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Responsive EEG-based communication systems have been implemented with brain-computer interfaces (BCIs) based on code-
modulated visual evoked potentials (c-VEPs). The BCI targets are typically encoded with binary m-sequences because of their
autocorrelation property; the digits one and zero correspond to different target colours (usually black and white), which are
updated every frame according to the code. While binary flickering patterns enable high communication speeds, they are
perceived as annoying by many users. Quintary (base 5) m-sequences, where the five digits correspond to different shades of grey,
may yield a more subtle visual stimulation.This study explores two approaches to reduce the flickering sensation: (1) adjusting the
flickering speed via refresh rates and (2) applying quintary codes. In this respect, six flickering modalities are tested using an eight-
target spelling application: binary patterns and quintary patterns generated with 60, 120, and 240Hz refresh rates. This study was
conducted with 18 nondisabled participants. For all six flickering modalities, a copy-spelling task was conducted. According to
questionnaire results, most users favoured the proposed quintary over the binary pattern while achieving similar performance to it
(no statistical differences between the patterns were found). Mean accuracies across participants were above 95%, and information
transfer rates were above 55 bits/min for all patterns and flickering speeds.

1. Introduction

Maximum length sequences (m-sequences) are special
pseudorandom binary sequences that have been used in
various research fields including encryption, signal recovery,
and brain-computer interface (BCI) [1–3].

A BCI is an interface between a user’s brain and a
computer; it translates the brain activities into commands
allowing the control of external devices without muscle
activity [4]. The BCI paradigm based on code-modulated
visual evoked potentials (c-VEPs) interprets the responses to
rapidly flickering patterns corresponding to special code
sequences [5–8]. Each c-VEP target is coded with an in-
dividual sequence, where bits are mapped to different
contrasts. To encode targets on computer monitors, usually
black and white patterns are used [9].

The brain responses to these patterns (the c-VEPs) can
be recorded via electroencephalography (EEG). A typical
c-VEP application is a communication tool, where a target

letter fixated by the user is determined via template
matching [10].

Although c-VEP spelling applications can achieve high
communication speeds (around 20 error-free characters per
minute [5]), some issues with regard to user friendliness
need to be addressed.

A key aspect in terms of usability is the flickering speed.
In general, the number of bit flips per second impacts the
classification accuracy [11]. Numerous BCI studies inves-
tigated stimulus choice for the steady-state VEP (SSVEP)
approach, where targets are coded with distinct frequencies
[12, 13]. According to Herrmann [14], brain responses of up
to 90Hz can be recognized in EEG recordings. Low-fre-
quency and medium-frequency sets between 6 and 30Hz are
predominantly used for spelling applications in SSVEP re-
search [10, 15] as they elicit large SSVEP amplitudes.

However, BCI users may perceive low flickering speed as
annoying and tiring [16, 17]. This also applies to flicker
patterns based on m-sequences. Stimulus-induced fatigue
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reduces the applicability of these systems. Moreover, the
low-frequency flicker patterns may trigger photosensitivity-
based epileptic seizures [17].

Because of these problems, high-frequency BCI appli-
cations have been developed [13, 16]. For example, Chen
et al. [13] implemented a 45-target SSVEP BCI speller using
high-frequency stimuli (ranging from 35.6 to 44.4Hz). The
authors reported a promising average information transfer
rate (ITR) of 61 bits/min. Armengol-Urpi and Sarma [18]
integrated high-frequency stimuli (42, 43, 44, and 45Hz) in a
virtual reality menu navigation tool. The authors stated that
users reported a satisfactory overall experience as the
flickering did not cause annoyance. Even higher, imper-
ceptible flickers around 60Hz have also been tested:
Sakurada et al. [16] used three LED stimuli (61, 63, and
65Hz) and reported an average accuracy of 90% while
eliminating visual fatigue. More recently, Jiang et al. [19]
used four phase-shifted 60Hz stimuli presented on a 240Hz
monitor.

