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Genetic studies of human diseases have identified multiple genetic risk loci for various
fibrotic diseases. This has provided insights into the myriad of biological pathways
potentially involved in disease pathogenesis. These discoveries suggest that alterations
in immune responses, barrier function, metabolism and telomerase activity may be
implicated in the genetic risks for fibrotic diseases. In addition to genetic disease-risks, the
identification of genetic disease-modifiers associated with disease complications, severity
or prognosis provides crucial insights into the biological processes implicated in disease
progression. Understanding the biological processes driving disease progression may be
critical to delineate more effective strategies for therapeutic interventions. This review
provides an overview of current knowledge and gaps regarding genetic disease-risks and
genetic disease-modifiers in human fibrotic diseases.
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INTRODUCTION
Fibrosis arises as the result of excessive connective tissue and
extracellular matrix deposition. It emerges from an aberrant or
uncontrolled repair response often triggered by tissue damage
that may be initiated by radiation, mechanical injury or infections
and results in scar formation. In the context of auto-immunity,
with sustained immune activation, the injury and repair phases
persist and lead to scar tissue formation that disrupts organ archi-
tecture and function with a frequently fatal outcome (Figure 1).

In the last decade, the scientific community has successfully
collaborated through consortia to unravel the genetic basis of sus-
ceptibility for many diseases. Genome-Wide Association Studies
(GWAS) have identified numerous genetic polymorphisms that
confer higher risk for diseases and have provided insights into
the biological processes that contribute to disease susceptibility.
One key finding is the substantial overlap of genetic loci associ-
ated with disease risk across a variety of complex immune diseases
(Cotsapas and Hafler, 2013). This highlights the complexity of
the etiology of clinical phenotypes that have an immune basis
but are also largely influenced by environmental factors and can
affect different target organs. Although the target organs may
be different, a common complication of these diverse immune-
mediated diseases is the abundance of fibrotic processes and scar
tissue formation. This likely reflects that, when altered, many pro-
cesses such as inflammation, barrier function and metabolism
may result in sustained tissue injury, impaired repair processes
and ultimately fibrosis (Figure 2).

Earlier genetic studies focused on signals that distinguish
between disease and healthy status using “case-control” studies.
Recent efforts have sought to identify genetic factors influenc-
ing clinical outcomes with emerging “case-case” studies, looking
at patient subgroups that follow different disease courses. The
hope is this will provide insights into the pathogenic processes
dictating disease progression and severity. Emerging results on
genetic disease-modifiers show limited overlap with genetic loci

involved in disease risk, highlighting the point that disease ini-
tiation and disease progression are not necessarily driven by
the same mechanisms. Interestingly, these studies also allow us
to determine how genetics might contribute to milder clinical
outcomes, as illustrated by the recent discovery of a common
polymorphism in FOXO3 locus affecting the TGF-β pathway
which appears associated with improved prognosis in Crohn’s
disease and rheumatoid arthritis (Lee et al., 2013a). Further inves-
tigations will define whether, across diseases involving different
organ systems, genetic variants affecting a set of common key
biological pathways might favor more susceptibility to fibrotic
complications.

DISEASES ASSOCIATED WITH LUNG FIBROSIS
IDIOPATHIC INTERSTITIAL PNEUMONIAS AND IDIOPATHIC
PULMONARY FIBROSIS
Familial forms of idiopathic pulmonary fibrosis (IPF) account
for 2–20% of IPF patients, supporting a strong genetic compo-
nent in the development of the disease [reviewed in Kropski et al.
(2013)]. Investigations on families have identified genetic variants
in SFTPC (encoding surfactant protein C), SFTPA2 (encoding
surfactant protein A2), MUC5B (encoding a mucin constituent of
the mucus), as well as TERT and TERC (encoding components of
the telomerase complex) to be associated with pulmonary fibro-
sis (Nogee et al., 2001; Thomas et al., 2002; Armanios et al.,
2007; Tsakiri et al., 2007; Wang et al., 2009; van Moorsel et al.,
2010; Ono et al., 2011; Seibold et al., 2011). The genetic asso-
ciation of genetic polymorphisms in MUC5B-MUC2-TOLLIP as
well as TERT and TERC loci with high risk for pulmonary fibro-
sis has been confirmed by recent results from GWAS comparing
4683 controls and 1616 cases of fibrotic idiopathic interstitial
pneumonias (IIP) including 77% of IPF cases with independent
replication cohort (Fingerlin et al., 2013). These observations
provide justification for investigating familial diseases with link-
age studies, as well as large GWAS approaches.
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The implication of genetic polymorphisms in SFTPA2, SFTPC,
MUC5B as well as DSP (encoding desmoplakin) as risk factors
for pulmonary fibrosis suggest that the integrity of the barrier
function is critically important in maintaining lung homeosta-
sis (Fingerlin et al., 2013). Coding mutations in SFTPC associated
with pulmonary fibrosis lead to aberrant pro-surfactant protein
C intermediate products which cause alterations in protein mat-
uration [reviewed in Tanjore et al. (2013), Thurm et al. (2013)].
These mutations are often, but not always, detected in conjunc-
tion with activation of the Unfolded Protein Response (UPR)
pathway, which has also been reported in the alveolar epithelial
cells of IPF patients carrying the SFTPC L188Q mutation (Tanjore
et al., 2012; Thurm et al., 2013). SFTPA2 mutations induce reten-
tion of surfactant protein A in the endoplasmic reticulum and
similarly lead to UPR activation (Wang et al., 2009; Maitra et al.,
2010). Two proposed mechanisms link UPR activation to tissue
injury and fibrosis: UPR activation likely increases the loss of
epithelial cells after injury and may also be involved in promoting
epithelial-to-mesenchymal (EMT) transition (Tanjore et al., 2011;

FIGURE 1 | Effect of pulmonary fibrosis on lung architecture. The
architecture of the lung in idiopathic pulmonary fibrosis (IPF) is characterized
by a so-called “honeycomb” pattern with airways separated by bands of
inflamed fibrous connective tissue and to a lesser extent, smooth muscle.
The modifications of the lung architecture induced by the fibrosis lead to
compromised diffusion of oxygen and carbon dioxide and impaired
pulmonary function. Hematoxylin and eosin staining of human normal lung
and IPF lung (scale bar = 100 um). Courtesy of Dr. Robert Dunstan.

Zhong et al., 2011). Both these mechanisms likely favor the cycle
of aberrant injury and repair that is typical of fibrotic responses.
Recent studies have, however, also revealed that SFTPA1 and
SFTPC mutations induce excessive TGF-β secretion (Maitra et al.,
2012, 2013). Depending on the mutations, this effect does not
always depend on UPR activation. This brings into question the
importance of the role of UPR activation in promoting profi-
brotic phenotype associated with the polymorphisms identified
by genetic studies.

The rs35705950 risk Single Nucleotide Polymorphism (SNP)
for pulmonary fibrosis in the MUC5B region has generated a lot
of interest. MUC5B expression is reported to be higher in the lung
of IPF vs. healthy subjects, and in subjects carrying rs35705950
risk allele (Seibold et al., 2011). MUC5B encodes a member of the
mucin family, which contains highly glycosylated proteins that are
component of mucus secretions that protect the epithelial layer.
Perhaps unexpectedly, rs35705950 was recently associated with
improved survival in an IPF (Peljto et al., 2013). This supports
the concept that underlying mechanisms of disease initiation and
disease progression may be quite distinct. Given these recent rev-
elations, it has now been proposed that the increased expression
of MUC5B predisposes to IPF, but probably also has a beneficial
role in enhancing the mucosal host defense during tissue damage.
Additional SNPs in the MUC5B region including in the TOLLIP
and MUC2 loci are also associated with higher risk for IPF and
the biological contribution of these SNPs in the increased risk for
IPF remains to be elucidated (Fingerlin et al., 2013).

As MUC5B, SFTPC, and SFTPA1 are expressed by alveolar type
II cells, this raises the possibility that injury of these cells is a crit-
ical pathogenic mechanism in pulmonary fibrosis (Seibold et al.,
2013). This hypothesis is supported by the observation that lung
fibrosis occurs following ablation of alveolar type II in genetically
modified mice using diphtheria toxin (DT) receptor transgene
under the control of Sftpc promoter (Sisson et al., 2010). However,
lung fibrosis was not observed in a different genetic mouse model
where the DT expression is controlled by an inducible Cre recom-
binase knocked into the Sftpc locus (Barkauskas et al., 2013).
This discrepancy in phenotype could reflect different levels of

FIGURE 2 | Selected genes located in genetic risk loci associated with

higher susceptibility for diseases with fibrotic complications. Genetic
studies have successfully identified numerous genetic risk loci associated
with higher susceptibility for diseases associated with fibrosis. Left panel

displays diseases associated with a strong immune component and the
genetic risk loci implicated in at least three of these diseases. Right panel
displays diseases associated with risk loci implicating genes involved in
non-immune function, such as barrier and metabolic functions.
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cell ablation between the two systems or the differential contri-
bution of additional lung cell populations that mediate the lung
epithelium repair.

Different studies in human and mouse models have attempted
to provide biological insights into the association of TERT and
TERC polymorphisms with pulmonary fibrosis. Several reports
showed shortened telomeres in IIP patients with or without
mutation in genes encoding components of the telomerase com-
plex, however, this was not replicated in a recent investigation
of an IPF Mexican cohort (Alder et al., 2008; Cronkhite et al.,
2008; Diaz de Leon et al., 2010; Liu et al., 2013a). In mouse
models, two independent groups reported that Tert and Terc KO
mice do not present spontaneous lung fibrosis and that Terc defi-
ciency does not affect bleomycin-induced lung fibrosis (Liu et al.,
2007; Degryse et al., 2012; Liu et al., 2013a). Degryse et al. did
not observe any phenotype on bleomycin-induced lung fibrosis
using Tert deficient mice, while Liu et al. reports a protective
effect using similar disease model but a different Tert deficient
strain. The reason of the discrepancy of these results is yet to be
elucidated. However, the protection phenotype observed in Tert
deficient mice in the bleomycin-induced lung fibrosis was simi-
lar with mice from 2nd and 4th generation despite shortening of
the telomeres. This led the authors to speculate that this effect
may not be dependent on telomere length (Liu et al., 2013a).
Supporting the notion that TERT and TERC deficiency might
contribute to pulmonary fibrosis by mechanisms dependent on
telomerase activity but not necessarily telomere length, telom-
erase activity is induced in IPF and NSIP fibroblasts and systemic
sclerosis lung compared to healthy donor samples (Fridlender
et al., 2007; Liu et al., 2013a). Furthermore, telomerase activ-
ity was recently shown to regulate Wnt signaling, mitochondrial
function and oxidative stress (Park et al., 2009; Sahin et al., 2011).
These pathways are known to be activated in human and mouse
disease tissues and the inhibition of Wnt/beta catenin pathways
and oxidative stress decreases fibrosis in mouse models and are
therefore currently considered as attractive therapeutic fibrosis
targets (Lam and Gottardi, 2011; Hecker et al., 2012).

