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Gut microbiota play a key role in the development of metabolic disorders. Defining
and correlating structural shifts in gut microbial assemblages with conditions related
to metabolic syndrome have, however, been proven difficult. Results from 16S genomic
DNA and 16S ribosomal RNA analyses of fecal samples may differ widely, leading to
controversial information on the whole microbial community and metabolically active
microbiota. Using a C57BL/6J murine model, we compared data from 16S genomic
DNA and ribosomal RNA of the fecal microbiota. The study included three groups of
experimental animals comprising two groups with high fat diet induced obesity (DIO)
while a third group (control) received a low fat diet. One of the DIO groups was treated
with the probiotic Lactobacillus rhamnosus GG (LGG). Compared to the data obtained
by DNA analysis, a significantly higher abundance of OTUs was accounted for by
RNA analysis. Moreover, rRNA based analysis showed a modulation of the active gut
microbial population in the DIO group receiving LGG, thus reflecting a change in the
induced obesity status of the host. As one of the most widely studied probiotics the
functionality of LGG has been linked to the alleviation of metabolic syndrome, and, in
some cases, to an impact on the microbiome. Yet, it appears that no study has reported
thus far on modulation of the active microbiota by LGG treatment. It is postulated that
the resulting impact on calorie consumption affects weight gain concomitantly with
modulation of the functional structure of the gut microbial population. Using the 16S
rRNA based approach therefore decisively increased the precision of gut microbiota
metagenome analysis.

Keywords: 16S rDNA analysis, 16S rRNA analysis, gut microbiota, obesity, LGG

INTRODUCTION

Application of novel techniques such as those based on culturomics has revealed a hitherto
unexpected complexity of the human gut microbiome; numerous microbial taxonomic units
have only recently been detected, bringing the estimated number of microbial species to more
than 1500 at present (Lagier et al., 2016; Utzschneider et al., 2016). The microbiome of the
human gastrointestinal tract (GIT) varies among healthy individuals (Human Microbiome Project
Consortium, 2012; Yatsunenko et al., 2012), but its overall balance will decisively influence
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the functioning of the metabolic, mental and immune systems
of the host (Nicholson et al., 2012; Sanz et al., 2015; Ussar
et al., 2015; Liu, 2017). Bäckhed et al. (2004) have shown earlier
that gut microbiota serve as an environmental factor to regulate
fat storage. While shifts or alterations in the autochthonous
microbial population of people suffering from metabolic diseases
have been reported frequently (Turnbaugh et al., 2006; Cani
et al., 2008; Raoult, 2008; Armougom et al., 2009; Cani and
Delzenne, 2009; Larsen et al., 2010; Zhang et al., 2013; Kasai
et al., 2015; Ussar et al., 2015), this issue has, however, remained
controversial, since an overwhelming part of the data has been
acquired by microbial genomic DNA- and not ribosomal RNA-
based gut microbiota analysis. The latter technology may reflect
more reliably the metabolically active microbial communities
more precisely (Baldrian et al., 2012; Pérez-Cobas et al., 2013).

Elucidating metabolically active microbial communities
within the complexity of the total microbiota constitutes an
essential yet intriguing challenge toward comprehending the role
of commensal microbiota in health and disease. Peris-Bondia
et al. (2011) applied flow cytometry to isolate the active bacterial
fraction from human feces and found a huge part of the active
microbiota to be statistically neglected or “overshadowed” by
the enormous diversity of the total microbiota. Using both 16S
rDNA and 16S rRNA analyses of fecal samples, Pérez-Cobas
et al. (2013) found meaningful differences between the whole
microbiota composition and the active fraction of the microbiota
in an antibiotic treated patient. The paper suggested only a
minor part of the microbial community plays a significant
role in terms of their metabolic activity, independent of the
complexity of the whole community. Moreover, the impact of
sample processing procedures on the results has been confirmed
by Walker et al. (2015) when using cell disruption methods
for DNA extraction in 16S rRNA gene profiling of infant gut
microbiota in conjunction with optimized ‘universal’ PCR
primers. Using mock communities and mock community
DNA, Fouhy et al. (2016) showed the importance on 16S rRNA
sequencing results of the sequencing platform besides the DNA
extraction method and the primer sequences used. Contradictory
results of rRNA amplicon-based metagenome analysis have
been reported by Blazewicz et al. (2013), showing no clear
correlation of the rRNA of different groups of microorganisms
with their growth and activity, potentially leading to exaggerated
and/or underestimated expression of metabolic activeness of
microbiota. Relative to the functional potential of an ecosystem,
a dynamic interplay continues between growing, metabolically
active and dormant cells. Studying the same rumen microbiota
using RNA-seq and RNA/DNA amplicon-seq methods revealed
differences in taxonomic profiles (Li et al., 2016), but suggested a
higher robustness of RNA-based methods for detecting microbial
phylotypes with potential metabolic activities. Similarly,
compared to DNA amplicon-seq, RNA-based phylotypes
revealed more interactions and a higher diversity (Li et al., 2016).
Without any doubt, more reliable information may be obtained
by duplicate parallel studies comparing control and test groups
concomitantly with gDNA and rRNA information.

