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As the population of most nations have a large proportion of older individuals, there is an
increase in the prevalence of osteoporosis. Consequently, scientists have focused their
attention on the pathogenic mechanisms of osteoporosis. Owing to an increase in studies
on cellular senescence in recent years, research has begun to focus on the function of the
senescent microenvironment in osteoporosis. With chronic inflammation, senescent cells
in the bone marrow secrete a series of factors known as senescence-associated secretory
phenotype (SASP) factors, acting on their own or surrounding healthy cells and
consequently exacerbating ageing.The components of the SASP may differ depending
on the cause of osteoporosis. This review aimed to summarize the relationship between
SASP factors and osteoporosis and suggest new insights into the mechanistic
investigation of osteoporosis.
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INTRODUCTION

Osteoporosis is a systemic skeletal condition characterized by decreased bone mass and degeneration
of the bone tissue microstructure. Osteoporosis-related fractures are becoming more prevalent in the
elderly and result in a series of problems and a higher mortality risk. There is a strong association
between ageing and osteoporosis (Li et al., 2021). New approaches to osteoporosis treatment have
resulted from research on the fundamental mechanisms of bone resorption and production
(Compston et al., 2019). Cellular senescence was first proposed by Hayflick and Moorhead
(1961) (Hayflick and Moorhead 1961) and is described by cell cycle arrest. Cellular senescence
occurs when cells lose the ability to proliferate and differentiate over time or in response to external
stresses (Lopez-Otin et al., 2013). Cell death due to senescence and growth of new cells in living
organisms are in a dynamic balance (Perez-Figueroa et al., 2021). The connection between cellular
senescence and chronic disease is associated with a variety of chronic diseases such as atherosclerosis,
diabetes, and osteoporosis (Stojanovic et al., 2020; Crespo-Garcia et al., 2021; Deng et al., 2021)). The
concept of the senescence-associated secretory phenotype (SASP) was first introduced by Jean-
Philippe Copper in 2008 for research on human malignancies. This research demonstrated that
senescent cells can promote precancerous cells to become cancerous by secreting some substances
(Coppe et al., 2008). These substances were defined as SASP factors (Coppe et al., 2008). In recent
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years, the role of SASP factors in the disease microenvironment
has been emphasized in the study of tumors and chronic
inflammatory diseases (Acosta et al., 2013). SASP has
detrimental paracrine and systemic effects in chronic
inflammation, including the induction of senescence in healthy
cells (Coppe et al., 2008). By contrast, recent research has
demonstrated that senescent human dermal fibroblasts
accelerate the healing of keratinocyte scratches and stimulate
fibroblast differentiation (Hou and Kim 2018). The SASP factors
can also recruit and activate immune cells during tumour
development (Acosta et al., 2013).

SENESCENCE-ASSOCIATED SECRETORY
PHENOTYPE FUNCTIONAL
CLASSIFICATION
The SASP affects cellular interactions in vivo and is inextricably
linked to cellular senescence, ageing, and age-related diseases
(Hubackova et al., 2012; Zhao et al., 2021). The SASP factors can
activate the body’s immune system (Jin et al., 2021). This
activation may promote the repair of damaged tissues or
contribute to a chronic inflammatory response (Jin et al.,
2021). Chronic inflammation is associated with many age-
related diseases, such as cardiovascular diseases (Ritschka
et al., 2017; Ferrucci and Fabbri 2018). The composition of
SASP depends on the cell type and the nature of the initial
stimulus (Di Micco et al., 2021). Although the core components
remain similar, there are differences in the quality and
quantity of the SASP in different tissues and ageing models

(Aquino-Martinez et al., 2020; Di Micco et al., 2021). The
SASP is composed of a series of proinflammatory factors,
chemokines, growth factors and proteases, which is produced
by stimulation of multiple factors in vivo and ex vivo when cells
become senescent (Ortiz-Montero et al., 2017; Wang et al., 2019;
Basisty et al., 2020; Kawagoe et al., 2020). These in vivo and ex
vivo factors include tumour necrosis factor-α(TNF-α),
interleukin (IL)-6, IL-1, IL-8, matrix metalloproteinase
(MMP), granulocyte colony-stimulating factor (G-CSF) and
plasminogen activator inhibitor-1 (PAI-1) (Coppe et al., 2008;
Lim et al., 2015; Maciel-Baron et al., 2016; Oubaha et al., 2016;
Ruscetti et al., 2018; You et al., 2019) (Table 1). Depending on the
type and function of the SASP components, they can be divided
into the following categories: Table 1