The examples described above show genetic studies have suc-
cessfully unraveled key components of the genetic architecture of
IIP and IPF by leveraging the strong genetic signals associated
with disease in familial cases. Functional in-vivo characterizations
of the genetic polymorphisms associated with pulmonary fibrosis
are now starting to provide insights into potential mechanisms
that remain to be further validated. Emerging efforts to evaluate
the role of the susceptibility loci for pulmonary fibrosis have led
to unexpected results, as demonstrated by the discovery of the
association of MUC5B variant with disease risk, but improved
disease prognosis. Additional genetic polymorphisms are pro-
posed to affect IPF severity, such as TLR3 L412F, and FcγRIIa
R131H variants, which further reflect the influence of immune
mechanisms in IPF progression (Bournazos et al., 2010; O’Dwyer
et al., 2013). Polymorphisms in the angiotensinogen promoter
are also described to be associated with further decline of pul-
monary function in IPF subjects perhaps consistent with results
from mouse models in which the angiotensin pathway promotes
fibrosis (Molina-Molina et al., 2008; Dang et al., 2013). However,
these results are yet to be replicated in well-powered studies.

These examples clearly demonstrate the need for genetic studies
of disease progression to further understand pathogenesis, along-
side development of mouse models and in-vitro/ex-vivo models
of human, cells and tissues to fully validate the leads provided by
genetic studies.

INTERSTITIAL LUNG DISEASE IN SYSTEMIC SCLEROSIS
Systemic Sclerosis (SSc) is thought to be a chronic systemic
autoimmune disease with limited genetic component because
of the rare familial cases and low concordance for disease
in monozygotic twins (4.7%) (Feghali-Bostwick et al., 2003).
However, the concordance in monozygotic twins for the pres-
ence of antinuclear antibodies in SSc is very high (90 vs. 40%
for dizygotic twins), suggesting that the auto-immunity compo-
nent of SSc is highly inheritable, but that the disease phenotype
may be influenced by other factors that are largely not dependent
on genetics. Despite limited disease heritability, several GWAS
have detected genetic associations with risk for SSc and appear
to have confirmed the role of the immune response in the disease
risk. Many of the identified risk loci are shared with Rheumatoid
Arthritis and Systemic Lupus Erythematous, including alleles
located in MHC, STAT4, CD247, and IRF5 loci (Radstake et al.,
2010; Allanore et al., 2011; Gorlova et al., 2011). These genes sug-
gest that dysregulation of different components of the immune
response influence auto-immunity. For example, STAT4 regulates
signaling from IL-12 and IL-23 receptors in T-cells and from IFN
receptor in monocytes and NK cells, while IRF5 is a transcription
factor in the type 1 interferon pathway, and CD247 encodes for
a subunit of the T-cell receptor and modulates T-cell activation
[reviewed in Romano et al. (2011)]. However, precise functional
consequences of the risk alleles discovered in these loci still remain
to be elucidated. These studies come with great challenges for
ex-vivo studies using samples from patients carrying risk and
non-risk alleles, and with the development of mouse models with
knock-in of risk alleles for in-vivo studies.

Interstitial lung disease (ILD) is one complication of SSc and is
most often associated with diffuse cutaneous disease and the pres-
ence of anti-topoisomerase I antibodies (Steen et al., 1988; Assassi
et al., 2010). Genetic candidate approach studies (albeit with lim-
ited sample size) have identified genetic polymorphisms associ-
ated with SSc-ILD in CTGF, HGF, MMP12, which encode known
regulators of fibrotic responses, and in IRAK1 and NLRP1, which
encode proteins involved innate immune responses (Fonseca
et al., 2007; Manetti et al., 2010; Dieudé et al., 2011a,b; Hoshino
et al., 2011; Sharif et al., 2012) (see Table 1). Similar to the above
example where the MUC5B rs35705950 SNP is associated with
IPF susceptibility but with improved prognosis, the IRF5 SNP
rs4728142 confers higher risk for SSc, but also longer survival
with milder ILD (Sharif et al., 2012). Combination of the risk
alleles at STAT4 SNP rs7574865 and IRF5 SNP rs2004640 leads
to increased risk for ILD, highlighting that studies of genetic
interactions may be relevant for disease (Dieudé et al., 2009).
Observations such as this reflect the complexity of these diseases.

While IPF and SSc-ILD present with distinct clinical features,
they are both characterized by the presence of fibrotic lesions in
the lung at end stage disease. Similar gene expression profiles are
detected in lung explants from IPF and SSc patients, suggesting
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Table 1 | Genetic polymorphisms proposed to be associated with SSc-ILD.

Association with phenotypes

Variants Genes Population Discovery Replication Replication Odd ratio p = value Anti-

SLC70

SSc Expression Ref

rs2276109 MMP12 Italian 250/263 2.94 (95% CI
1.25–6.95)

p = 0.01 Yes ILD higher level
of MMP12

Manetti et al.,
2010

CTGF
-945GG

CTGF UK 200/188 300/312 3.1 (95% CI,
1.9–5.0)

p < 0.001 Yes ILD higher level
of CTGF

Fonseca et al.,
2007

HGF -1652
TT

HGF Japanese 159/103 155/0 8.1 (95% CI
2.5–26.0)

p = 0.0004 NA ESLD lower level
of HGF

Hoshino et al.,
2011

rs1059702 IRAK1 EU 849/625 495/509 466/1083 2.09 (95% CI
1.35–3.24)

p = 0.0009 Yes ILD Dieudé et al.,
2011a, 2009

rs8182352 NLRP1 EU 870/962 532/324 527/301 1.19 (95% CI
1.05–1.36)

p = 0.0065 Yes ILD Dieudé et al.,
2011b

rs2004640
rs7574865

IRF5
STAT4

French ## 179/374 ## 134/374 1.786 (95% Cl
1.25–2.58)

p = 0.002 NA ILD Dieudé et al.,
2009

VARIANTS ASSOCIATED WITH IMPROVED PROGNOSIS

rs4728142 IRF5 Caucasian 914 cases 529 cases 0.75 (95% CI
0.62–0.90)

p = 0.002 Longer
survival

Lower level
of IRF5

Sharif et al.,
2012

Candidate gene approach studies with limited power but increasing sample sizes have reported several candidate polymorphisms that may confer risk for SSc-ILD.

Discovery and Replication stages show numbers of case and control patients. ## symbol indicate a case-case study.

some overlap in pathogenic mechanisms (Hsu et al., 2011; Murray
et al., 2012). This hypothesis was tested with three independent
studies that investigated the MUC5B SNP rs35705950 risk allele
for IPF in SSc-ILD. There was no association with SSc-ILD, while
the association with IPF was confirmed by all groups (Peljto
et al., 2012; Borie et al., 2013; Stock et al., 2013). This result
further highlights the differences in pathogenic mechanisms asso-
ciated with IPF and SSc-ILD, even when the disease tissue gene
expression profiles may be similar.

Understanding the genetic architecture associated with
SSc-ILD will be crucial to provide biological insights into
the pathogenic mechanisms driving this debilitating disease.
Breakthrough discoveries will require well-powered studies and
comprehensive genetic analysis with meta-analysis of genome-
wide data rather than candidate gene studies.

DISEASES ASSOCIATED WITH RENAL FIBROSIS
Tubulointerstitial fibrosis is a feature of progression of chronic
kidney diseases (CKD) and diabetic nephropathy (DN). The inci-
dence of end stage renal disease in African Americans is known
to be 3–4-fold higher compared to non-African Americans (Li
et al., 2004). This excess risk is thought to be mainly due to
genetic polymorphisms in the MY9H/APOL1 region with a non-
synonymous SNP in APOL1 locus (Kao et al., 2008; Kopp et al.,
2008). Interestingly, this polymorphism appears to result from
a positive selection in population of African ancestry, due to
a functional advantage over sleeping sickness (Genovese et al.,
2010).

CHRONIC KIDNEY DISEASE
GWAS have identified genetic polymorphisms associated with
renal function and susceptibility to CKD. Genetic polymorphisms
in UMOD, SOX11, and PRKAG2 loci appear associated with CKD

(Köttgen et al., 2009, 2010; Gudbjartsson et al., 2010). Mutations
in UMOD are linked to familial kidney diseases, and common
polymorphisms in the UMOD locus were shown to be associ-
ated with risk for CKD in two GWAS scans (Köttgen et al., 2009,
2010; Vyletal et al., 2010). UMOD encodes uromodulin, which
is released in the urine and plays a protective role against uri-
nary tract infections and ischemia-induced acute kidney injury,
as shown in studies of Umod-deficient animals (Bates et al., 2004;
Mo et al., 2004; El-Achkar et al., 2008). The underlying mech-
anisms are unclear as uromodulin appears to have cell-specific
effects that could be both pro-inflammatory (on macrophages
and neutrophils) or anti-inflammatory [reviewed in El-Achkar
and Wu (2012)].

SOX11 appears essential for embryonic development as Sox11-
deficient mice die at birth with many malformations (Hargrave
et al., 1997; Sock et al., 2004). Sox11 was shown to control the
expression of Wnt4 in Xenopus (Murugan et al., 2012). Wnt4
signaling is known to play a key role in nephrogenesis, as its acti-
vation promotes renal fibrosis in mouse models (Kispert et al.,
1998; Surendran et al., 2002). In addition, missense mutations in
WNT4 locus are associated with renal hypodysplasia in humans
(Vivante et al., 2013). Thus, one may speculate that SOX11 genetic
variants associated with CKD might affect renal function through
dysregulation of Wnt4 pathway; this hypothesis remains to be
tested.

PRKAG2 encodes a subunit of the energy sensor AMP-
activated protein kinase (AMPK) whose role in renal homeosta-
sis has been extensively studied (Hallows et al., 2010). In the
context of tissue injury, activation of AMPK inhibits Epithelial-
to-Mesenchymal Transition EMT and Reactive Oxygen Species
(ROS) production induced by known pro-fibrotic factors in renal
fibrosis, such as TGF-β, angiotensin II and high glucose (Lee et al.,
2013b). It is also reported to promote Monocyte-to-Fibroblast
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transition (Yang et al., 2013). AMPK activity was shown to be pro-
tective in non-diabetic and in high fat diet-induced renal disease
models (Declèves et al., 2011; Satriano et al., 2013). The beneficial
effects of metformin, an AMPK activator, on renal function are
recognized, but its use in CKD is currently at the center of contro-
versial debates due to potential risk of lactic acidosis in the context
of renal deficiency, (Ekström et al., 2012; Rocha et al., 2013).

DIABETIC NEPHROPATHY
DN is a common complication of type 1 and type 2 dia-
betes, which have been associated with very distinct disease risk
loci [Figure 2 and reviewed in Ntzani and Kavvoura (2012),
Polychronakos and Li (2011)]. Results of genetics studies are
extensively discussed in two recent reviews (Gu and Brismar,
2012; Palmer and Freedman, 2012), we therefore will focus only
on the genetic association of ELMO1, CNDP1, and FRDM3 loci
with DN risk, as they were detected in both GWAS and candidate
gene approach studies.