This study was conducted to compare DNA vs. RNA
approaches for gut microbiota analysis in a C57BL/6J mouse

model by modifying the gut ecosystem system with a specific high
fat diet (control: low fat diet) and by the administration of the
probiotic strain Lactobacillus rhamnosus GG (LGG).

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
Lactobacillus rhamnosus GG (LGG) was grown in MRS broth
(Difco Laboratories Inc., Franklin Lakes, NJ, United States)
and prepared daily for feeding during the intervention period.
LGG was grown for 8 h to reach the late log phase, collected
(16,000 × g, 5 min, 4◦C) and washed two times with PBS.
The approximate viable numbers were adjusted with PBS to
1 × 107 CFU/ml using a standard curve (data not shown).
Optical density was determined using a SPECTROstar Nano
(BMG Labtech, Durham, NC, United States) spectrophotometer.
The prepared sample was suspended in 200 µl of PBS for daily
oral administration by gavage.

Study Design and Animals
The animal study was approved by the Handong Global
University ethical committee in South Korea (Ethical Committee
No. 20151022-009). Seven week old, specific pathogen free (SPF)
male C57BL/6J mice were supplied by Hyochang Science, Daegu,
South Korea. The animals were housed at 23◦C and 55 ± 10%
humidity, in a 12 h light/dark cycle. After 1 week of adaptation,
20 mice were separated into three different groups (6 for the low
fat diet control and 7 for the other groups), receiving different
treatments (Supplementary Figure S1 and Table 1). The high fat
diet (Research Diets D12492, New Brunswick, NJ, United States)
(HFD) and autoclaved tap water were provided ad libitum to
induce obesity, while the low fat diet (Research Diets D12450,
New Brunswick, NJ, United States) (LFD) was provided to a
control group. For a period of 10 weeks the HFD mice were
orally administered daily either phosphate buffered saline (PBS)
or LGG suspended in PBS (1× 107 CFU/day). The weight of each
animal and its feed consumption were measured once a week.
Three representative mice from each group were further analyzed
for their fat mass using Micro-PET/CT (Siemens Preclinical
Solution, Knoxville, TN, United States), using Inveon software.
Body fat content was measured using the micro-CT method
1 week prior to sacrifice. On the last day of the experiment, mice
were sacrificed by cervical dislocation. After the study, the serum,
small intestine, colon, liver, epididymal adipose tissue, and spleen
of each experimental animal were collected, weighed and kept at
−80◦C until analysis. Fecal samples were collected within 6 h

TABLE 1 | Composition of experimental groups receiving high-fat (HFD) and
low-fat diet (LFD), and high-fat diet with the probiotic strain L. rhamnosus GG.

Group Feed Treatment

LFD (n = 6) LFD 200 µL PBS only (non-obese control)

HFD (n = 7) HFD 200 µL PBS only (obese control)

HFD+LGG (n = 7) HFD 1 × 107 CFU/day of LGG suspended in
200 µL of PBS
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after changing the bedding of the cages and half of the fecal
samples were immediately immersed into RNAlater (Thermo
Scientific, Waltham, MA, United States) to avoid deterioration
of microbial RNA. In a metagenomic approach, genomic DNA
and ribosomal RNA, were extracted from faecal samples of each
group, and used to compare the whole community (DNA) and
the metabolically active community structure (RNA) of the fecal
microbiota.