For c-VEP BCIs, the flickering speed can be manipu-
lated by changing the monitor refresh rate. When using
standard 60Hz monitors, the stimulus duration of a 63 bit
m-sequence is 63/60�1.05 s, a time window that is rea-
sonably fast while still sufficiently long for reliable classi-
fications. Higher refresh rates allow for higher flickering
rates, which can potentially improve user friendliness.
However, the target stimuli might be harder to distinguish
from other targets due to the shorter lag between consec-
utive targets. Previous research indicates that c-VEP stimuli
generated with a 120Hz refresh rate yield good performance
[20–22], but with a 240Hz setup, a performance drop has
been observed [23]. In terms of bit flips per second, the
240Hz generated m-sequence is comparable to a 59Hz
SSVEP stimulus. Due to the sequences of up to 6 consec-
utive identical bits, the flickering pattern generated by the
m-sequence is still visually perceivable.

Beside higher flickering rates, research on SSVEP-BCIs
has found other methods to reduce discomfort induced by
the flickering. For example, with the sinusoidal stimulus
modulation method [24], which is realised by varying the
luminance each frame, more subtle sine-shaped stimulus
patterns can be realised. Recently, we compared the stimulus
presentation paradigms SSVEP and c-VEP in terms of
system performance and user friendliness [25]. While c-VEP
slightly outperformed SSVEP in terms of offline accuracy,
SSVEP was rated as the more user-friendly approach (thanks
to the more subtle sinusoidal stimulus presentation).

Due to the binary stimulation pattern of the m-sequence,
the visual stimuli switch between two colours (most com-
monly black and white). Other code patterns could offer a
more subtle stimulation while maintaining good autocor-
relation. Recently, Shirzhiyan et al. [26] employed chaotic
codes generated from a one-dimensional logistic map.While
there was no significant difference in the classification ac-
curacies in comparison with conventional m-sequences, the
chaotic code reduced subjective fatigue.

In this study, quintary (base 5) m-sequences are ex-
plored. Instead of switching between black and white, the
flickering targets go to five different shades of grey. We

compared the BCI performance of the conventional binary
and the proposed quintary pattern with refresh rate setups of
60, 120, and 240Hz. The six different code patterns were
tested with 18 participants using an earlier-developed
spelling application [27, 28] that allows for the selection of
letters in two steps (see Figure 1).

2. Methods

In the following, the generation of the binary and quintary
m-sequence patterns and the respective stimulus designs are
explained. Following that, details about the signal classifi-
cation, the spelling application, and the experimental pro-
tocol are provided.

2.1. Participants. Eighteen nondisabled participants were
recruited for this experiment, eight females and ten males
(average age 24.3 years, SD 2.8, ranging from 18 to 29). All of
them had normal or corrected-to-normal vision. This re-
search was approved by the Ethical Committee of the
Medical Faculty of the University of Duisburg-Essen. Before
the experiment, the participants were informed about the
purpose, risks, and experimental protocol of the study. The
participants gave informed consent in accordance with the
Declaration of Helsinki and were informed that they could
opt out of the study without providing reasons at any time.
The information needed for the analysis of the experiments
was stored anonymously. All participants received a fi-
nancial reward for taking part in the experiment.

2.2. Hardware. Stimulus presentation and signal identifi-
cation operated on the same computer, Dell Precision 3630
Tower, equipped with an NVIDIA GeForce GTX 1080
graphics card running Microsoft Windows 10 Education on
an Intel processor (Intel Core i7-8700K @ 3.70GHz). The
c-VEP targets were presented on a liquid crystal display
screen (Acer Predator XB252Q, 1920×1080 pixels, 240Hz
refresh rate). For signal acquisition, an EEG amplifier
(g.USBamp, Guger Technologies, Graz, Austria) was used,
employing all its 16 signal channels, which were placed
according to the international 10/5 system of electrode
placement (see, e.g., [29]): PZ, P3, P4, P5, P6, PO3, PO4, PO7,
PO8, POO1, POO2, O1, O2, OZ, O9, and O10. The reference
electrode was placed at CZ and the ground electrode at AFZ.
The standard abrasive electrolytic electrode gel was applied
between the electrodes and the scalp to bring impedances
below 5kΩ during the preparation phase. A bandpass filter
(between 2 and 100Hz) and a notch filter (around 50Hz)
were applied. The sampling rate of the amplifier was set to
600Hz.

2.3. Generation of m-Sequences. A maximal-length sequence
(m-sequence) is a periodic sequence with a noise-like
waveform that can be generated using a linear-feedback shift
register (LFSR) [30, 31] (see Figure 2). LFSRs are special shift
registers, consisting of N memory cells (also called stages)
labelled RN− 1, . . . , R1, R0. The input digit stored in the cell
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RN− 1 is the value of a linear function f that performsmodulo p
additions with a weighted subset of the register entries.