ELMO1 encodes Engulfment and cell motility 1 and regulates
Rac signaling and biological processes linked actin cytoskeleton
remodeling. ELMO1 plays an established role in the clearance of
apoptotic cells (Park et al., 2007; Elliott et al., 2010; van Ham et al.,
2012), leading to the hypothesis that ELMO1 regulates homeosta-
sis upon kidney injury by ensuring clearance of apoptotic cells
and that impairment of this function might promote DN. ELMO1
is also known to contribute to the development of vasculature and
to the production of extracellular matrix protein (ECM), which
both may affect renal fibrosis (Shimazaki et al., 2006; Epting et al.,
2010).

CNDP1 encodes carnosinase that hydrolyzes carnosine, an
anti-oxidant molecule. Carnosine is a protective factor in several
animal models of renal disease and was shown to inhibit TGF-β
and ECM production by mesangial cells in hyperglycemic condi-
tions (Köppel et al., 2011; Riedl et al., 2011; Menini et al., 2012).
While CNDP1 polymorphisms are suspected to affect the level of
its substrate carnosine, this remains to be demonstrated.

Little is known about the biological function of FRDM3, how-
ever, its locus is proposed to be associated with defective renal
function in rats, based on Quantitative Trait Loci analysis (Garrett
et al., 2010). It was recently suggested that FRDM3 risk SNP for
DN may affect BMP signaling, a hypothesis that remains to be
validated (Martini et al., 2013).

Genetic studies have identified many genetic polymorphisms
that confer risk for CKD and DN using the gene candidate
approach, but GWAS often have not confirmed these associations
(Gu and Brismar, 2012; Palmer and Freedman, 2012). Current
studies include only cross-sectional measurements of renal func-
tion, and genetic factors affecting disease progression of renal
diseases are yet to be elucidated.

DISEASES ASSOCIATED WITH LIVER FIBROSIS
AUTOIMMUNE LIVER DISEASES
The genetic architecture of autoimminue liver diseases such
as Primary Sclerosing Cholangitis (PSC) and Primary Biliary
Cirrhosis (PBC) was recently studied through a series of GWAS
(Hirschfield et al., 2009; Liu et al., 2010; Mells et al., 2011; Melum
et al., 2011; Liu et al., 2013a,b). Inflammation and tissue damage
is thought to trigger sustained aberrant tissue repair responses

that ultimately lead to the replacement of the organ by scar
fibrotic tissue. Susceptibility loci largely overlap with the loci
detected in other complex immune diseases affecting different
organs: PSC and PBC shared common risk loci with multiple scle-
rosis, celiac disease, inflammatory bowel disease (IBD), rheuma-
toid arthritis and type 1 diabetes (Mells et al., 2013). Concurrent
autoimmune disorders are commonly present in PSC and PBC
patients (PSC is often seen in patients with IBD, type 1 diabetes
and autoimmune thyroid disease and PBC is often seen in patients
with Sjogren’s syndrome, Raynaud Phenomenon, autoimmune
thyroid disease and rheumatoid arthritis (Mells et al., 2013),
which may explain the result of the genetic studies. Due to this
co-occurrence of auto-immune diseases, case-case studies focus-
ing on disease progression will be especially critical in PBC and
PSC in order to identify pathogenic mechanisms that could be
targeted by therapies.

NON-ALCOHOLIC FATTY LIVER DISEASE
Non-Alcoholic Fatty Liver Disease (NAFLD) is strongly associ-
ated with obesity, type 2 diabetes and dyslipidemia. The disease
is characterized by steatosis with an increased hepatic Free Fatty
Acid flux and cellular damage that trigger inflammatory and
fibrotic responses. Genetic polymorphisms in the PNPLA3 locus
that encodes for adiponutrin have been associated with NAFLD
in many genetics studies using the candidate approach, and with
well-powered GWAS (Daly et al., 2011). Adiponutrin is a triacyl-
glycerol hydrolase, and the I148M variant associated with NAFLD
induces accumulation of triacylglycerol and hepatic steatosis (He
et al., 2010; Li et al., 2012). In independent studies, PNPLA3 locus
has also been associated with NAFLD progression and fibrosis
(Speliotes et al., 2011; Kitamoto et al., 2013). Additional poten-
tial genetic disease-modifiers associated with fibrosis reported
in these studies are NCAN, GCKR, LYPLAL1, SAMM50, and
PARVB loci. LYLPAL1 encodes a lysophospholipase and GCKR
encodes glucokinase regulatory protein that regulates both glu-
cose metabolism and lipogenesis. GCKR and NCAN variants
affect circulating triglyceride levels (Gorden et al., 2013; Shen
et al., 2013). Altogether, this suggests that risk for NAFLD and
its progression could be largely influenced by genetic factors
regulating lipid metabolism.

Genetic variants of angiotensin II receptor 1 have also been
reported to be linked to fibrosis in NAFLD in two different
studies, but with some inconsistencies in effects of AGTR1 vari-
ants/alleles perhaps due to cohort ethnicities (Yoneda et al., 2009;
Zain et al., 2013). The use of blockers of angiotensin recep-
tor in patients with liver fibrosis has yielded different results,
therefore their beneficial effect in NAFLD remains controversial
(Yokohama et al., 2004; Abu Dayyeh et al., 2011; Hirata et al.,
2013). Thus, understanding the role of ATGR1 genetic polymor-
phisms in the progression of NAFLD liver fibrosis, and defining
the relevant patient population, might be crucial to evaluate
the potential beneficial role of angiotensin receptor blockers in
NAFLD progression.

DISEASES ASSOCIATED WITH INTESTINAL FIBROSIS
Intestinal fibrosis is a common complication occurring with
intestinal inflammation such as that seen with IBD, which
comprises both Crohn’s Disease (CD) and Ulcerative Colitis (UC)
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(Speca et al., 2012). The GWAS approach was very successful
in identifying more than a hundred genetic risk factors for IBD
(Franke et al., 2010; Anderson et al., 2011). These discoveries
highlighted a major role for inflammatory pathways controlling
innate and adaptive immune responses, mucosal barrier func-
tion, endoplasmic reticulum stress and oxidative stress in the
disease pathogenesis (Khor et al., 2011). The chronic inflam-
matory injury in IBD triggers unrelenting mucosal injury/repair
processes, and this ongoing damage/repair cycle is thought to
underlie the intestinal fibrosis and strictures that are commonly
seen in CD patients. In a subset of CD patients, the fibrosis and
strictures can lead to intestinal obstruction and thus surgery.
Immunosuppressive and anti-inflammatory treatments have little
effects on intestinal fibrosis once the process has started, sug-
gesting that non-immune pathways must be playing a role in the
progression of fibrosis.

It is somehow surprising that there are only a few reports on
genetic polymorphisms associated with higher risk for intesti-
nal fibrosis, despite the strong success in recruiting a large
number of patients for the IBD GWAS efforts. Candidate-gene
approach studies with small size cohorts have implicated NOD2
and CX3CR1 polymorphisms as higher risk factors for strictur-
ing CD and the subsequent need for surgery (Abreu et al., 2002;
Lesage et al., 2002; Brand et al., 2006; Seiderer et al., 2006; Sabate
et al., 2008). NOD2 is a known risk factor for CD and is presumed
to primarily control innate immune response to bacterial prod-
ucts, while CX3CR1 is a chemokine receptor involved in leukocyte
recruitment. In addition, GWAS to identify genetic polymor-
phisms associated with CD severity has recently implicated several
loci including IL12B, RXRA/COL5A1, AHR, and FOXO3 loci in
severe clinical phenotypes defined by need for surgery (Dubinsky
et al., 2013; Lee et al., 2013b). However, their specific association
to structuring CD is unclear. It is the hope that future studies will
able to identify genetic risk factors associated with the structuring
CD to better understand the pathogenesis of the development of
intestinal fibrosis in IBD.

DISEASES ASSOCIATED WITH SKIN FIBROSIS
Skin fibrosis represents a cardinal feature of several diseases
with debilitating skin pathologies, including keloid dis-
ease/hypertrophic scars, systemic sclerosis and nephrogenic
systemic fibrosis. While the etiology of skin fibrosis remains
poorly understood, growing evidence supports the hypothesis
that fibrosis arises from aberrant tissue injury (e.g., vasculopathy)
and repair (e.g., wound healing) responses.

A number of studies in recent years have investigated the
genetic basis of skin fibrosis, especially in keloid disease (KD)
where higher prevalence in ethnicities with darker pigmenta-
tion. Linkage studies in familial keloids have been reported,
with suggested candidate genes involved in fibroblast prolifer-
ation (EGFR), inflammation (TNFAIP6), and TGF-β signaling
(SMADs) (Marneros et al., 2004; Yan et al., 2007). Supporting
the potential role of inflammation and/or immune activation in
the pathogenesis of KD, polymorphisms in the HLA region are
associated with increased risk for KD in Caucasian, Chinese and
Black populations (Brown et al., 2008, 2010; Lu et al., 2008). More
recently, two independent GWAS of KD in Japanese and Chinese

populations identified risk SNPs in chromosomal regions 1q41
and 15q21.3 (NEDD4 locus) (Nakashima et al., 2010; Zhu et al.,
2013). It will be of great interest to understand how these loci
may confer disease susceptibility for KD whose etiology is poorly
understood.

Several candidate gene and GWAS have been carried out in
systemic sclerosis (SSc), with most of the genetic variants iden-
tified being immune regulatory genes as mentioned earlier in
this review. While these findings clearly support a major role of
autoimmunity in SSc genetics, it is less clear whether these SSc
susceptibility loci are directly involved in SSc skin fibrosis. SSc can
be divided in two subtypes and the extent of the skin fibrosis is
greater in diffuse SSc than in limited SSc. GWAS in SSc detected
only one locus in ZC3H10/ESYT1 region conferring susceptibil-
ity preferentially for the diffuse clinical phenotype (Gorlova et al.,
2011). It remains to be elucidated whether there is relationship
between this risk locus and any pathogenic mechanisms linked
to the skin fibrosis in diffuse SSc. Since 90% of the SSc patients
have Raynaud’s syndrome preceding their onset of skin harden-
ing by several years, and vasculopathy is often viewed that may
be a key disease-driving cause of SSc, it is somewhat surprising
that no vasculature-related genes have been described from the
SSc GWAS studies so far.

In addition to risk factors for SSc, an allele in CAV1 locus
(encoding caveolin 1) was recently shown in a French cohort and
replicated in an Italian cohort to confer protection against SSc
and in particular limited SSc (Manetti et al., 2012). This protec-
tive allele was shown to be associated with an increased expression
of caveolin 1 in skin from both healthy subjects and SSc patients.
Caveolin 1 is a component of membrane caveolae that is pro-
posed to regulate TGF-β receptor degradation (Del Galdo et al.,
2008a). Confirming an anti-fibrotic role of caveolin 1, Cav1-
deficient mice develop spontaneous lung and skin fibrosis (Drab
et al., 2001; Del Galdo et al., 2008a,b). Caveolin 1 expression is
decreased in many human fibrosis tissues including SSc skin and
lung, IPF lung and keloid-derived fibroblasts, which suggest that
the caveolin 1-mediated regulatory pathway may represent a new
therapeutic opportunity in fibrotic diseases (Wang et al., 2006;
Del Galdo et al., 2008a,b; Zhang et al., 2011).