Serum Analysis
Multiplex sandwich ELISAs were performed using the Magnetic
Luminex Screening Assay (Koma Biotechnology, Seoul,
South Korea) to monitor adiponectin, leptin, and interleukin 12
p70 (IL-12p70) from a single serum sample of each individual
mouse.

RNA Extraction and Reverse
Transcription of Organs
Extraction of mRNA from epididymal adipose tissue followed
the RNeasy protocol of the RNA tissue miniprep system
(Promega, United States). Briefly, each organ sample was
homogenized by a hand-held homogeniser (IKA, Germany)
in a lysis buffer and centrifuged. Supernatant was mixed with
isopropanol and passed through a column provided with the
kit. After several washing and DNase treatments, the purity
and concentration of the eluted RNA was measured by a
SPECTROstar (BMG LABTECH, Germany) spectrophotometer.
2–3 µg of complement DNA (cDNA) was prepared using
the GoScriptTM Reverse Transcription System (Promega,
United States) using a Verity 96-well thermal cycler (ABI
research, United States) after 10 min of incubation with oligodT
primer at 70◦C.

Quantitative Real-Time PCR (qRT-PCR)
Analysis
The ABI 7500 Real-Time PCR System (Applied Biosystems,
Carlsbad, CA, United States) and SYBR Premix Ex Taq RR420
(TaKaRa, Japan) was used for qRT-PCR, following the protocols
previously described (Ji et al., 2012). The Delta Delta C(t)
method (Livak and Schmittgen, 2001) was used to calculate gene
expression levels of different biomarkers; the primers are listed in
Supplementary Table S1.

Extraction of Microbial Genomic DNA
and Ribosomal RNA for Metagenomic
Analysis
Genomic DNA (DNA) and ribosomal RNA (RNA) were extracted
from individual faecal microbiota samples using the ReliPrep
gDNA Tissue Miniprep System as well as the RNA Tissue
Miniprep System (Promega, United States), after mechanical
disruption of microbial cell walls. Briefly, for fecal rRNA
extraction and preparation of cDNA, 50 mg of fecal sample
were suspended in 500 µL of lysis buffer solution (490 µL
of LBA buffer + 10 µL of 1-thioglycerol) in a screw cap
micro-tube (Sarstedt, Germany) together with 0.3 g of 0.1 mm
zirconium/silica beads (Biospec, United States), followed by

disruption in a mini-beadbeater-16 (Biospec, United States)
for 2 min and centrifuged at 14,000 × g for 3 min at
room temperature. The supernatant was mixed with 150 µL
of isopropanol and transferred to ReliaPrep Minicolumn after
vigorously mixing for 10 s. Subsequent clean up and DNase
treatment procedures precisely followed the manufacturer’s
instructions. RNA was finally eluted in a column using 30 µL
of elution buffer, and further reverse transcribed to cDNA after
measuring purity and concentration of the eluted RNA by
SPECTROstar (BMG LABTECH, Germany); 1 µg of RNA was
mixed with 1 µL of Random Primers (Promega, United States)
and incubated at 70◦C for 10 min and immediately cooled
on ice for 10 min. Random Primer attached RNA was
mixed with GoScript Reverse Transcription System master
mix (Promega, United States) comprising 4 µL of GoScript
5X Reaction Buffer, 4 µL of MgCl2 (25 mM), 1 µL of
PCR Nucleotide Mix, 1 µL of GoScript Reverse Transcriptase
and 4 µL of Nuclease-Free Water. The PCR procedure
was continued following the manufacturer’s instructions. For
fecal bacterial gDNA extraction 50 mg of fecal sample were
suspended in 720 µL of lysis buffer solution (320 µL of
PBS + 400 µL of CLD) in a screw cap micro-tube (Sarstedt,
Germany) together with 0.3 g of 0.1 mm zirconium/silica
beads (Biospec, United States), followed by disruption in a
mini-beadbeater-16 (Biospec, United States) for 2 min and
centrifuged at 14,000 × g for 3 min at room temperature. The
supernatant was thoroughly mixed with 250 µL of Binding
Buffer (BBA) and placed on a binding column. For the further
cleaning and eluting process the manufacturer’s instructions were
followed.