The memory stages of the LFSR are controlled by a timing
clock. At each pulse of the clock, the state of each stage is
shifted to the next stage.The entry in the cellRi is passed to the
cell Ri− 1, i � N − 1, . . . , 1. The entry in the stage R0 (the
rightmost register) determines the output of the LFSR. The
sequence of output bits is called the output stream of the LFSR.

A p-ary code of length N can assume pN values.
However, the period of the code produced by the LFSR can
have a maximal length of at most pN − 1. In this case, the
LFSR cycles through all states except for the case where all
digits are zeros. If all digits were zeros, it could not be used as
a code sequence for stimuli, as there would be no state
changes, and thus no brain response evoked by the stimuli.
The output stream of maximal length is an m-sequence.

In Figure 2, a generic LFSR is displayed.The bit positions
that influence the next state (weights ai ≠ 0) are called taps.
The combination of the register pins can also be expressed in
the finite field arithmetic as the modulo p polynomial, which
is referred to as a generator polynomial or feedback
polynomial:

G(X) � X
N
− 
N− 1

j�0
ajX

j
, (1)

where the coefficients ai ∈ 0, 1, . . . , p − 1  correspond to
the weight of the register pin Ri, i � 0, . . . , N − 1.

An LFSR must be initialised with a so-called seed which
describes the N initial digits of the register cells.The seed and
the generator polynomial uniquely determine the resulting
sequence.

If the LFSR is represented by a primitive polynomial and
initiated with a nonzero seed, it will generate an m-sequence
[32].

The binary m-sequence, b1, used in the experiment was
determined with the generator polynomial x6 + x5 + 1
(corresponding to weights a0 � 1, a1 � a2 � a3 � a4 � 0,
and a5 � 1) and the seed (R5, R4, R3, R2, R1, R0) �

(1, 1, 0, 1, 0, 1). The quintary m-sequence, q1, used in the
experiment was determined with the generator polynomial
x3 + 3x + 2 � x3 − 2x − 3 (corresponding to the weights
a2 � 0, a1 � 2, and a0 � 3) and the seed (R2, R1, R0) �

(0, 3, 0). The period lengths, and thus the length of the m-
sequence, were 26 − 1 � 63 for the binary pattern and 53 −
1 � 124 for the quintary pattern.

The m-sequences have a number of desirable properties
(see, e.g., [33]). For BCIs, the most interesting feature is the
autocorrelation function. For the binary sequence, a single
peak at 0 can be observed. The values of the function are
equal to 1 at . . . , − 2n, − n, 0, n, 2n, . . . , and the correlation
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Figure 1: Graphical user interface of the c-VEP-based eight-target speller. Each target corresponded to a lagged version of an m-sequence.
By selecting a group of letters (e.g., H–N), a second layer containing individual letters was displayed. In the example, the letter K was
selected. In addition to letter groups, the first layer of the interface also presented three word suggestions based on an integrated dictionary
function. The lower right target represented an undo function. Feedback was given to the user by enlarging the selected target for 100ms,
voicing the corresponding letter, and adding it to the text output field in the centre of the screen.

RN–1 RN–2 R1 R0

aN–1 aN–2 a1 a0

Figure 2: Generic linear-feedback shift register (LFSR). For the generation of a p-arym-sequence of order N, the register consists of memory
cells Ri, i � 0, . . . , N − 1, each holding a p-ary digit.The cells are controlled by a timing clock. At each pulse of the clock, the current values of
the register cells are shifted to the next cell. To determine the next value in the leftmost register cell RN− 1, the current register values are
multiplied by weights ai and then added together using modulo p arithmetics.The current value in the rightmost register cell R0 is appended
to the output sequence.
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coefficient is 1/n in every other case, where n refers to the
period length of the sequence, where n � 63 (i.e., binary 63-
bit m-sequence). It should be noted that the quintary m-
sequence has two phase values for which the sequences are
anticorrelated (see also [3]). These shifts are avoided in the
implementation of the BCI. For the binary and quintary m-
sequences used in the experiment, the autocorrelation
functions are displayed in Figure 3.