FIBROSIS PROGRESSION: PROMISING STUDIES IN CYSTIC
FIBROSIS AND HCV-INDUCED FIBROSIS
Cystic fibrosis arises as the result of an abnormal transport of salt
due to mutations in CTFR. Although this is a Mendelian disorder,
additional genetic factors are emerging as disease modifiers due to
their influence on disease severity. Polymorphisms in MUC5AC
may affect the severity of cystic fibrosis lung disease highlight-
ing further the role of mucin in maintaining lung homeostasis
(Guo et al., 2011). A recent GWAS meta-analysis including more
than 3000 patients detected a SNP in a large intergenic region
near EHF and APIP to be associated with disease severity (Wright
et al., 2011). Additional suggestive (close to genome-wide sig-
nificance) associations were reported in AGTR2 and in AHRR
regions, indicating a role for angiotensin and xenobiotic sensing
pathways in the severity of cystic fibrosis. As mentioned previ-
ously, the angiotensin pathway may be involved in the progression
of NAFLD. Strikingly, angiotensin receptor blockade protects
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FIGURE 3 | Overview of biological processes and pathways proposed to

be associated with disease risk and disease progression. Left panel
shows the biological processes associated with the genes located in the risk
loci associated with higher susceptibility for disease. Right panel shows the
biological pathways associated with genes located in the loci associated with
disease progression. Further genetic studies of disease progression are

needed to confirm initial results from limited sample sizes. SSc,
systemic#sclerosis; PSC, primary sclerosing cholangitis; PBC, primary biliary
cirrhosis; T1D, type 1 diabetes; T2D, type 2 diabetes; IBD, inflammatory
bowel disease; IIP, idiopathic interstitial pneumonias; CKD, chronic kidney
disease; NAFLD, non-alcoholic fatty liver disease; ILD, interstitial lung
disease; IPF, idiopathic pulmonary fibrosis.

from experimental lung fibrosis and Ahr-deficient mice develop
hepatic fibrosis (Fernandez-Salguero et al., 1995; Andreola et al.,
2004; Waseda et al., 2008; Yaguchi et al., 2013). Further studies
will be required to test the hypothesis that these pathways may
be critical in influencing disease progression in cystic fibrosis and
may lead to additional therapeutic approach for this Mendelian
disorder.

Genetic disease-modifiers in HCV-induced fibrosis were
recently identified in a GWAS meta-analysis including more than
2000 patients (Patin et al., 2012). Genetic polymorphisms in
RNF7 and MERTK were associated with fibrosis progression and
also point to the previously mentioned involvement of oxida-
tive stress and the clearance of apoptotic cells in fibrotic diseases
(Duan et al., 1999; Scott et al., 2001; Zizzo et al., 2012). Different
candidate gene approach studies detected rs12785878 near
DHCR7 to be associated with 25-hydroxyvitamin D [25(OH)D]
serum levels, liver stiffness in chronic liver diseases, and progres-
sion of liver fibrosis in HCV patients (Grünhage et al., 2012; Petta
et al., 2013). The same SNP was associated with development of
hepatocarcinoma, but not with progression rate of liver fibrosis
in HCV patients (Lange et al., 2013). Strikingly, vitamin D recep-
tor was demonstrated to be key in the control of liver fibrosis
by affecting SMAD3-mediated transcriptional response in mouse
model, supporting the notion that this pathway might be essential
in the control of liver fibrosis (Ding et al., 2013).

Together these studies confirm that genetics may play a critical
role in influencing disease progression independently of the cause
of the fibrosis (Mendelian or infectious disease). Understanding
the underlying biological pathways associated with these disease

modifiers, and how they influence fibrosis, may lead to new leads
for therapeutic strategies.

CONCLUDING REMARKS
Genetic studies have successfully identified polymorphisms asso-
ciated with susceptibility for diseases with fibrotic complications.
On-going functional studies attempt to elucidate the underly-
ing pathogenic mechanisms. After a decade of human genetics
studies focusing on disease risk, emerging results from genetic
studies of disease progression suggest a multi-hit paradigm in
which disease initiation and disease progression are not necessar-
ily driven by the same mechanisms (Figure 3). Early discoveries
on fibrosis progression point to pathways already shown in mouse
models to control fibrotic responses, such as vitamin D and xeno-
biotic sensing pathways. Perhaps future genetic studies on disease
progression will identify more genes and pathways identified in
mouse models to control fibrotic responses.

The identification of genetic disease modifiers comes with
great challenges with a requirement for clinical annotations to
inform on disease progression or severity with well-powered
case-case studies rather than case-control studies to understand
disease progression in human fibrotic diseases. However, eluci-
dating the genetic basis of disease severity is crucial to understand
pathogenic mechanisms and may be even more relevant to high-
light biological pathways for therapeutic interventions.

ACKNOWLEDGMENTS
We are grateful to Dr. Robert W. Dunstan, DVM, MS,
DACVP, Distinguished Investigator in the Translational Pathology

www.frontiersin.org December 2013 | Volume 4 | Article 159 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Inflammation_Pharmacology/archive


Gardet et al. Genetics of human fibrosis

Laboratory at Biogen Idec for kindly providing histology images
to illustrate the effect of fibrotic tissues on lung architecture. We
thank Dr. Christine Loh for carefully reviewing of this manuscript
and her constructive comments.

REFERENCES
Abreu, M. T., Taylor, K. D., Lin, Y.-C., Hang, T., Gaiennie, J., Landers, C. J.,

et al. (2002). Mutations in NOD2 are associated with fibrostenosing dis-
ease in patients with Crohn’s disease. Gastroenterology 123, 679–688. doi:
10.1053/gast.2002.35393

Abu Dayyeh, B. K., Yang, M., Dienstag, J. L., and Chung, R. T. (2011). The
effects of angiotensin blocking agents on the progression of liver fibrosis in
the HALT-C trial cohort. Dig. Dis. Sci. 56, 564–568. doi: 10.1007/s10620-
010-1507-8

Alder, J. K., Chen, J. J.-L., Lancaster, L., Danoff, S., Su, S. C., Cogan, J. D.,
et al. (2008). Short telomeres are a risk factor for idiopathic pulmonary
fibrosis. Proc. Natl. Acad. Sci. U.S.A. 105, 13051–13056. doi: 10.1073/pnas.
0804280105

Allanore, Y., Saad, M,. Dieudé, P., Avouac, J., Distler, J. H., Amouyel, P., et al.
(2011). Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel
risk loci for systemic sclerosis. PLoS Genet. 7:e1002091. doi: 10.1371/jour-
nal.pgen.1002091

Anderson, C. A., Boucher, G., Lees, C. W., Franke, A., D’Amato, M., Taylor, K. D.,
et al. (2011). Meta-analysis identifies 29 additional ulcerative colitis risk loci,
increasing the number of confirmed associations to 47. Nat. Genet. 43, 246–252.
doi: 10.1038/ng.764

Andreola, F., Calvisi, D. F., Elizondo, G., Jakowlew, S. B., Mariano, J., Gonzalez,
F. J., et al. (2004). Reversal of liver fibrosis in aryl hydrocarbon receptor null
mice by dietary vitamin A depletion. Hepatology 39, 157–166. doi: 10.1002/
hep.20004

Armanios, M. Y., Chen, J. J.-L. Cogan, J. D., Alder, J. K., Ingersoll, R. G.,
Markin, C., et al. (2007). Telomerase mutations in families with idio-
pathic pulmonary fibrosis. N. Engl. J. Med. 356, 1317–1326. doi: 10.1056/
NEJMoa066157

Assassi, S., Sharif, R., Lasky, R. E., McNearney, T. A., Estrada-Y-Martin, R. M.,
Draeger, H., et al. (2010). Predictors of interstitial lung disease in early systemic
sclerosis: a prospective longitudinal study of the GENISOS Cohort. Arthritis Res.
Ther. 12:R166. doi: 10.1186/ar3125

Barkauskas, C. E., Cronce, M. J., Rackley, C. R., Bowie, E. J., Keene, D. R., Stripp, B.
R., et al. (2013). Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest.
123, 3025–3036. doi: 10.1172/JCI68782

Bates, J. M., Raffi, H. M., Prasadan, K., Mascarenhas, R., Laszik, Z., Maeda, N., et al.
(2004). Tamm-horsfall protein knockout mice are more prone to urinary tract
infection: rapid communication. Kidney Int. 65, 791–797. doi: 10.1111/j.1523-
1755.2004.00452.x

Borie, R., Crestani, B., Dieude, P., Nunes, H., Allanore, Y., Kannengiesser,
C., et al. (2013). The MUC5B variant is associated with idiopathic pul-
monary fibrosis but not with systemic sclerosis interstitial lung disease in the
european caucasian population. PLoS ONE 8:e70621. doi: 10.1371/journal.
pone.0070621

Bournazos, S., Grinfeld, J., Alexander, K. M., Murchison, J. T., Wallace, W. A.,
McFarlane, P., et al. (2010). Association of FcγRIIa R131H polymorphism with
idiopathic pulmonary fibrosis severity and progression. BMC Pulm. Med.10:51.
doi: 10.1186/1471-2466-10-51

Brand, S., Hofbauer, K., Dambacher, J., Schnitzler, F., Staudinger, T., Pfennig, S.,
et al. (2006). Increased expression of the chemokine fractalkine in crohn’s dis-
ease and association of the fractalkine receptor T280M polymorphism with
a fibrostenosing disease phenotype. Am. J. Gastroenterol. 101, 99–106. doi:
10.1111/j.1572-0241.2005.00361.x

Brown, J. J., Ollier, W. E. R., Arscott, G., and Bayat, A. (2010). Association of HLA-
DRB1* and keloid disease in an afro-caribbean population. Clin. Exp. Dermatol.
35, 305–310. doi: 10.1111/j.1365-2230.2009.03506.x

Brown, J. J., Ollier, W. E. R., Thomson, W., and Bayat, A. (2008). Positive association
of HLA-DRB1∗15 with keloid disease in caucasians. Int. J. Immunogenet. 35,
303–307. doi: 10.1111/j.1744-313X.2008.00780.x

Cotsapas, C., and Hafler, D. A. (2013). Immune-mediated disease genet-
ics: the shared basis of pathogenesis. Trends Immunol. 34, 22–26. doi:
10.1016/j.it.2012.09.001

Cronkhite, J. T., Xing, C., Raghu, G., Chin, K. M., Torres, F., Rosenblatt, R. L., et al.
(2008). Telomere shortening in familial and sporadic pulmonary fibrosis. Am. J.
Respir. Crit. Care Med. 178, 729–737. doi: 10.1164/rccm.200804-550OC

Daly, A. K., Ballestri, S., Carulli, L., Loria, P., and Day, C. P. (2011). Genetic deter-
minants of susceptibility and severity in nonalcoholic fatty liver disease. Expert
Rev. Gastroenterol. Hepatol. 5, 253–263. doi: 10.1586/egh.11.18

Dang, M.-T. T., Gu, C., Klavanian, J. I., Jernigan, K. A., Friderici, K. H., Cui, Y., et al.
(2013). Angiotensinogen promoter polymorphisms predict low diffusing capac-
ity in U.S. and spanish IPF cohorts. Lung 191, 353–360. doi: 10.1007/s00408-
013-9476-2