Gut Microbiota Analysis Using 454 GS
FLX and Bioinformatics Analysis
Gut microbial metagenome analysis was performed with
the Roche 454 GS FLX plus system (AtoGen, Daejeon,
South Korea) using genomic DNA (gDNA) and cDNA templates
produced from reverse transcription of ribosomal RNA of the
microbiota. Briefly, forward and reverse primers were designed
based on V1–V3 variable region of the 16S rDNA sequence
(forward, 8f: 5′-AGAGTTTGATCMTGGCTCAG-3′; reverse
518r: 5′-ATTACCGCGGCTGCTGG-3′) and tagged with10 bp
unique barcode labels (Supplementary Table S2).

Flow pattern B raw data from the 454 GS FLX plus
system (Roche, Switzerland) was denoised and filtered using
FlowClus (Gaspar and Thomas, 2015) and further analyzed using
the MacQIIME (Caporaso et al., 2010) 1.8.0 pipeline. Briefly,
chimeras were eliminated using Usearch 6.1 and sequences
were clustered into operational taxonomic units (OTU) at 99%
sequence similarity, and taxonomically assigned using the RDP
database. A total of 276 199 raw reads were produced comprising
an average of 15 344 reads per sample and an average read length
of 456 nucleotides per sample. 209 859 of the reads were selected
after excluding sequencing noise and possible chimeras, yielding
10 878 useable reads per sample on average (Supplementary
Figure S2).

Composition and intra-/inter- community diversity (alpha
and beta diversity) of taxonomically assigned microbiota were
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FIGURE 1 | Impact on body and organ weight by HFD and LGG in a DIO murine model, showing (A) weekly weight changes and total weight gain. (B) EAT, liver and
feed consumption. (C) Small intestine, colon and spleen weight. Significance level was calculated using ANOVA and Bonferroni’s multiple comparisons test. Results
are illustrated as ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

interpreted using two-dimensional (2D) and three-dimensional
(3D) weighted principal coordinates analysis (PCoA) and 2D
weighted pair group method averaging (WPGMA; the WPGMA
dendrogram is presented in Figure 4C). Distance matrix was
also performed to understand the degree of gut microbiota
differences. Post analysis including alpha, beta diversity and
taxonomic assignment of microbiota was conducted using a
Qiime pipeline (Caporaso et al., 2010). Metagenome information
is deposited in the Sequence Read Archive of the NCBI under
accession number of PRJNA342544.

Short Chain Fatty Acid Analysis
Short chain fatty acids (SCFA) analysis was performed according
to the method of Schwiertz et al. (2010). Briefly, 50 mg of deep-
frozen caecum was mixed with 500 µL of extraction solution
(comprising 100 mmol oxalic acid /l and 40 mmol sodium
azide /l), incubated on a horizontal shaker for an hour at room
temperature, and centrifuged at 16 000 × g for 10 min. The
supernatant was filtered through a 0.45 µm Minisart RC 4
syringe filter (Sartorius Stedim Biotech, Germany), transferred to
a Clear gas chromatography vial (Shimadzu, United States) and
tightly sealed using a Ribbed blue screw vial cap with bonded

silicone (Shimadzu, United States) until analysis. A GC-2010
(Shimadzu, Japan) and HP-Innowax 30 m× 0.32 mm× 0.25 µm
column (Agilent, United States) were used for detection; N2
gas served as carrier gas. 1 µL of each sample was injected
by Shimadzu Auto-sampler AOC-20is (Shimadzu, Japan) at
260◦C and detected by a flame ionized detector (FID). The
column temperature was increased from 100◦C up to 180◦C
at a rate of 25◦C/min. A volatile free acid standard mix
(Supelco, United States) was used as analytical standard of
C2 through C5.