2.4. Stimulus Design. To test the code sequences in an online
spelling scenario, we implemented them into a spelling
application with eight targets (230 × 230 pixels) which were
arranged as a 2 × 4 stimulus matrix (see Figure 1). Each
target corresponded to one of the K � 8 code sequences.

For the binary flickering paradigm, b1 was generated as
described in the previous section and b2, b3, . . . , bK were
generated by employing left circular shifts on b1 of
4 · 1, 4 · 2, . . . , 4 · (K − 1). For the quintary flickering para-
digm, the eight codes qi, i � 1, . . . , K, were generated
analogously.

The flickering patterns were modulated utilising alpha
blending [34]. The process of alpha blending allows for
transparency effects in computer graphics by applying a
convex combination of two colours (a translucent fore-
ground colour and a background colour). Using alpha
blending, the translucent foreground colour of the stimulus
(here white) was combined with the background colour
(here black), yielding a blended colour (here different shades
of grey). The degree of translucency, α, ranges from 0.0 to
1.0. When the foreground colour is completely transparent
(i.e., α � 0), the combined colour is the background colour
(here black). On the contrary, if the foreground colour is
completely opaque (i.e., α � 1), the combined colour is the
foreground colour (here white).

The degree of translucency of the stimuli was updated
every frame; the values for α were derived from the code
pattern. In case of the binary m-sequences, α was set to 0 or 1
in accord with the binary code sequence yielding a black and
white pattern. For the quintary m-sequences, the quintary
digits 0, 1, 2, 3, and 4 were mapped to the corresponding
α-values 0, 0.25, 0.5, 0.75, and 1, yielding a pattern that goes
through five shades of grey.

The update rate and therefore the speed of the flickering
pattern are dependent on the monitor refresh rate. At high
vertical refresh rates, a more subtle visual stimulation can be
achieved. Here, for both code patterns, update rates of 60,
120, and 240Hz were tested; the stimulus colour was
updated every 16.6, 8.3, and 4.16 ms, respectively.

2.5. Experimental Protocol. Each participant took part in six
sessions using the two flickering patterns at three different
update rates, 60Hz, 120Hz, and 240Hz.The order was binary
at 60Hz, quintary at 60Hz, binary at 120Hz, quintary at
120Hz, and binary at 240Hz, quintary at 240Hz, for half of
the participants, and quintary at 60Hz, binary at 60Hz,
quintary at 120Hz, binary at 120Hz, and quintary at 240Hz,
binary at 240Hz, for the other half. In between sessions,
participants took a small break. Each session consisted of a

training and a copy-spelling phase. Participants sat in a
comfortable chair approximately 70 cm away from the screen
which presented the 8-target interface (arranged as a 2 × 4
matrix, see Figure 1), showing numbers 1–8 in the training
phase and a letter grid in the copy-spelling phase.

For the generation of c-VEP templates, labelled re-
sponses for every stimulus were recorded in the training
phase, where all eight targets were presented simultaneously
to the user. For each of the eight targets, several trials were
recorded. In this respect, the training phase was grouped
into nb � 6 blocks, where 6 · 8 � 48 trials were collected in
total. For the binary pattern, each trial lasted 2.1 s; the
stimulation cycle repeated 2, 4, and 8 times for the 60, 120,
and 240Hz setups, respectively. Analogously, for the
quintary pattern, each trial lasted 2.06 s; the stimulation
cycle repeated 1, 2, and 4 times for the 60, 120, and 240Hz
setups. The different flickering patterns are illustrated in
Figure 4. The trials were stored as an m × nmatrix, where m
denotes the number of recording EEG electrodes (here
m � 16) and n denotes the number of sample points (here
n � 2.1 · Fs � 1260 and n � 2.06 · Fs � 1240 samples for
binary and quintary patterns) samples, for binary and
quintary patterns).

The box, at which the user was needed to gaze, was
outlined by a green frame. The boxes were highlighted in
sequence (from the upper left to the lower right). After each
trial, the flickering paused for 1 s. After each block, the user
could rest for a longer time, until he or she initiated the next
recording block by pressing the space bar on the keyboard.

After each training phase, participants filled out a brief
questionnaire. The subjective impressions of the flickering
patterns were assessed with two 7-point Likert scales:
(1� relaxing, 7� exhausting) and (1� comfortable,
7� annoying), where the points 2–6 were left unlabelled.