Declèves, A.-E., Mathew, A. V., Cunard, R., and Sharma, K. (2011). AMPK mediates
the initiation of kidney disease induced by a high-fat diet. J. Am. Soc. Nephrol.
22, 1846–1855. doi: 10.1681/ASN.2011010026

Degryse, A. L., Xu, X. C., Newman, J. L., Mitchell, D. B., Tanjore, H., Polosukhin, V.
V., et al. (2012). Telomerase deficiency does not alter bleomycin-induced fibrosis
in mice. Exp. Lung Res. 38, 124–134. doi: 10.3109/01902148.2012.658148

Del Galdo, F., Lisanti, M. P., and Jimenez, S. A. (2008a). Caveolin-1,
transforming growth factor-beta receptor internalization, and the patho-
genesis of systemic sclerosis. Curr. Opin. Rheumatol. 20, 713–719. doi:
10.1097/BOR.0b013e3283103d27

Del Galdo, F., Sotgia, F., de Almeida, C. J., Jasmin, J.-F., Musick, M., Lisanti, M.
P., et al. (2008b). Decreased expression of caveolin 1 in patients with systemic
sclerosis: crucial role in the pathogenesis of tissue fibrosis. Arthritis Rheum. 58,
2854–2865. doi: 10.1002/art.23791

Diaz de Leon, A., Cronkhite, J. T., Katzenstein, A.-L. A., Godwin, J. D., Raghu, G.,
Glazer, C. S., et al. (2010). Telomere lengths, pulmonary fibrosis and telomerase
(TERT) mutations. PLoS ONE 5:10680. doi: 10.1371/journal.pone.0010680

Dieudé, P., Bouaziz, M., Guedj, M., Riemekasten, G., Airò, P., Müller, M.,
et al. (2011a) Evidence of the contribution of the X chromosome to
systemic sclerosis susceptibility: association with the functional IRAK1
196Phe/532Ser haplotype. Arthritis Rheum. 63, 3979–3987. doi: 10.1002/
art.30640

Dieudé, P., Guedj, M., Wipff, J.,. Ruiz, B., Riemekasten, G., Airo, P., et al.
(2011b). NLRP1 Influences the systemic sclerosis phenotype: a new clue
for the contribution of innate immunity in systemic sclerosis-related fibros-
ing alveolitis pathogenesis. Ann. Rheum. Dis. 70, 668–674. doi: 10.1136/ard.
2010.131243.

Dieudé, P., Guedj, M., Wipff, J., Ruiz, B., Hachulla, E., Diot, E., et al. (2009). STAT4
Is a genetic risk factor for systemic sclerosis having additive effects with IRF5
on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum. 60,
2472–2479. doi: 10.1002/art.24688

Ding, N., Yu, R. T., Subramaniam, N., Sherman, M. H., Wilson, C., Rao, R., et al.
(2013). A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic
response. Cell 153, 601–613. doi: 10.1016/j.cell.2013.03.028

Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., et al. (2001).
Loss of caveolae, vascular dysfunction, and pulmonary defects in Caveolin-1
gene-disrupted mice. Science 293, 2449–2452. doi: 10.1126/science.1062688

Duan, H., Wang, Y., Aviram, M., Swaroop, M., Loo, J. A., Bian, J., et al. (1999). SAG,
a novel zinc RING finger protein that protects cells from apoptosis induced by
redox agents. Mol. Cell. Biol. 19, 3145–3155.

Dubinsky, M. C., Kugathasan, S., Kwon, S., Haritunians, T., Wrobel, I., Wahbeh, G.,
et al. (2013). Multidimensional prognostic risk assessment identifies association
between IL12B variation and surgery in Crohn’s disease. Inflamm. Bowel Dis. 19,
1662–1670. doi:10.1097/MIB.0b013e318281f275

Ekström, N., Schiöler, L., Svensson, A.-M., Eeg-Olofsson, K., Jonasson, J. M.,
Zethelius, B., et al. (2012). Effectiveness and safety of metformin in 51 675
patients with Type 2 diabetes and different levels of renal function: a cohort
study from the swedish national diabetes register. BMJ Open 2, 1–10. doi:
10.1136/bmjopen-2012-001076

El-Achkar, T. M., and Wu, X.-R. (2012). Uromodulin in kidney injury: an
instigator, bystander, or protector? Am. J. Kidney Dis. 59, 452–461. doi:
10.1053/j.ajkd.2011.10.054

El-Achkar, T. M., Wu, X.-R., Rauchman, M., McCracken, R., Kiefer, S., and
Dagher, P. C. (2008). Tamm-horsfall protein protects the kidney from
ischemic injury by decreasing inflammation and altering TLR4 expres-
sion. Am. J. Physiol. Renal Physiol. 295, F534–F544. doi: 10.1152/ajprenal.
00083.2008

Elliott, M. R., Zheng, S., Park, D., Woodson, R. I., Reardon, M. A., Juncadella, I.
J., et al. (2010). Unexpected requirement for ELMO1 in clearance of apoptotic
germ cells in vivo. Nature 467, 333–337. doi: 10.1038/nature09356

Frontiers in Pharmacology | Inflammation Pharmacology December 2013 | Volume 4 | Article 159 | 8

http://www.frontiersin.org/Inflammation_Pharmacology
http://www.frontiersin.org/Inflammation_Pharmacology
http://www.frontiersin.org/Inflammation_Pharmacology/archive


Gardet et al. Genetics of human fibrosis

Epting, D., Wendik, B., Bennewitz, K., Dietz, C. T., Driever, W., and Kroll, J. (2010).
The Rac1 regulator ELMO1 controls vascular morphogenesis in Zebrafish. Circ.
Res. 107, 45–55. doi: 10.1161/CIRCRESAHA.109.213983

Feghali-Bostwick, C., Medsger, T. A. Jr., and Wright, T. M. (2003). Analysis
of systemic sclerosis in twins reveals low concordance for disease and high
concordance for the presence of antinuclear antibodies. Arthritis Rheum. 48,
1956–1963. doi: 10.1002/art.11173

Fernandez-Salguero, P., Pineau, T., Hilbert, D. M., McPhail, T., Lee, S. S., Kimura,
S., et al. (1995). Immune system impairment and hepatic fibrosis in mice
lacking the dioxin-binding Ah receptor. Science 268, 722–726. doi: 10.1126/sci-
ence.7732381

Fingerlin, T. E., Murphy, E., Zhang, W., Peljto, A. L., Brown, K. K., Steele, M. P.,
et al. (2013). Genome-wide association study identifies multiple susceptibility
loci for pulmonary fibrosis. Nat. Genet. 45, 613–620. doi: 10.1038/ng.2609

Fonseca, C., Lindahl, G. E., Ponticos, M., Sestini, P., Renzoni, E. A., Holmes, A.
M., et al. (2007). A polymorphism in the CTGF promoter region associated
with systemic sclerosis. N. Engl. J. Med. 357, 1210–1220. doi: 10.1056/NEJMoa
067655

Franke, A., McGovern, D. P. B., Barrett, J. C., Wang, K., Radford-Smith, G. L.,
Ahmad, T., et al. (2010). Genome-wide meta-analysis Increases to 71 the num-
ber of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 42, 1118–1125.
doi: 10.1038/ng.717

Fridlender, Z. G., Cohen, P. Y., Golan, O., Arish, N., Wallach-Dayan, S., and
Breuer, R. (2007). Telomerase activity in bleomycin-induced epithelial cell
apoptosis and lung fibrosis. Eur. Respir. J. 30, 205–213. doi: 10.1183/09031936.
00009407

Garrett, M. R., Pezzolesi, M. G., and Korstanje, R. (2010). Integrating human and
rodent data to identify the genetic factors involved in chronic kidney disease.
J. Am. Soc. Nephrol. 21, 398–405. doi: 10.1681/ASN.2009080881

Genovese, G., Friedman, D. J., Ross, M. D., Lecordier, L., Uzureau, P., Freedman, B.
I., et al. (2010). Association of trypanolytic ApoL1 variants with kidney disease
in African Americans. Science 329, 841–845. doi: 10.1126/science.1193032

Gorden, A., Yang, R., Yerges-Armstrong, L. M., Ryan, K. A., Speliotes, E., Borecki,
I. B., et al. (2013). Genetic variation at NCAN locus is associated with inflam-
mation and fibrosis in non-alcoholic fatty liver disease in morbid obesity. Hum.
Hered. 75, 34–43. doi: 10.1159/000346195

Gorlova, O., Martin, J.-E., Rueda, B., Koeleman, B. P. C., Ying, J., Teruel, M., et al.
(2011). Identification of novel genetic markers associated with clinical pheno-
types of systemic sclerosis through a genome-wide association strategy. PLoS
Genet. 7:e1002178. doi: 10.1371/journal.pgen.1002178

Grünhage, F., Hochrath, K., Krawczyk, M., Höblinger, A., Obermayer-Pietsch,
B., Geisel, J., et al. (2012). Common genetic variation in vitamin D
metabolism is associated with liver stiffness. Hepatology 56, 1883–1891. doi:
10.1002/hep.25830

Gu, H. F., and Brismar, K. (2012). Genetic association studies in diabetic nephropa-
thy. Curr. Diabetes Rev. 8, 336–344. doi: 10.2174/157339912802083522

Gudbjartsson, D. F., Holm, H., Indridason, O. S., Thorleifsson, G., Edvardsson, V.,
Sulem, P., et al. (2010). Association of variants at UMOD with chronic kid-
ney disease and kidney stones-role of age and comorbid diseases. PLoS Genet.
6:e1001039. doi: 10.1371/journal.pgen.1001039

Guo, X., Pace, R. G., Stonebraker, J. R., Commander, C. W., Dang, A. T., Drumm,
M. L., et al. (2011). Mucin variable number tandem repeat polymorphisms and
severity of cystic fibrosis lung disease: significant association with MUC5AC.
PLoS ONE 6:e25452. doi: 10.1371/journal.pone.0025452

Hallows, K. R., Mount, P. F., Pastor-Soler, N. M., and Power, D. A. (2010). Role
of the energy sensor amp-activated protein kinase in renal physiology and
disease. Am. J. Physiol. Renal Physiol. 298, F1067–F1077. doi: 10.1152/ajpre-
nal.00005.2010

Hargrave, M., Wright, E., Kun, J., Emery, J., Cooper, L., and Koopman, P. (1997).
Expression of the Sox11 gene in mouse embryos suggests roles in neuronal
maturation and epithelio-mesenchymal induction. Dev. Dyn. 210, 79–86. doi:
10.1002/(SICI)1097-0177(199710)210:2<79::AID-AJA1>3.0.CO;2-6

He, S., McPhaul, C., Li, J. Z., Garuti, R., Kinch, L., Grishin, N. V., et al. (2010).
A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty
liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 285, 6706–6715. doi:
10.1074/jbc.M109.064501

Hecker, L., Cheng, J., and Thannickal, V. J. (2012). Targeting NOX enzymes in
pulmonary fibrosis. Cell. Mol. Life Sci. 69, 2365–2371. doi: 10.1007/s00018-012-
1012-7

