28], the administration of strong 
antioxidants, i.e. Vitamin C, may help to prevent both, further tissue 
damage and increased viral replication. In 2003, Vitamin C was already 
proposed as a treatment option in the SARS CoV-1 outbreak [29]. In 
COVID-19 a randomized controlled trial with 12 g Vitamin C ad-
ministered twice daily IV has been started in China [30]. 

In conclusion, we propose a theory of specific vulnerability to a 
severe course of COVID-19 initiated by H-Hcy, which can be triggered 
by the presence of the C677T polymorphism. Male gender, nutritional 
factors, life-style factors and several underlying diseases seem to be 
further significant risk factors for an increased vulnerability to SARS- 
CoV-2. During the SARS-CoV-2 pandemic early risk stratification by 
measurement of Hc-plasma levels and possibly screening for the pre-
sence MTHFR polymorphism appears promising. Additionally, treat-
ment with vitamins and micronutrients in addition to standard sup-
portive care seems to be warranted to protect and support the most 
vulnerable patient groups. 
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