In the online session, a brief familiarisation run was
conducted, where participants learned how to use the speller.
Thereafter, a copy-spelling task was performed. Misclassi-
fications needed to be corrected by gazing at the box rep-
resenting the UNDO function. The copy-spelling task was to
spell the word POWERFUL. In this phase, the gaze-shifting
phase was 2 s, giving the participant enough time to identify
the location of the next character. (During this gaze-shifting
phase, the flickering and data recording paused). The entire
experiment lasted approximately 1 h.

2.6. Signal Classification. A template-matching method using
spatial filters generated via canonical-correlation analysis
(CCA) was used for online signal classification [27]. A filter
bank design was used to increase the discrimination of targets
[35] further. On the basis of the training data, templates were
calculated by averaging over the target-specific trials. In ad-
dition to this, for each target, a CCA-based spatial filterwi was
determined as described, e.g., in [28].

This was done for M � 3 different filter banks; in this
regard, M bandpass filters (described in the following sec-
tion) were applied to the recorded trials, resulting in weights
w(m) ∈ Rm and templates X(m)

i ∈ R
m×n, i � 1, . . . , K, for

m � 1, . . . ,M.
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The three filter banks were designed using 8th-order
Butterworth bandpass filters. The upper and lower cutoffs
were set as follows:

(1) The first subband covered the alpha, beta, and
gamma bands (a bandpass filter between 8 and 60Hz
was applied)

(2) The second subband covered the beta and gamma
bands (a bandpass filter between 12 and 60Hz was
applied)

(3) The third subband covered the gamma band (a
bandpass filter between 30 and 60Hz was applied)

For classification, ensemble correlations between spa-
tially filtered reference signals and the spatially filtered EEG
data buffer were calculated for each subband (m � 1, . . . ,M)
independently. This yielded a set of correlation coefficients:

λ(m)k � ρ
YTw

(m)
1

⋮

YTw
(m)
K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

X
(m)T
k w

(m)
1

⋮

X
(m)T
k w

(m)
K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (2)

which were calculated for all classes k � 1, . . . , K and av-
eraged across the number of filter banks:

λk �
1
M


M

m�1

λ
(m)

k , k � 1, . . . , K. (3)

To identify the intended target, the class label C was
determined as

C � argmax
k�1,...,K

λk. (4)

For the online classification, a sliding window mecha-
nism was implemented as described in [25]. The amplifier
transferred the EEG data in blocks of 30 samples per
channel, which were collected in a buffer. The number of
columns, ny, of the buffer Y changed dynamically when new
data were added each calculation interval (ny incrementally
increased by 30 samples until ny � n). After a new block was
received, a class label was calculated using submatrices from
the templates (containing only the first ny columns). A
system output was only produced, if a threshold criterion

was met: the distance between the highest and the second
highest correlation needed to exceed 0.15; for some par-
ticipants, this threshold was adjusted slightly during the
familiarisation to increase accuracy. If this threshold crite-
rion wasmet, the output was produced, the data bufferYwas
cleared, and a gaze-shifting period of two seconds followed.
If the criterion was not met, further data were added to the
buffer. In case ny � n, old data were shuffled out.

3. Results

In the following, the results from the evaluation of the online
spelling performance and the questionnaire are presented;
Table 1 provides an overall summary of the results. The BCI
performance was evaluated by comparing ITR and classi-
fication accuracy. The significance levels of the differences
between the binary and quintary patterns were evaluated
using paired t-tests. We used Wilcoxon signed-rank tests
and Friedman’s analysis to evaluate the questionnaires.

3.1. Offline Performance Evaluation. The offline classifica-
tion accuracy of the binary and quintary flickering para-
digms was compared offline via leave-one-out cross-
validation (see, e.g., [36]). All but one of the recorded blocks
(each containing eight trials) was used for the training, and
the left-out block was used as validation data. The cross-
validation was repeated nb times; each recording block was
used once as validation data, and the resulting accuracies
were averaged. For the performance analysis, the process was
conducted for different classification time windows up to 1 s.
Figure 5 presents the mean classification accuracies for all
tested patterns.