THE BIOLOGICAL ROLE OF
SENESCENCE-ASSOCIATED SECRETORY
PHENOTYPE
The SASP can have both positive and negative effects on an
organism (Ritschka et al., 2017). Cellular senescence and the
SASP can repair cells, restore tissue integrity, and promote wound
healing (Demaria et al., 2014). It has also been shown that cellular
senescence inhibits tumor growth by inhibiting cell proliferation
and differentiation (Acosta et al., 2008). However, senescent cells
do not lose their ability to interact with other cells and can secrete
factors that activate the immune system (Mosteiro et al., 2016).
Senescent cells can recruit large numbers of immune cells such as
macrophages and natural killer cells to remove senescent cells

TABLE 1 | Classification and functional list of senescence-associated secretory phenotype.

Classification Name Function References

Interleukin IL-1α Inhibit B lymphocyte formation Behnia et al. (2015); Wiley et al. (2016)
IL-1β Promote inflammation and induce stem cell senescence Behnia et al. (2015); Ortiz-Montero et al. (2017); Martini et al. (2019)
IL-6 Associated with tumor cell invasion Orjalo et al. (2009); Behnia et al. (2015)
IL-7 Regulate B lymphocyte production and maintain BMSC

function
Stephan et al. (1998); Hou et al. (2019)

IL-15 Activate natural killer cells and remove senescent cells Hou et al. (2019); Schafer et al. (2020)

Chemokines CCL27 Reduces immune cell function Andriani et al. (2016); Degos et al. (2019)
IL-8 Increased tumor cell invasion Orjalo et al. (2009); Behnia et al. (2015)
MIP-3a Recruitment of inflammatory cells Matsui et al. (2001); Behnia et al. (2015)
GRO Promote tumorigenesis Yang et al. (2006); Hou et al. (2019)
ENA-78 Regulates angiogenic activity Keane et al. (2001); Behnia et al. (2015)

Growth Factor AREG Maintain immune cell function Hou et al. (2019); Xu et al. (2019)
EGF Regulating cell proliferation Salehinejad et al. (2013); Behnia et al. (2015)
VEGF Regulate angiogenesis Freudenberg et al. (2015); Marazita et al. (2016); Hou et al. (2019)
HGF Maintenance stem cell characteristics Cao et al. (2020); Rohn et al. (2020)
IGFBP-4 Accelerated cell senescence Hou et al. (2019); Alessio et al. (2020)
IGFBP-6 Retards cell senescence Hou et al. (2019); Xu et al. (2021)
IGFBP-7 Accelerated cell senescence Severino et al. (2013)

Matrix
Metalloprotein-ase

MMP-1 Accelerated osteogenic differentiation of BMSC Behnia et al. (2015); Wu et al. (2020)
MMP-3 Degradation of extracellular matrix Behnia et al. (2015); Niwa et al. (2020)
MMP-9 Degradation of extracellular matrix Behnia et al. (2015); Hilliard et al. (2020)
MMP-13 Regulates tumor angiogenesis Li et al. (2017); Bao and Hu (2018); Gao et al. (2018)
TIMP-1 Inhibit extracellular matrix degradation Yokose et al. (2012); Behnia et al. (2015)
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(Mosteiro et al., 2016). Simultaneously, senescent cells can release
cytokines that transmit senescence signals to surrounding cells to
inhibit the proliferation of senescent cells (Hubackova et al.,
2012). SASP factor release occurs due to the DNA damage
response triggered by external stimuli (Slawinska and Krupa
2021). Recently, research has focused on the role of SASP in
chronic degenerative diseases, such as neurodegenerative lesions,
osteoarthritis, and osteoporosis (Faust et al., 2020; Sharma et al.,
2020; Gaikwad et al., 2021).