Statistical Analysis
All the graphs are presented as mean value and standard error
(SD). GraphPad Prism 6.0 (GraphPad Software, United States)
was used for non-parametric one-way and two-way analysis of
variance (ANOVA) and post hoc multiple comparisons were
followed using Bonferroni’s multiple comparison test. IBM SPSS
statistics version 20 (IBM, United States) was used to calculate the
Pearson correlation coefficient and the accepted significance level
of correlation curves. All the significance was accepted at P < 0.05
and indicated as various symbols as ∗, $, and # (<0.05 = one
symbol; <0.01 = two symbols and <0.001 = three symbols).
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FIGURE 2 | Pictures of micro-CT of each group. Fat mass was measured between lumbar numbers 1–6; visceral adipose tissue (VAT) and subcutaneous adipose
tissue (SAT) were visualized and measured in different colors. Fat mass was first calculated in volume (mm3) to indicate its percentage out of total body volume using
Inveon software.

RESULTS

Physiological Impact
Administration of a HFD for 10 weeks induced a significantly
higher weight gain compared to the LFD control group
(Figure 1A), and was associated with a significantly lower
calorie uptake in this group (Figure 1B). Compared to the
HFD PBS-treated group, weight gain was significantly lower in

the probiotic LGG treatment group (HFD+LGG) (Figure 1A)
while a minor reduction in calorie uptake was detected in
the HFD+LGG group. Both the liver and epididymal adipose
tissue (EAT) weight was significantly lower in the LFD group,
while only the EAT weight was significantly reduced in the
HFD+LGG group (Figure 1B). Both total body fat as well as
subcutaneous adipose tissue (SAT) and visceral adipose tissue
(VAT) were non-significantly reduced between lumbar one and
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FIGURE 3 | (A) Serum IL-12p70, leptin and adiponectin were measured using the ELISA method. (B) mRNA expression level of fatty acid synthase (FAS), sterol
regulatory element-binding protein 1c (SREBP1c) and carnitine palmitoyltransferase 1 (CPT1) were measured from epididymal adipose tissue (EAT). (C) Short chain
fatty acids from fecal samples of each group were measured by gas chromatography. Significance level was calculated by using ANOVA and Bonferroni’s multiple
comparisons test; results are illustrated as ∗p < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

six of three representative mice from each group (Figure 2).
A significant decrease in weight of the small intestine was
measured in the HFD+LGG group while the weight of the colon

was significantly increased in the LFD group. The spleen weight
of LFD animals was slightly lower than that of the HFD+LGG
group but significantly lower than that of the HFD group
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FIGURE 4 | Alpha- and beta-diversity of fecal microbiota in a murine DIO model. (A) Weighted principal coordinates analysis and value of each principal component
dimensions; (B) weighted pair group method with averaging and calculated branch length of samples within each group. Significance level was calculated using
ANOVA and Bonferroni’s multiple comparisons test; ∗ shows significant difference between DNA and RNA analysis, $ shows significant difference of LFD and
HFD+LGG compared to HFD according to DNA analysis, and # shows significant difference of LFD and HFD+LGG compared to HFD according to RNA analysis.
The level of significance is expressed by the number of symbols (one = <0.05, two = <0.01, three = <0.001).

(Figure 1C). Serum immune-metabolic biomarkers such as
IL-12p70 and leptin were significantly reduced in the HFD+LGG
group compared to the HFD group, while adiponectin was
noticeably higher in the HFD+LGG group compared to the HFD
group (Figure 3A). Sterol regulatory element-binding protein 1c
(SREBP1c) was significantly down-regulated in the HFD+LGG
group relative to the HFD group while lipid oxidation associated
carnityl palmitoyltransferase 1 (CPT1) gene expression was only
significantly up-regulated in the LFD group compared to the
HFD group (Figure 3B). Among the SCFAs, significantly lower
acetate and higher butyrate values were detected in fecal samples

of the LFD group relative to the HFD and HFD+LGG groups
(Figure 3C).