For the time window of 1 s, the mean (SD) classification
accuracies for the binary flickering pattern were 97.7 (2.76) %,
99.0 (3.3)%, and 94.7 (9.6)% for the 60Hz, 120Hz, and 240
update rates, respectively; for the quintary flickering pattern,
accuracies were 98.7 (3.1)%, 96.9 (9.8)%, and 95.3 (12.4)%.
Neither for the 60 and 120Hz refresh rates nor for the
240Hz refresh rate, significant differences between the bi-
nary and quintary patterns were found according to paired t-
tests (p> 0.05).
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Figure 3: Cyclical autocorrelation function for a (a) binary 63-bit m-sequence and (b) quintary 124-digit m-sequence. Both autocorrelation
functions are normalized so that the peak value is 1.
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Figure 4: α-Values of the stimulus object for the six tested flickering patterns. Displayed are the α-values derived from binary and quintary
code patterns at different monitor refresh rates. The α-values range from 0 to 1: 0 denotes “fully transparent” and 1 denotes “fully opaque.”
The red line indicates the end of a full stimulation cycle. (a) Stimulus pattern of the binary 63-digit m-sequence, refresh rate 60Hz, 2 cycles.
(b) Stimulus pattern of the binary 63-digit m-sequence, refresh rate 120Hz, 4 cycles. (c) Stimulus pattern of the binary 63-digit m-sequence,
refresh rate 240Hz, 8 cycles. (d) Stimulus pattern of the quintary 124-digit m-sequence, refresh rate 60Hz, 1 cycle. (e) Stimulus pattern of the
quintary 124-digit m-sequence, refresh rate 120Hz, 2 cycles. (f ) Stimulus pattern of the quintary 124-digit m-sequence, refresh rate 240Hz,
4 cycles.
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In general, the accuracy achieved with the fastest
flickering rate (using the 240Hz refresh rate) was lower in
comparison with those of the 60 and 120Hz refresh rates. No
statistical differences between the binary and quintary
patterns can be observed.

3.2. Online Spelling Performance Evaluation. Figure 6 shows
the individual performance in the online experiment. The
commonly used ITR and classification accuracies were
calculated. The ITR in bits/min, Bm, is given as follows:

Bm �
log2K + plog2p +(1 − p)log2((1 − p)/(K − 1))

t/60
,

(5)

where K denotes the number of classes (here K � 8), p
denotes the classification accuracy which is calculated as
correctly classified selections divided by the total number of
selections, and t denotes the average time to make a selection
(in s). An online calculation tool for the ITR can be found at
https://bci-lab.hochschule-rhein-waal.de/en/itr.html.

All participants completed the task for all six tested
flickering patterns. The average (SD) online classification
accuracies for the binary flickering pattern were 99.4 (1.85) %,
97.6 (6.0)%, and 97.9 (3.6)% for the 60Hz, 120Hz, and
240Hz update rates, respectively; for the quintary flickering
pattern, accuracies were 98.5 (2.5)%, 97.5 (5.0)%, and 97.6
(4.8)%. The mean ITRs achieved with the binary pattern
were 64.8 (8.8), 63.7 (11.5), and 59.5 (12.5) bits/min; the
mean ITRs achieved with the quintary pattern were 63.9
(6.1), 59.2 (11.4), and 55.9 (14.8) bits/min. On average, the
spelling times for the binary pattern were 45.2 (7.0), 46.4
(9.8), and 50.1 (12.5) s; the spelling times for the quintary
pattern were 45.3 (4.4), 50.7 (12.0), and 59.7 (37.8) s. Figure 7
shows the achieved ITRs per flickering pattern. Regarding
the differences between the binary and quintary patterns per
refresh rate, analysis with paired t-tests did not reveal sta-
tistically significant differences (p> 0.05) for neither the
accuracy nor the ITR.

3.3. Questionnaire Results. Figure 8 summarizes the ques-
tionnaire responses. Regarding the first question (relaxing/

Table 1: Summary of themean (SD) ormedian values from the offline analysis, online performance, and questionnaire per flickering pattern
across 18 participants.