Hirata, T., Tomita, K., Kawai, T., Yokoyama, H., Shimada, A., Kikuchi, M., et al.
(2013). Effect of telmisartan or losartan for treatment of nonalcoholic fatty liver
disease: fatty liver protection trial by telmisartan or losartan study (FANTASY).
Int. J. Endocrinol. 2013:587140. doi: 10.1155/2013/587140

Hirschfield, G. M., Liu, X., Xu, C., Lu, Y., Xie, G., Lu, Y., et al. (2009). Primary
biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N. Engl. J.
Med. 360, 2544–2555. doi: 10.1056/NEJMoa0810440

Hoshino, K., Satoh, T., Kawaguchi, Y., and Kuwana, M. (2011). Association of
hepatocyte growth factor promoter polymorphism with severity of interstitial
lung disease in japanese patients with systemic sclerosis. Arthritis Rheum. 63,
2465–2472. doi: 10.1002/art.30415

Hsu, E., Shi, H., Jordan, R. M., Lyons-Weiler, J., Pilewski, J. M., and Feghali-
Bostwick, C. A. (2011). Lung tissues in patients with systemic sclerosis have gene
expression patterns unique to pulmonary fibrosis and pulmonary hypertension.
Arthritis Rheum. 63, 783–794. doi: 10.1002/art.30159

Kao, W. H. L., Klag, M. J., Meoni, L. A., Reich, D., Berthier-Schaad, Y., Li, M., et al.
(2008). MYH9 is associated with nondiabetic end-stage renal disease in African
Americans. Nat. Genet. 40, 1185–1192. doi: 10.1038/ng.232

Khor, B., Gardet, A., and Xavier, R. J. (2011). Genetics and pathogenesis of
inflammatory bowel disease. Nature 474, 307–317. doi: 10.1038/nature10209

Kispert, A., Vainio, S., and McMahon, A. P. (1998). Wnt-4 is a mesenchymal sig-
nal for epithelial transformation of metanephric mesenchyme in the developing
kidney. Development 125, 4225–4234.

Kitamoto, T., Kitamoto, A., Yoneda, M., Hyogo, H., Ochi, H., Nakamura, T.,
et al. (2013). Genome-wide scan revealed that polymorphisms in the PNPLA3,
SAMM50, and PARVB genes are associated with development and progression
of nonalcoholic fatty liver disease in Japan. Hum. Genet. 132, 783–792. doi:
10.1007/s00439-013-1294-3

Köppel, H., Riedl, E., Braunagel, M., Sauerhoefer, S., Ehnert, S., Godoy, P., et al.
(2011). L-carnosine inhibits high-glucose-mediated matrix accumulation in
human mesangial cells by interfering with TGF-β production and signalling.
Nephrol., Dial. Transplant. 26, 3852–3858. doi: 10.1093/ndt/gfr324

Kopp, J. B., Smith, M.,.W., Nelson, G. W., Johnson, R. C., and Freedman, B.
I., Bowden, D. W., et al. (2008). MYH9 is a major-effect risk gene for focal
segmental glomerulosclerosis. Nat. Genet. 40, 1175–1184. doi: 10.1038/ng.226

Köttgen, A., Glazer, N. L., Dehghan, A., Hwang, S.-J., Katz, R., Li, M., et al. (2009).
Multiple loci associated with indices of renal function and chronic kidney
disease. Nat. Genet. 41, 712–717. doi: 10.1038/ng.377

Köttgen, A., Pattaro, C., Böger, C. A., Fuchsberger, C., Olden, M., Glazer, N. L., et al.
(2010). New loci associated with kidney function and chronic kidney disease.
Nat. Genet. 42, 376–384. doi: 10.1038/ng.568

Kropski, J. A., Lawson, W. E., Young, L. R., and Blackwell, T. S. (2013). Genetic
studies provide clues on the pathogenesis of idiopathic pulmonary fibrosis. Dis.
Models Mech. 6, 9–17. doi: 10.1242/dmm.010736

Lam, A. P., and Gottardi, C. J. (2011). B-catenin signaling: a novel mediator of
fibrosis and potential therapeutic target. Curr. Opin. Rheumatol. 23, 562–567.
doi: 10.1097/BOR.0b013e32834b3309

Lange, C. M., Miki, D., Ochi, H., Nischalke, H.-D., Bojunga, J., Bibert, S., et al.
(2013). Genetic analyses reveal a role for vitamin D insufficiency in HCV-
associated hepatocellular carcinoma development. PLoS ONE 8:e64053. doi:
10.1371/journal.pone.0064053

Lee, J. C., Espéli, M., Anderson, C. A., Linterman, M. A., Pocock, J. M., Williams,
N. J., et al. (2013a). Human SNP links differential outcomes in inflammatory
and infectious disease to a FOXO3-regulated pathway. Cell 155, 57–69. doi:
10.1016/j.cell.2013.08.034

Lee, J. H., Kim, J. H., Kim, J. S., Chang, J. W., Kim, S. B., Park, J. S., et al. (2013b).
AMP-activated protein kinase inhibits TGF-β-, angiotensin II-, aldosterone-
, high glucose-, and albumin-induced epithelial-mesenchymal transition.
Am. J. Physiol. Renal Physiol. 304, F686–F697. doi: 10.1152/ajprenal.
00148.2012

Lesage, S., Zouali, H., Cézard, J.-P., Colombel, J.-F., Belaiche, J., Almer, S., et al.
(2002). CARD15/NOD2 mutational analysis and genotype-phenotype correla-
tion in 612 Patients with Inflammatory Bowel Disease. Am. J. Hum. Genet. 70,
845–857. doi: 10.1086/339432

Li, J. Z., Huang, Y., Karaman, R., Ivanova, P. T., Brown, H. A., Roddy, T., et al.
(2012). Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic
steatosis. J. Clin. Invest. 122, 4130–4144. doi: 10.1172/JCI65179

Li, S., McAlpine, D. D., Liu, J., Li, S., and Collins, A. J. (2004). Differences
between blacks and whites in the incidence of end-stage renal disease and

www.frontiersin.org December 2013 | Volume 4 | Article 159 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Inflammation_Pharmacology/archive


Gardet et al. Genetics of human fibrosis

associated risk factors. Adv. Ren. Replace. Ther. 11, 5–13. doi: 10.1053/j.arrt.
2003.10.005

Liu, T., Chung, M. J., Ullenbruch, M., Yu, H., Jin, H., Hu, B., et al. (2007).
Telomerase activity is required for bleomycin-induced pulmonary fibrosis in
mice. J. Clin. Invest. 117, 3800–3809. doi: 10.1172/JCI32369

Liu, T., Ullenbruch, M., Choi, Y. Y., Yu, H., Ding, L., Xaubet, A., et al. (2013a).
Telomerase and telomere length in pulmonary fibrosis. Am. J. Respir. Cell Mol.
Biol. 49, 260–268. doi: 10.1165/rcmb.2012-0514OC

Liu, J. Z., Hov, J. R., Folseraas, T., Ellinghaus, E., Rushbrook, S. M., Doncheva, N.
T., et al. (2013b). Dense genotyping of immune-related disease regions identifies
nine new risk loci for primary sclerosing cholangitis. Nat. Genet. 45, 670–675.
doi: 10.1038/ng.2616

Liu, X., Invernizzi, P., Lu, Y., Kosoy, R., Lu, Y., Bianchi, I., et al. (2010). Genome-
wide meta-analyses identify three loci associated with primary biliary cirrhosis.
Nat. Genet. 42, 658–660. doi: 10.1038/ng.627

Lu, W.-S., Wang, J.-F., Yang, S., Xiao, F.-L., Quan, C., Cheng, H., et al. (2008).
Association of HLA-DQA1 and DQB1 alleles with keloids in chinese hans.
J. Dermatol. Sci. 52, 108–117. doi: 10.1016/j.jdermsci.2008.04.010

Maitra, M., Cano, C. A., and Garcia, C. K. (2012). Mutant surfactant A2 pro-
teins associated with familial pulmonary fibrosis and lung cancer induce
TGF-β1 secretion. Proc. Natl. Acad. Sci. U.S.A. 109, 21064–21069. doi:
10.1073/pnas.1217069110

Maitra, M., Dey, M., Yuan, W.-C., Nathanielsz, P. W., and Garcia, C. K. (2013).
Lung fibrosis associated surfactant protein A1 and C variants induce latent
TGF-β1 secretion in lung epithelial cells. J. Biol. Chem. 288, 27159–27171. doi:
10.1074/jbc.M113.475335

Maitra, M., Wang, Y., Gerard, R. D., Mendelson, C. R., and Garcia, C. K.
(2010). Surfactant protein A2 mutations associated with pulmonary fibrosis
lead to protein instability and endoplasmic reticulum stress. J. Biol. Chem. 285,
22103–22113. doi: 10.1074/jbc.M110.121467

Manetti, M., Allanore, Y., Saad, M., Fatini, C., Cohignac, V., Guiducci, S.,
et al. (2012). Evidence for caveolin-1 as a new susceptibility gene regulat-
ing tissue fibrosis in systemic sclerosis. Ann. Rheum. Dis. 71, 1034–1041. doi:
10.1136/annrheumdis-2011-200986

Manetti, M., Ibba-Manneschi, L., Fatini, C., Guiducci, S., Cuomo, G., Bonino,
C., et al. (2010). Association of a functional polymorphism in the matrix
metalloproteinase-12 promoter region with systemic sclerosis in an italian
population. J. Rheumatol. 37, 1852–1857. doi: 10.3899/jrheum.100237

Marneros, A. G., Norris, J. E. C., Watanabe, S., Reichenberger, E., and Olsen,
B. R. (2004). Genome scans provide evidence for keloid susceptibility loci
on chromosomes 2q23 and 7p11. J. Invest. Dermatol. 122, 1126–1132. doi:
10.1111/j.0022-202X.2004.22327.x

Martini, S., Nair, V., Patel, S. R., Eichinger, F., Nelson, R. G., Weil, E. J., et al.
(2013). From single nucleotide polymorphism to transcriptional mechanism:
a model for FRMD3 in diabetic nephropathy. Diabetes 62, 2605–2612. doi:
10.2337/db12-1416

Mells, G. F., Floyd, J. A. B., Morley, K. I., Cordell, H. J., Franklin, C. S., Shin, S.-
Y., et al. (2011). Genome-wide association study identifies 12 new susceptibility
loci for primary biliary cirrhosis. Nat. Genet. 43, 329–332. doi: 10.1038/ng.789

Mells, G. F., Kaser, A., and Karlsen, T. H. (2013). Novel insights into autoimmune
liver diseases provided by genome-wide association studies. J. Autoimm. 46,
41–54. doi: 10.1016/j.jaut.2013.07.004

Melum, E., Franke, A., Schramm, C., Weismüller, T. J., Gotthardt, D. N., Offner,
F. A., et al. (2011). Genome-wide association analysis in primary sclerosing
cholangitis identifies two non-HLA susceptibility loci. Nat. Genet. 43, 17–19.
doi: 10.1038/ng.728

Menini, S., Iacobini, C., Ricci, C., Scipioni, A., and Fantauzzi, C. B., Giaccari,
A. et al. (2012). D-carnosine octylester attenuates atherosclerosis and renal
disease in ApoE null mice fed a western diet through reduction of carbonyl
stress and inflammation. Br. J. Pharmacol. 166, 1344–1356. doi: 10.1111/j.1476-
5381.2012.01834.x