Alpha and Beta Diversity of the Murine
Microbiota
PD whole-tree rarefaction analysis showed lower alpha diversity
in both gDNA and rRNA analyses when LFD was applied
as compared to the HFD group (Supplementary Figure S3).
Beta diversity of weighted principal coordinates analysis (PCoA)
indicated a major impact of the different diets (LFD and
HFD) on the associated microbiota (Figure 4A). PC1 of PCoA
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FIGURE 5 | Fecal microbiota of LFD, HFD, and HFD+LGG groups. Black colored circle, rectangle, and triangle illustrate results of DNA analysis while empty symbols
illustrate results of RNA analysis. (A) Firmicutes, Bacteroidetes, and Firmicutes over Bacteroidetes ratio (F/B); (B) major sub-groups of Firmicutes; (C) major
sub-groups of Bacteroidetes. Significance level was calculated using ANOVA and Bonferroni’s multiple comparisons test and ∗ shows significant difference between
DNA and RNA analysis, $ shows significant difference of LFD and HFD+LGG compared to HFD according to DNA analysis and # shows significant difference of LFD
and HFD+LGG compared to HFD according to RNA analysis. The level of significance is expressed by the number of symbols (one = <0.05, two = <0.01,
three = <0.001).

significantly reflected microbiota differences under different diets
regardless of whole community (DNA) or active community
(RNA) analysis. On the other hand, PC2 showed a strong
difference between DNA and RNA analysis in the LFD group,
implying that the active microbial community under LFD
feeding can be interpreted differently from a whole community
structure of the microbiome. With regard to PC3 of PCoA,
significantly different DNA and RNA results were obtained
in the HFD and HFD+LGG groups, suggesting differences
in the impact of feeding regimes on microbial groups (PC2
vs. PC3). Significantly shorter branch lengths were measured
in the RNA analysis of the HFD and HFD+LGG groups
(Figure 4B).

Taxonomic Summary of Microbiota
Fourteen major groups were identified at genus level, excluding
minor groups representing <1% of the total microbiota. The
Firmicutes and Bacteroidetes and their sub-groups comprised
the major components of the microbiota. Bar graph based

taxonomic summaries at phylum, class, family, and genus levels
(Supplementary Figure S4) show major differences between
LFD and HFD for Firmicutes and Bacteroidetes, depending on
whether DNA or RNA analysis of microbiota has been applied.
DNA analysis revealed a lower Firmicutes level in the LFD
group compared to the HFD group while, by contrast, RNA
analysis resulted in significantly higher Firmicutes levels mostly
associated with OTU numbers of Clostridiales, Lachnospiraceae,
and Allobaculum (Supplementary Figure S4). Based on DNA
analysis Bacteroidetes levels were higher in the LFD group
compared to the HFD group but significantly lower according
to RNA analysis, resulting in a contradictory outcome for the
Firmicutes: Bacteroidetes ratio (F/B) (Figure 5A). Allobaculum,
Oscillospira, and Ruminococcus were found to be the major
genera in the Firmicutes, with RNA analysis showing significantly
higher Allobaculum and significantly lower Ruminococcus levels
in the LFD group. Both DNA and RNA analyses showed
significantly lower levels for Oscillospira in the LFD group
while only RNA analysis could reveal a significant reduction
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FIGURE 6 | Ratio of rRNA/gDNA abundance in the microbiome of LFD, HFD,
and HFD+LGG groups. Significance level was calculated by using ANOVA and
Bonferroni’s multiple comparisons test; results are illustrated as ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001.

of Oscillospira in the HFD+LGG group; this may be attributed
to the significantly higher abundance of OTUs accounted for
by RNA analysis (Figure 5B). Bacteroides, Rikenellaceae, and
Prevotellaceae represented the major groups under the phylum
Bacteroidetes. Both Bacteroides and Prevotellaceae showed
significantly lower abundance of OTUs by RNA analysis as
compared to DNA analysis in the LFD group. Significantly
higher levels of Bacteroides and Rikenellaceae were detected in
the HFD group compared to the LFD group, but only DNA
analysis showed significantly higher abundance of Prevotellaceae
in the LFD group (Figure 5C). The level of Lactobacillales was
noticeably higher in the HFD+LGG group as compared to the
HFD group, while the Lachnospiraceae and Desulfovibrionaceae
were not significantly modulated (Supplementary Figure S3).