60Hz 120Hz 240Hz
Binary Quintary Binary Quintary Binary Quintary

Offline accuracy (%) 97.7 (2.8) 98.7 (3.1) 99.0 (2.3) 96.9 (9.8) 94.7 (9.6) 96.3 (12.4)
Online accuracy (%) 99.4 (1.8) 98.5 (2.5) 97.6 (6.0) 97.5 (5.0) 97.9 (3.6) 97.6 (4.8)
Experiment time (s) 45.2 (7.0) 45.3 (4.4) 46.4 (9.8) 50.7 (12.0) 50.1 (12.5) 59.7 (37.8)
ITR (bits/min) 64.8 (8.8) 63.9 (6.1) 63.7 (11.5) 59.2 (11.4) 59.5 (12.5) 55.9 (14.8)
Relaxing/exhausting 4 2.5 3.5 3 3 3
Comfortable/annoying 4 3 3.5 2.5 3.5 3
The provided values for the offline accuracies were achieved with a classification time window of 1 s.
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Figure 5: Offline results for the binary and quintary m-sequences. Mean accuracies across all 18 participants for different classification time
windows are provided. The error bars indicate standard errors of the means.
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exhausting), the median ratings for the binary pattern were
4, 3.5, and 3 for the 60Hz, 120Hz, and 240Hz update rates,
respectively; the median ratings for the quintary pattern
were 2.5, 3, and 3.

The medians of the binary and quintary patterns were
significantly different only for the 60Hz setup; the p values
ofWilcoxon signed-rank tests were 0.003, 0.065, and 0.67 for

60, 120, and 240Hz, respectively. According to the Friedman
analysis, the differences between refresh rate settings were
not significant for the binary (p> 0.05) and quintary
(p> 0.05) patterns.

Regarding the second question (comfortable/annoying),
the median ratings for the binary pattern were 4, 3.5, and 3.5,
and for the quintary pattern, the ratings were 3, 2.5, and 3.

Again, only for the 60Hz comparison, the medians of
binary and quintary patterns were significantly different; the
p values of Wilcoxon signed-rank tests were 0.009, 0.084,
and 0.077 for 60, 120, and 240Hz, respectively. According to
the Friedman analysis, the differences between refresh rate
settings were not significant for the binary (p> 0.05) and
quintary (p> 0.05) patterns.

We further grouped the scores into relaxing (1–3),
neither relaxing nor exhausting (4), and exhausting (5–7).
Analogously for the second question, we grouped the scores
into comfortable (1–3), neither comfortable nor annoying
(4), and annoying (5–7). For all refresh rate setups, the
quintary pattern was rated less exhausting and less annoying.
The quintary pattern at 60Hz was rated the least exhausting;
only two out of the eighteen participants (i.e., 11%) found
this flickering design exhausting. The binary pattern was
rated exhausting by four participants (28%) for all refresh
rates. Regarding the second question, the quintary pattern at
120Hz was rated least annoying (two out of eighteen, i.e.,
11%).

Overall, answers indicate that the quintary flickering
patterns are perceived as less annoying. According to
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Figure 6: Online results for the binary and quintary m-sequences. All 18 participants spelt the word POWERFUL with different flickering
speeds. (a) Accuracies and (b) information transfer rates (ITRs) for the 60Hz, 120Hz, and 240Hz refresh rate setups are shown.The dashed
lines indicate the mean values across all participants.
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Figure 7: Online ITRs for the binary and quintary m-sequences.
The values achieved by the 18 participants in the copy-spelling
phase are shown per refresh rate. In the box plots, outliers (data
points outside 1.5 times the interquartile range) are located outside
the “whiskers.”
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additional comments from the participants, with the
quintary pattern, it was easier to focus on the target letters.
One participant found that the 60Hz binary pattern caused
headaches during the training stage. Several participants
commented that the quintary flickering was less fatiguing.

4. Discussion

The aim of the study was to explore more user-friendly
flickering patterns for c-VEP-based BCIs. Two flickering
patterns, binary and quintary m-sequences, were tested with
different flickering speeds. Both code sequences are or-
thogonal to their time lags. While the binary m-sequence is
well established in BCI research, the quintary m-sequences
have so far not been tested. Due to the nonlinearity of the
visual system (e.g., due to bifurcation or period-doubling),
the elicited responses obtained by visual stimulation with the
orthogonal patterns have nonorthogonal autocorrelations
(see, e.g., [23]). Previous studies with online BCI systems
showed that the accuracies obtained with m-sequence-based
flickering patterns are nonetheless quite high [5, 28, 37]. In a
previous study, we compared SSVEP and c-VEP flickering
patterns. It was observed that the latter yielded on average
higher offline accuracies [25].