THE ROLE OF SENESCENCE-ASSOCIATED
SECRETORY PHENOTYPE IN BONE LOSS
Senescence-Associated Secretory
Phenotype in the Bone Marrow Cavity
In the field of age-related osteoporosis research, the study of SASP
in the bone marrow senescent microenvironment is still in its
early stages. The presence of senescent cells and their release of
SASP factors were demonstrated in an age-related osteoporosis
mouse model (Farr et al., 2016). This study extracted cells from
the marrow cavities of young and old mice and demonstrated that
several SASP factor mRNA levels were increased in osteoblasts
(e.g., Mmp12, Mmp3, etc.). Given that osteocytes are key factors
in bone remodeling, the role of senescent osteocytes and their
production of SASP factors may help explain the pathogenesis of
age-related bone loss (Farr et al., 2016). Evidence suggests that
age-related bone loss can be attenuated by eliminating senescent
cells from the bone marrow microenvironment in vivo. In vitro
experiments have shown that conditioned media produced by
senescent cells suppress osteoblast mineralization and that this
process can be alleviated by JAK inhibitors (Figure 1A). These
experiments suggest that cellular senescence and the release of
SASP factors may play key roles in age-related osteoporosis (Farr
et al., 2017) (Figure 1B). Radiation-induced bone loss has
received increasing attention in recent years and some scholars
have investigated specific cells that are associated with the
pathways involved. Evidence suggests that radiation causes
bone marrow mesenchymal stem cells (BMSCs) to senesce and
activates the januskinase 1/signal transducer and activator of
transcription 3 pathway in these cells, which, in turn, secrete
SASP factors. The conditioned medium of senescent BMSCs was
shown to have a negative effect on osteogenic differentiation. By
contrast, the addition of a JAK1 inhibitor to the medium of
senescent BMSCs can decrease the senescent cell secretion of
negative SASP factors and slow down the adverse effects on
osteoblast osteogenic differentiation (Bai et al., 2020). Radiation
may also lead to the release of SASP factors from ageing
osteoblasts and act on BMSCs to interfere with their
osteogenic differentiation. The osteogenic differentiation
potential of BMSCs is affected by the release of SASP factors
through the paracrine pathway when ageing murine long bone
osteocyte Y4 (MLO-Y4) cells are induced by radiation (Xu et al.,
2021) (Figure 1C). However, treatment of ageing MLO-Y4 cells
with a JAK1 pathway inhibitor blocks the secretion of SASP
factors and partially alleviates the inhibition of osteogenic
differentiation of BMSCs (Xu et al., 2021). Radiation can also

cause the ageing of osteoblasts and BMSCs and lead to the
secretion of SASP factors. These SASP factors can then affect
osteoblast and BMSC osteogenic differentiation. The effect of the
toxic heavy metal cadmium on BMSCs has recently been
investigated. Cadmium induced senescence in BMSCs by
upregulating the NF-κB signalling pathway, and these cells
subsequently released SASP factors. It was also demonstrated
that cadmium exposure delayed bone repair and regeneration
after cranial defect surgery. This research elucidates the role and
mechanism of cadmium in osteoporosis, and it could lead to a
new treatment option for cadmium-related bone loss. (Luo et al.,
2021). Studies have also demonstrated an association between
obesity, ageing, and abnormal skeletal development in offspring.
During early maternal pregnancy, maternal obesity can lead to
abnormal foetal and postnatal skeletal development. High fat
diet-induced maternal obesity reduced foetal skeletal
development and enhanced foetal osteoblast senescence
signaling. In the bone progenitors of the offspring of pregnant
obese, senescent bone progenitors released SASP factors This may
be explained by the epigenetic regulation (via histone acetylation)
of the genes involved in senescence signalling in developing foetal
osteoblasts (Chen et al., 2018).