Active and Whole Community of
Microbiota
The ratio of active and whole community microbiota was
calculated among major groups and the LFD group was
significantly correlated with a reduced ratio of Bacteroides
species and an increase in Allobaculum species compared
to the HFD group (Figure 6). The HFD+LGG group was
associated with a reduced Clostridiales population compared
to the HFD group. Correlation curves in Figures 7A–C show
a significant relationship between weight gain (X-axis) and
the genera Allobaculum, Bacteroides, and Oscillospira (Y-axis).
R2 results and p-values obtained with the Pearson correlation
coefficient indicate Allobaculum to be negatively and Oscillospira
positively correlated with weight gain, implying a differential
influence of diet on sub-groups within the Firmicutes and/or
respective differences in the influence of such groups on the
host physiological status. However, while DNA based data for
Bacteroides suggest a non-significant correlation with weight
gain, the RNA based data show a significantly positive correlation
with weight gain (Figure 7B).

DISCUSSION

Microbiota plays an essential role in host energy metabolism
and it constitutes a complex ecosystem averaging 70 different
bacterial divisions that colonize the gut of an adult (Gérard,
2016). However, the specific number and activities of these
microbes vary with regard to environmental factors; in fact, the
metabolic status of these microbial groups may range from active
to dormant, this being crucial in understanding and explaining
the role of gut microbiota (Blazewicz et al., 2013). Our study
compared the microbiome of high fat diet induced obese mice
with or without probiotics using microbial rRNA and gDNA in
order to gain a deeper understanding of those microbiota that
are actively associated with a high fat diet and modulated by
probiotic treatment. Ribosomal RNA comprises more than 80%
of the total RNA with the overall amount of RNA correlating
with growth and activity of microbes (Neidhardt and Magasanik,
1960; Kramer and Singleton, 1992; Tolker-Nielsen et al., 1997;
Ramos et al., 2000). This basic principle was widely applied in
various studies to define the existence of active microbiota in
an environment (Wüst et al., 2011; Hunt et al., 2013; Männistö
et al., 2013). Based on these considerations, we have designed
our experiments to reveal specific information on metabolically
active groups of the gut microbiome in a diet induced obesity
(DIO) murine model and under application of the widely studied
probiotic LGG.

The impact of GIT microbiota on host energy metabolism
has been widely studied in recent years. However, a key,
albeit a controversial issue, is to define core microbial
assemblages associated with host weight gain and adipose tissue
accumulation. This is underpinned by the rapid increase in
body fat mass of germ-free mice colonized with gut microbiota
from conventionally housed mice, in spite of decreased food
consumption (Bäckhed et al., 2004). Even more interestingly,
a greater weight increase in germ-free mice after colonization
with microbiota from obese mice as compared to experimental
animals colonized with microbiota from lean mice has also
been reported (Turnbaugh et al., 2006). It appears indisputable
that host gut microbiota exercise leverage over energy efficiency
and adipose tissue accumulation, as has also been supported by
gnotobiotic mice studies (Cani et al., 2008; Delzenne et al., 2011;
Greiner and Bäckhed, 2011).

Recently, specific bacterial genera such as Akkermansia (Shin
et al., 2014) and Faecalibacterium (Miquel et al., 2015) were
reported as microbial groups important to host health, with
e.g., Akkermansia muciniphila numbers found to be inversely
correlated with inflammatory conditions and metabolic disorders
in mice (Schneeberger et al., 2015). Based on findings showing
Bacteroidetes not to be correlated with host weight gain,
Ley et al. (2005) first proposed a possible correlation of the
Firmicutes: Bacteroidetes ratio with propensity of host obesity.
Yet, conflicting reports are increasingly pointing toward the role
of the Bacteroidetes phylum, or its sub-groups, in influencing
host energy efficiency (Larsen et al., 2010; Semova et al., 2012).
DNA analysis in our study showed that the Bacteroidetes (in
particular Bacteroides spp.) in the GIT was not correlated with
host weight gain under a high fat diet (HFD) while, in contrast,
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FIGURE 7 | Correlation between microbiota and weight gain. Correlation graph and R square (R2), standard error (SE) and Pearson correlation coefficient p-value
(Pv) were derived based on weight gain. (A) Allobaculum, (B) Bacteroidetes, and (C) Oscillospira. Red: LFD; orange: HFD; black: HFD+LGG.