Mo, L., Zhu, X.-H., Huang, H.-Y., Shapiro, E., Hasty, D. L., and Wu, X.-R. (2004).
Ablation of the tamm-horsfall protein gene increases susceptibility of mice to
bladder colonization by Type 1-fimbriated escherichia coli. Am. J. Physiol. Renal
Physiol. 286, F795–F802. doi: 10.1152/ajprenal.00357.2003

Molina-Molina, M., Xaubet, A., Li, X., Abdul-Hafez, A., Friderici, K., Jernigan,
K., et al. (2008). Angiotensinogen gene G-6A polymorphism influences idio-
pathic pulmonary fibrosis disease progression. Eur. Respir. J. 32, 1004–1008. doi:
10.1183/09031936.00015808

Murray, L. A., Rubinowitz, A., and Herzog, E. L. (2012). Interstitial lung disease:
is interstitial lung disease the same as scleroderma lung disease? Curr. Opin.
Rheumatol. 24, 656–662. doi: 10.1097/BOR.0b013e3283588de4

Murugan, S., Shan, J., Kühl, S. J., Tata, A., and Pietilä, I., Kühl, M. et al. (2012).
WT1 and Sox11 regulate synergistically the promoter of the Wnt4 gene that
encodes a critical signal for nephrogenesis. Exp. Cell Res. 318, 1134–1145. doi:
10.1016/j.yexcr.2012.03.008

Nakashima, M., Chung, S., Takahashi, A., Kamatani, N., Kawaguchi, T., Tsunoda,
T., et al.. (2010). A genome-wide association study identifies four susceptibility
loci for keloid in the japanese population. Nat. Genet. 42, 768–771. doi:
10.1038/ng.645

Nogee, L. M., Dunbar, A. E. 3rd., Wert, S. E., Askin, F., Hamvas, A., and
Whitsett, J. A. (2001). A mutation in the surfactant Protein C gene associ-
ated with familial interstitial lung disease. N. Engl. J. Med. 344, 573–579. doi:
10.1056/NEJM200102223440805

Ntzani, E. E., and Kavvoura, F. K. (2012). Genetic risk factors for Type 2 dia-
betes: insights from the emerging genomic evidence. Curr. Vasc. Pharmacol. 10,
147–155. doi: 10.2174/157016112799305030

O’Dwyer, D. N., Armstrong, M. E., Trujillo, G., Cooke, G., Keane, M. P., Fallon,
P. G., et al. (2013). The toll-like receptor 3 L412F polymorphism and disease
progression in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. doi:
10.1164/rccm.201304-0760OC. [Epub ahead of print].

Ono, S., Tanaka, T., Ishida, M., Kinoshita, A., Fukuoka, J., Takaki, M., et al.
(2011). Surfactant protein C G100S mutation causes familial pulmonary fibro-
sis in Japanese Kindred. Eur. Respir. J. 38, 861–869. doi: 10.1183/09031936.
00143610

Palmer, N. D., and Freedman, B. I. (2012). Insights into the genetic architecture of
diabetic nephropathy. Curr. Diab. Rep. 12, 423–431. doi: 10.1007/s11892-012-
0279-2

Park, D., Tosello-Trampont, A.-C., Elliott, M. R., Lu, M., Haney, L. B., Ma, Z.,
et al. (2007). BAI1 is an engulfment receptor for apoptotic cells upstream
of the ELMO/Dock180/Rac module. Nature 450, 430–434. doi: 10.1038/
nature06329

Park, J.-I., Venteicher, A. S., Hong, J. Y., Choi, J., Jun, S., Shkreli, M., et al.
(2009). Telomerase modulates Wnt signalling by association with target gene
chromatin. Nature 460, 66–72. doi: 10.1038/nature08137

Patin, E., Kutalik, Z., Guergnon, J., Bibert, S., Nalpas, B., Jouanguy, E., et al. (2012).
Genome-wide association study identifies variants associated with progression
of liver fibrosis from HCV infection. Gastroenterology 143, 1244–1252.e1–12.
doi: 10.1053/j.gastro.2012.07.097

Peljto, A. L., Steele, M. P., Fingerlin, T. E., Hinchcliff, M. E., and Murphy,
E., Podlusky, S. et al. (2012). The pulmonary fibrosis-associated MUC5B
promoter polymorphism does not influence the development of intersti-
tial pneumonia in systemic sclerosis. Chest 142, 1584–1588. doi: 10.1378/
chest.12-0110

Peljto, A. L., Zhang, Y., Fingerlin, T. E., Ma, S.-F., Garcia, J. G. N., Richards, T. J.,
et al. (2013). Association between the MUC5B promoter polymorphism and
survival in patients with idiopathic pulmonary fibrosis. JAMA 309, 2232–2239.
doi: 10.1001/jama.2013.5827

Petta, S., Grimaudo, S., Marco, V. D., Scazzone, C., Macaluso, F. S., Cammà, C.,
et al. (2013). Association of vitamin D serum levels and its common genetic
determinants, with severity of liver fibrosis in Genotype 1 chronic hepatitis C
patients. J. Viral Hepat. 20, 486–493. doi: 10.1111/jvh.12072

Polychronakos, C., and Li, Q. (2011). Understanding Type 1 diabetes through
genetics: advances and prospects. Nat. Rev. Genet. 12, 781–792. doi:
10.1038/nrg3069

Radstake, T. R., Gorlova, O., Rueda, B., Martin, J. E., Alizadeh, B. Z., Palomino-
Morales, R., et al. (2010). Genome-wide association study of systemic sclerosis
identifies CD247 as a new susceptibility locus. Nat Genet. 42, 426–429. doi:
10.1038/ng.565

Riedl, E., Pfister, F., Braunagel, M., Brinkkötter, P., Sternik, P., Deinzer, M., et al.
(2011). Carnosine prevents apoptosis of glomerular cells and podocyte loss in
STZ diabetic rats. Cell. Physiol. Biochem. 28, 279–288. doi: 10.1159/000331740

Rocha, A., Almeida, M., Santos, J., and Carvalho, A. (2013). Metformin in patients
with chronic kidney disease: strengths and weaknesses. J. Nephrol. 26, 55–60.
doi: 10.5301/jn.5000166

Romano, E., Manetti, M., Guiducci, S., Ceccarelli, C., Allanore, Y., and Matucci-
Cerinic, M. (2011). The genetics of systemic sclerosis: an update. Clin. Exp.
Rheumatol. 29(2 Suppl 65): S75–S86. doi: 10.1007/s11926-011-0221-7

Frontiers in Pharmacology | Inflammation Pharmacology December 2013 | Volume 4 | Article 159 | 10

http://www.frontiersin.org/Inflammation_Pharmacology
http://www.frontiersin.org/Inflammation_Pharmacology
http://www.frontiersin.org/Inflammation_Pharmacology/archive


Gardet et al. Genetics of human fibrosis

Sabate, J.-M., Ameziane, N., Lamoril, J., Jouet, P., Farmachidi, J.-P., Soulé, J.-
C., et al. (2008). The V249I polymorphism of the CX3CR1 gene is asso-
ciated with fibrostenotic disease behavior in patients with Crohn’s dis-
ease. Eur. J. Gastroenterol. Hepatol. 20, 748–755. doi: 10.1097/MEG.0b013e
3282f824c9

Sahin, E., Colla, S., Liesa, M., Moslehi, J., Müller, F. L., Guo, M., et al. (2011).
Telomere dysfunction induces metabolic and mitochondrial compromise.
Nature 470, 359–365. doi: 10.1038/nature09787

Satriano, J., Sharma, K., Blantz, R. C., and Deng. A. (2013). Induction of AMPK
activity corrects early pathophysiological alterations in the subtotal nephrec-
tomy model of chronic kidney disease. Am. J. Physiol. Renal Physiol. 305,
F727–F733. doi: 10.1152/ajprenal.00293.2013

Scott, R. S., McMahon, E. J., Pop, S. M., Reap, E. A., Caricchio, R., Cohen, P. L.,
et al. (2001). Phagocytosis and clearance of apoptotic cells is mediated by MER.
Nature 411, 207–211. doi: 10.1038/35075603

Seibold, M. A., Smith, R. W., Urbanek, C., Groshong, S. D., Cosgrove, G. P., and
Brown, K. K., et at. (2013). The idiopathic pulmonary fibrosis honeycomb cyst
contains a mucocilary pseudostratified epithelium. PLoS ONE 8:e58658. doi:
10.1371/journal.pone.0058658

Seibold, M. A., Wise, A. L., Speer, M. C., Steele, M. P., Brown, K. K., Loyd, J. E., et al.
(2011). A Common MUC5B promoter polymorphism and pulmonary fibrosis.
N. Engl. J. Med. 364, 1503–1512. doi: 10.1056/NEJMoa1013660

Seiderer, J., Brand, S., Herrmann, K. A., Schnitzler, F., Hatz, R., Crispin, A., et al.
(2006). Predictive value of the CARD15 variant 1007fs for the diagnosis of
intestinal stenoses and the need for surgery in Crohn’s disease in clinical prac-
tice: results of a prospective study. Inflamm. Bowel Dis. 12, 1114–1121. doi:
10.1097/01.mib.0000235836.32176.5e

Sharif, R., Mayes, M. D., Tan, F. K., Gorlova, O. Y., Hummers, L. K., Shah, A. A.,
et al. (2012). IRF5 polymorphism predicts prognosis in patients with systemic
sclerosis. Ann. Rheum. Dis. 71, 1197–1202. doi: 10.1136/annrheumdis-2011-
200901

Shen, Y., Wu, L., Xi, B., Liu, X., Zhao, X., Cheng, H., et al. (2013). GCKR vari-
ants increase triglycerides while protecting from insulin resistance in chinese
children. PLoS ONE 8:e55350. doi: 10.1371/journal.pone.0055350

Shimazaki, A., Tanaka, Y., Shinosaki, T., Ikeda, M., Watada, H., and Hirose,
T., et al. (2006). ELMO1 increases expression of extracellular matrix pro-
teins and inhibits cell adhesion to ECMs. Kidney Int. 70, 1769–1776. doi:
10.1038/sj.ki.5001939

Sisson, T. H., Mendez, M., Choi, K., Subbotina, N., Courey, A., Cunningham,
A., et al. (2010). Targeted injury of type ii alveolar epithelial cells induces
pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 181 254–263. doi:
10.1164/rccm.200810-1615OC

Sock, E., Rettig, S. D., Enderich, J. Bösl, M. R., Tamm, E. R., and Wegner, M.
(2004). Gene targeting reveals a widespread role for the high-mobility-group
transcription factor Sox11 in tissue remodeling. Mol. Cell. Biol. 24, 6635–6644.
doi: 10.1128/MCB.24.15.6635-6644.2004

Speca, S., Giusti, I., Rieder, F., and Latella, G. (2012). Cellular and molecular
mechanisms of intestinal fibrosis. World J. Gastroenterol. 18, 3635–3661. doi:
10.3748/wjg.v18.i28.3635

Speliotes, E. K., Yerges-Armstrong, L. M., Wu, J., Hernaez, R., Kim, L. J., Palmer, C.
D., et al. (2011). Genome-wide association analysis identifies variants associated
with nonalcoholic fatty liver disease that have distinct effects on metabolic traits.
PLoS Genet. 7:e1001324. doi: 10.1371/journal.pgen.1001324

Steen, V. D., Powell, D. L., and Medsger, T. A. Jr. (1988). Clinical correlations and
prognosis based on serum autoantibodies in patients with systemic sclerosis.
Arthritis Rheum. 31, 196–203. doi: 10.1002/art.1780310207

Stock, C. J., Sato, H., Fonseca, C., Banya, W. A. S., Molyneaux, P. L., Adamali,
H., et al. (2013). Mucin 5B promoter polymorphism is associated with idio-
pathic pulmonary fibrosis but not with development of lung fibrosis in sys-
temic sclerosis or sarcoidosis. Thorax 68, 436–441. doi: 10.1136/thoraxjnl-
2012-201786

Surendran, K., McCaul, S. P., and Simon, T. C. (2002). A role for Wnt-4 in renal
fibrosis. Am. J. Physiol. Renal Physiol. 282, F431–F441.