The acceptance of BCIs based on visual evoked po-
tentials may depend on two factors, the user friendliness
and the BCI performance. A major focus of this study was
on the aspect of user friendliness. The presented quintary
sequence allowed for a more subtle stimulation in com-
parison with the conventionally used binary pattern and
was rated as slightly more user-friendly according to our
questionnaire.

The stimulus colour is a key parameter for BCIs based on
visual stimulation. In this study, black and white or different

grey shades were used for the binary and quintary stimulus
patterns, respectively. Humans have different responses to
stimuli of different colours. The human retina contains two
types of photoreceptors, rods and cones. The rod cells are
responsible for black-and-white vision at low light levels; the
cones are responsible for colour vision. There are three
subtypes of cones that reflect the response to various
wavelengths of light, blue cones, green cones, and red cones.
As noted by Wei et al. [6], white colour stimulates all three
types of cones, and therefore, it may lead to the strongest
VEP response. Aminaka et al. [38] implemented a c-VEP
flickering paradigm with four green and blue chromatic
flashing targets in order to reduce the risk of photosensitive
epilepsy. In terms of performance, the authors did not
observe any significant differences in the conventional black
and white flashing pattern. Instead of different shades of
grey, the digits of the m-sequence could be encoded with
different colours, stimulating the different types of cones.

In addition to the colour of the targets, the flickering
speed impacts the load on the visual channel. While high-
frequency systems are less fatiguing, they tend to yield lower
selection speeds. In this study, eight targets were used, which
is a comparably low number for c-VEP studies. Still, due to
the low classification time windows employed, ITRs between
55 and 65 bits/min were achieved with the different flick-
ering modalities.

The achieved ITRs are slightly higher than those in low-
target high-frequency SSVEP BCIs: Armengol-Urpi and
Sarma [18] reported a mean ITR of 15.7 bits/min for strong
flickering and 13.6 bits/min for weak flickering using a four-
target SSVEP system with frequencies ranging from 40 to
45Hz in a virtual reality application. Jiang et al. [19] reported
a mean ITR of 18.8 bits/min in an online experiment using a
4-target system with phase-shifted 60Hz stimuli.
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Figure 8: Questionnaire results. Responses from all 18 participants regarding visual stimulation were given on the basis of a 1–7 Likert scale.
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Recently, a multitarget c-VEP system with fast flickering
speed was tested: Başaklar [3] implemented a 36-target
c-VEP system employing a 127 bit m-sequence at refresh
rates of 60Hz, 120Hz, and 240Hz. The authors reported
average ITRs and accuracies of 85.9 bits/min and 92% for
60Hz, 94.2 bits/min and 97% for 120Hz, and 78.7 bits/min
and 87% for 240Hz. The authors concluded that the 120Hz
refresh rate setup is best to use in multitarget BCIs, whereas
the 240Hz refresh rate may be a good choice for low-target
systems. Indeed, in this study, the differences in BCI per-
formance between the tested patterns were not significant.
According to the within-subject comparison, the tested
flickering patterns were equally effective. Further tests of the
quintary pattern with multitarget systems are planned.

5. Conclusions

This study explored the usage of quintary m-sequences for BCIs
based on c-VEPs. The conventional binary and the proposed
quintary patterns were compared in an online spelling exper-
iment with different refresh rate setups. In terms of user
friendliness, we found that the quintary patternwas perceived as
more comfortable and relaxing than the binary pattern. Es-
pecially, the typically used binary 60Hz patternwas perceived as
annoying bymore than a quarter of the participants. In terms of
BCI performance, no significant differences between the pat-
terns were found, suggesting that further c-VEP experiments
could be designed with the proposed quintary pattern.
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[8] S. Nagel and M. Spüler, “Asynchronous non-invasive high-
speed BCI speller with robust non-control state detection,”
Scientific Reports, vol. 9, no. 1, p. 8269, 2019.

[9] D. Zhu, J. Bieger, G. Garcia Molina, and R. M. Aarts, “A
survey of stimulation methods used in SSVEP-based BCIs,”
Computational Intelligence and Neuroscience, vol. 2010, Ar-
ticle ID 702357, 12 pages, 2010.

[10] A. Rezeika, M. Benda, P. Stawicki, F. Gembler, A. Saboor, and
I. Volosyak, “Brain-computer interface spellers: a review,”
Brain Sciences, vol. 8, no. 4, 2018.

[11] S. Nagel, W. Rosenstiel, and M. Spüler, “Finding optimal
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