a significantly positive correlation was found based on metabolic
activity (RNA based data) of this phylum when compared with
a low fat diet (LFD). The Firmicutes represents a vastly diverse
phylum, comprising the three different classes Bacilli, Clostridia,
and Erysipelotrichia (apart from the cell-wall-less Mollicutes).
Our data show opposite roles for Clostridia (Oscillospira
spp.) and Erysipelotrichia (Allobaculum spp.) associated with
host weight. Erysipelotrichaceae and Allobaculum appear to
represent the key family and genus, respectively, of the class
Erysipelotrichia of relevance to host metabolic disorders. This
issue is extensively discussed in various articles including a review
article by Kaakoush (2015), who also refers to conflicting reports
resulting in contradictions in the definition of the role of the
Erysipelotrichia in host metabolic disorders. Briefly, Turnbaugh
et al. (2008) and Zhang et al. (2009) reported increasing numbers

of Erysipelotrichaceae in diet induced obese mice and in obese
individuals, while Ravussin et al. (2012) and Everard et al.
(2014) found Allobaculum to be negatively correlated with
DIO. Our study suggests a negative correlation of Allobaculum
activity with DIO, but not when considering the data obtained
by whole community analysis. The Clostridia class comprising
Ruminococcus and Oscillospira is closely associated with host
energy efficiency and digestibility of carbohydrates (Tims et al.,
2013; Salonen et al., 2014). In our study, RNA analysis showed a
reduction of Oscillospira to be correlated with the lower weight
of the HFD+LGG group. It is therefore hypothesized that an
indirect reduction of host energy efficiency by LGG may result
in a reduced metabolic activity of Oscillospira in the gut. Thus,
the impact of LGG on calorie consumption apparently affects
weight and gut microbiota. LGG is one of the most widely studied
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probiotics for its functionality, especially with regard to metabolic
syndrome (Vajro et al., 2011; Ji et al., 2012; Bull-Otterson et al.,
2013; Kim et al., 2013; Lahti et al., 2013; Canani et al., 2016).
Kim et al. (2013), for example, reported that LGG improved
insulin sensitivity and reduced adiposity in a DIO mice model,
together with a significant reduction of SREBP1c in mesenteric
adipose tissue as a key biomarker of anti-obesity effects. However,
microbiome modulatory effects of LGG have only been rarely
reported, and, as far as we know, no study has defined modulation
of the active microbiota after LGG treatment.

Administration of probiotics is considered as a promising
approach to modulate host microbiota in a beneficial way (Steer
et al., 2000; Jia et al., 2008). Anti-obesity effects of probiotics
have been reported in animal models (Ji et al., 2012; Park et al.,
2013; Wang et al., 2015; Alard et al., 2016) and in clinical
trials (Woodard et al., 2009; Kadooka et al., 2010; Kondo et al.,
2010). Kadooka et al. (2010) investigated the anti-obesity effect
of the probiotic strain L. gasseri SBT2055 by conducting a
double-blind, randomized, placebo-controlled intervention trial
with 87 overweight and obese subjects for 12 weeks. The data
confirmed that abdominal visceral and subcutaneous fat, weight,
BMI, waist and hip measurements were significantly reduced
in the group consuming the probiotic. Larsen et al. (2013)
reported fecal microbiota not to be significantly altered in obese
adolescent groups after administration of the anti-inflammatory
strain L. salivarius Ls-33, an observation confirmed in an HFD
mouse model (Alard et al., 2016).

We compared metagenome results, respectively, obtained
with gDNA and rRNA based analysis. Some of the major groups
such as Bacteroides spp., Oscillospira spp., and Ruminococcus
spp. were identified as metabolically active microorganisms and
are probably responsible for the DIO status of the murine
model. Hiergeist et al. (2015) have underlined the key role of
the microbiome composition in developmental processes, in
host metabolism and physiology, and in different diseases. They
have emphasized the importance of experimental protocols and
bioinformatics analysis that may have a major impact on the
outcome and final interpretation of results. Our data suggest
metabolically active Bacteroides to be positively correlated with
weight gain.

Characterisation of microbial populations by rRNA data may
provide deeper insight in complex ecosystem-related microbial
interactions. Yet, extensive experimental data are required to
correlate rRNA data both to growth related and non-growth
metabolic activities (Blazewicz et al., 2013). This may particularly
be applicable to the gut microbial ecosystem and its diverse
compartments.
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