Tanjore, H., Blackwell, T. S., and Lawson, W. E. (2012). Emerging evidence
for endoplasmic reticulum stress in the pathogenesis of idiopathic pul-
monary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L721–L729. doi:
10.1152/ajplung.00410.2011

Tanjore, H., Cheng, D.-S., Degryse, A. L., Zoz, D. F., Abdolrasulnia, R., Lawson,
W. E., et al. (2011). Alveolar epithelial cells undergo epithelial-to-mesenchymal

transition in response to endoplasmic reticulum stress. J. Biol. Chem. 286,
30972–30980. doi: 10.1074/jbc.M110.181164

Tanjore, H., Lawson, W. E., and Blackwell, T. S. (2013). Endoplasmic reticulum
stress as a pro-fibrotic stimulus. Biochim. Biophys. Acta 1832, 940–947. doi:
10.1016/j.bbadis.2012.11.011

Thomas, A. Q., Lane, K., Phillips, J. 3rd., Prince, M., Markin, C., Speer, M., et al.
(2002). Heterozygosity for a surfactant protein C gene mutation associated
with usual interstitial pneumonitis and cellular nonspecific interstitial pneu-
monitis in one kindred. Am. J. Respir. Crit. Care Med. 165, 1322–1328. doi:
10.1164/rccm.200112-123OC

Thurm, T., Kaltenborn, E., Kern, S., Griese, M., and Zarbock, R. (2013). SFTPC
mutations cause SP-C degradation and aggregate formation without increasing
ER stress. Eur. J. Clin. Invest. 43, 791–800. doi: 10.1111/eci.12107

Tsakiri, K. D., Cronkhite, J. T., Kuan, P. J., Xing, C., Raghu, G., Weissler, J.
C., et al. (2007). Adult-onset pulmonary fibrosis caused by mutations in
telomerase. Proc. Natl. Acad. Sci. U.S.A. 104, 7552–7557. doi: 10.1073/pnas.
0701009104

van Ham, T. J., Kokel, D., and Peterson, R. T. (2012). Apoptotic cells are cleared
by directional migration and Elmo1- dependent macrophage engulfment. Curr.
Biol. 22, 830–836. doi: 10.1016/j.cub.2012.03.027

van Moorsel, C. H. M., van Oosterhout, M. F. M., Barlo, N. P., de Jong, P.
A., van der Vis, J. J., Ruven, H. J. T. et al. (2010). Surfactant protein C
mutations are the basis of a significant portion of adult familial pulmonary
fibrosis in a dutch cohort. Am. J. Respir. Crit. Care Med. 182, 1419–1425. doi:
10.1164/rccm.200906-0953OC

Vivante, A., Mark-Danieli, M., Davidovits, M., Harari-Steinberg, O., Omer, D.,
Gnatek, Y., et al. (2013). Renal hypodysplasia associates with a WNT4 variant
that causes aberrant canonical WNT signaling. J. Am. Soc. Nephrol. 24, 550–558.
doi: 10.1681/ASN.2012010097

Vyletal, P., Bleyer, A. J., and Kmoch, S. (2010). Uromodulin biology and
pathophysiology—an update. Kidney Blood Press. Res. 33, 456–475. doi:
10.1159/000321013

Wang, X. M., Zhang, Y., Kim, H. P., Zhou, Z., Feghali-Bostwick, C. A., Liu, F., et al.
(2006). Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary
fibrosis. J. Exp. Med. 203, 2895–2906. doi: 10.1084/jem.20061536

Wang, Y., Kuan, P. J., Xing, C., Cronkhite, J. T., Torres, F., Rosenblatt, R. L.,
et al. (2009). Genetic defects in surfactant protein A2 are associated with
pulmonary fibrosis and lung cancer. Am. J. Hum. Genet. 84, 52–59. doi:
10.1016/j.ajhg.2008.11.010

Waseda, Y., Yasui, M., Nishizawa, Y., Inuzuka, K., Takato, H., Ichikawa, Y.,
et al. (2008). Angiotensin II Type 2 receptor antagonist reduces bleomycin-
induced pulmonary fibrosis in mice. Respir. Res. 9:43. doi: 10.1186/1465-
9921-9-43

Wright, F. A., Strug, L. J., Doshi, V. K., Commander, C. W., Blackman, S. M., Sun,
L., et al. (2011). Genome-wide association and linkage identify modifier loci
of lung disease severity in cystic fibrosis at 11p13 and 20q13.2. Nat. Genet. 43,
539–546. doi: 10.1038/ng.838

Yaguchi, S., Ogawa, Y., Shimmura, S., Kawakita, T., Hatou, S., Satofuka, S., et al.
(2013). Angiotensin II Type 1 receptor antagonist attenuates lacrimal gland,
lung, and liver fibrosis in a murine model of chronic graft-versus-host disease.
PLoS ONE 8:e64724. doi: 10.1371/journal.pone.0064724

Yan, X., Gao, J.-H., Chen, Y., Song, M., and Liu, X.-J. (2007). Preliminary link-
age analysis and mapping of keloid susceptibility locus in a Chinese pedi-
gree. Zhonghua Zheng Xing Wai Ke Za Zhi 23, 32–35. Available online at:
http://www.ncbi.nlm.nih.gov/pubmed/?term=17393690

Yang, J., Lin, S.-C., Chen, G., He, L., Hu, Z., Chan, L., et al. (2013). Adiponectin pro-
motes monocyte-to-fibroblast transition in renal fibrosis. J. Am. Soc. Nephrol.
24, 1644–1659. doi: 10.1681/ASN.2013030217

Yokohama, S., Yoneda, M., Haneda, M., Okamoto, S., Okada, M., Aso, K.,
et al. (2004). Therapeutic efficacy of an angiotensin II receptor antagonist
in patients with nonalcoholic steatohepatitis. Hepatology 40, 1222–1225. doi:
10.1002/hep.20420

Yoneda, M., Hotta, K., Nozaki, Y., Endo, H., Uchiyama, T., Mawatari, H., et al.
(2009). Association between angiotensin II Type 1 receptor polymorphisms and
the occurrence of nonalcoholic fatty liver disease. Liver Int. 29, 1078–1085. doi:
10.1111/j.1478-3231.2009.01988.x

Zain, S. M., Mohamed, Z., Mahadeva, S., Rampal, S., Basu, R. C., Cheah, P.-L.,
et al. (2013). Susceptibility and gene interaction study of the angiotensin II
Type 1 receptor (AGTR1) gene polymorphisms with non-alcoholic fatty liver

www.frontiersin.org December 2013 | Volume 4 | Article 159 | 11

http://www.ncbi.nlm.nih.gov/pubmed/?term=17393690
http://www.frontiersin.org
http://www.frontiersin.org/Inflammation_Pharmacology/archive


Gardet et al. Genetics of human fibrosis

disease in a multi-ethnic population. PLoS ONE 8:e58538. doi: 10.1371/jour-
nal.pone.0058538

Zhang, G.-Y., Yu, Q., Cheng, T., Liao, T., Nie, C.-L., Wang, A.-Y., et al. (2011).
Role of caveolin-1 in the pathogenesis of tissue fibrosis by keloid-derived
fibroblasts in vitro. Br. J. Dermatol. 164, 623–627. doi: 10.1111/j.1365-2133.
2010.10111.x

Zhong, Q., Zhou, B., Ann, D. K., Minoo, P., Liu, Y., Banfalvi, A., et al. (2011). Role
of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar
epithelial cells: effects of misfolded surfactant protein. Am. J. Respir. Cell Mol.
Biol. 45, 498–509. doi: 10.1165/rcmb.2010-0347OC

Zhu, F., Wu, B., Li, P., Wang, J., Tang, H., Liu, Y., et al. (2013). Association study
confirmed susceptibility loci with keloid in the chinese han population. PLoS
ONE 8:e62377. doi: 10.1371/journal.pone.0062377

Zizzo, G., Hilliard, B. A., Monestier, M., and Cohen, P. L. (2012). Efficient
clearance of early apoptotic cells by human macrophages requires M2c polar-
ization and MerTK induction. J. Immunol. 189, 3508–3520. doi: 10.4049/jim-
munol.1200662

Conflict of Interest Statement: Agnès Gardet, Timothy S. Zheng, and Joanne L.
Viney are employees of Biogen Idec.

Received: 07 November 2013; paper pending published: 26 November 2013; accepted:
03 December 2013; published online: 18 December 2013.
Citation: Gardet A, Zheng TS and Viney JL (2013) Genetic architecture of human
fibrotic diseases: disease risk and disease progression. Front. Pharmacol. 4:159. doi:
10.3389/fphar.2013.00159
This article was submitted to Inflammation Pharmacology, a section of the journal
Frontiers in Pharmacology.
Copyright © 2013 Gardet, Zheng and Viney. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Pharmacology | Inflammation Pharmacology December 2013 | Volume 4 | Article 159 | 12

http://dx.doi.org/10.3389/fphar.2013.00159
http://dx.doi.org/10.3389/fphar.2013.00159
http://dx.doi.org/10.3389/fphar.2013.00159
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Inflammation_Pharmacology
http://www.frontiersin.org/Inflammation_Pharmacology
http://www.frontiersin.org/Inflammation_Pharmacology/archive

	Genetic architecture of human fibrotic diseases: disease risk and disease progression
	Introduction
	Diseases Associated with Lung Fibrosis
	Idiopathic Interstitial Pneumonias and Idiopathic Pulmonary Fibrosis
	Interstitial Lung Disease in Systemic Sclerosis

	Diseases Associated with Renal Fibrosis
	Chronic Kidney Disease
	Diabetic Nephropathy

	Diseases Associated with Liver Fibrosis
	Autoimmune Liver Diseases
	Non-Alcoholic Fatty Liver Disease

	Diseases Associated with Intestinal Fibrosis
	Diseases Associated with Skin Fibrosis
	Fibrosis Progression: Promising Studies in Cystic Fibrosis and HCV-Induced Fibrosis
	Concluding Remarks
	Acknowledgments
	References