Senescence-Associated Secretory
Phenotype in Periodontal Tissue
Periodontitis is characterized by chronic inflammation of
periodontal supporting tissues and can lead to bone loss in the
teeth when inflammation occurs in the alveolar bone and jaws. In
a model of hyperglycaemia-induced periodontitis, bone loss has
been shown to be associated with ageing. A transgenic diabetic
model has demonstrated that periodontal senescence in young
diabetic mice is accompanied by the accumulation of senescent
macrophages and enhanced early macrophage SASP responses.
GLUT1 sensors are important for hyperglycaemia-induced
macrophage senescence and SASP responses. Hyperglycaemia-
induced macrophage senescence releases SASP factors into other
tissues in the periodontium to induce immune responses. This
may highlight a potential molecular mechanism of bone loss in
diabetic periodontitis (Wang et al., 2021). Periodontitis can also
occur due to a progressive change from commensal to pathogenic
oral flora. Bacterial-derived lipopolysaccharide (LPS) induces the
accumulation of senescent osteoblasts in the alveolar bone of
young mice and leads to upregulation of genes (Icam1, Il6, Il17,
Mmp13, and Tnfα) involved in SASP. The secretion of SASP
factors promotes the proliferation of certain oral bacteria, which,
in turn, produce more LPS (Aquino-Martinez et al., 2020). This
exacerbates the senescence of alveolar bone cells and may lead to
alveolar bone loss (Aquino-Martinez et al., 2020). In age-related
alveolar bone loss, the accumulation of senescent bone cells
contributes to the deterioration of the periodontal
environment by exacerbating chronic inflammation and
reducing the regeneration of older bone cells. Moreover,
cellular senescence can enhance the inflammation induced by
bacterial components. In osteoblasts, IL6, IL17, IGFBP4, and
MMP13 levels are significantly higher with age. In vitro
senescence-conditioned mediates enhanced LPS-induced
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FIGURE 1 | When cells are senescence induced by external stimulation, SASP can be released to aggravate their own senescence or induce the senescence of
surrounding normal cells. For (A), under the influence of radiation, BMSCs become senescent, causing activation of the JAK1/STAT3 pathway and release of SASP (e.g.,
IL-6, IL-8, MMP9) to reduce the osteogenic differentiation ability of osteoblasts. (B)When MLO-Y4 cells were irradiated, MLO-Y4 was induced to senesce, which in turn
released SASP (e.g,. IL-1α, IL-6, MMP-3, IGFBP-6, etc.) thus affecting the normal growth of BMSC and reducing their osteogenic differentiation ability and
adipogenic differentiation ability. In (C), human adipose MSCs were induced to undergo senescence by radiation, and the released SASP could inhibit MC3T3
osteogenic differentiation, and the process could be alleviated by JAK inhibitors. (D–F), LPS acting on osteoblasts induced senescence and thus inhibited osteogenic
differentiation of osteoblasts; when LPS and SCM (senescence conditioned medium) were combined to act on osteoblasts, the osteogenic differentiation and migration
ability of osteoblasts were greatly reduced, and this process could be alleviated by P38-MAPK inhibitor. Abbreviations: SCM, senescence-conditioned mediators, LPS,
Lipopolysaccharide.
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expression of IL1α, IL1β, and IL6 in osteoblasts. This, in turn,
affects cell migration and osteogenic differentiation These in vitro
effects were partially ameliorated by the p38 mitogen-activated
protein kinase (MAPK) inhibitor (Aquino-Martinez et al., 2021)
(Figure 1D–F). Melatonin protects osteoblasts from ethanol-
induced cellular senescence in human alveolar bone and inhibits
osteoclast differentiation. Melatonin blocks the ethanol-induced
activation of mammalian target of rapamycin, AMP-activated
protein kinase, MAPK, and nuclear factor of activated T cells c-
1 pathways. This downregulated the expression of SASP-related
genes (including Il1β, Il6, Il8, and Tnf) and possibly the secretion of
SASP factors, thereby maintaining homeostasis (Bae et al., 2018).
This reversed the osteogenic differentiation of the suppressed cells.

Taken together, these studies suggest that cellular senescence
and the release of SASP markers by various factors may be key
mechanisms leading to senescence-associated bone loss.
Therefore, it is important to define the SASP at the proteomic
level in senescent cells and to develop ways to slow down the
progression of osteoporosis.

DISCUSSION

In the ageing milieu of the bone marrow cavity, SASP is primarily
generated by BMSCs and osteoblasts, with senescent cells
secreting the majority of SASP factors in the setting of chronic
inflammation. Furthermore, SASP that is released from senescent
BMSCs and osteoblasts has an extremely inhibitory effect on bone
formation. Cells in the bone marrow cavity include BMSCs,
osteoblasts and vascular endothelial cells, etc. However, the
relationship between SASP that is released from senescent

vascular endothelial cells in the bone marrow lumen and bone
loss has been less frequently reported. The link between SASP and
vascular endothelial cell senescence is extremely strong in other
diseases associated with vascular senescence (Prattichizzo et al.,
2016). This suggests that senescent vascular endothelial cells may
play an important role in senescence-associated osteoporosis.
Overall, researchers are now increasingly interested in the role of
SASP in osteoporosis, but most studies have concluded that SASP
has an inhibitory effect on bone mass formation. Does SASP
contribute to bone mass formation under certain conditions? We
don’t know, and perhaps subsequent studies will change our
current view of SASP. This review also establishes a framework
for future work that can investigate the role of SASP in the bone
marrow microenvironment.
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