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Emerging antibiotic resistance in bacteria endorses the failure of existing drugs with
chronic illness, complicated treatment, and ever-increasing expenditures. Bacteria
acquire the nature to adapt to starving conditions, abiotic stress, antibiotics, and our
immune defense mechanism due to its swift evolution. The intense and inappropriate use
of antibiotics has led to the development of multidrug-resistant (MDR) strains of bacteria.
Phytochemicals can be used as an alternative for complementing antibiotics due to their
variation in metabolic, genetic, and physiological fronts as well as the rapid evolution of
resistant microbes and lack of tactile management. Several phytochemicals from diverse
groups, including alkaloids, phenols, coumarins, and terpenes, have effectively proved
their inhibitory potential against MDR pathogens through their counter-action towards
bacterial membrane proteins, efflux pumps, biofilms, and bacterial cell-to-cell
communications, which are important factors in promoting the emergence of drug
resistance. Plant extracts consist of a complex assortment of phytochemical elements,
against which the development of bacterial resistance is quite deliberate. This review
emphasizes the antibiotic resistance mechanisms of bacteria, the reversal mechanism of
antibiotic resistance by phytochemicals, the bioactive potential of phytochemicals against
MDR, and the scientific evidence on molecular, biochemical, and clinical aspects to treat
bacterial pathogenesis in humans. Moreover, clinical efficacy, trial, safety, toxicity, and
affordability investigations, current status and developments, related demands, and future
prospects are also highlighted.
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INTRODUCTION

Origin of Antibiotic Resistance
Bacterial penicillinase was discovered by two members of the
penicillin discovery team many years before the use of penicillin
as a healing agent as discovered by Alexander Fleming in 1928.
Resistant strains that deactivated the drug emerged as a result of
the extensive use of antibiotics. Consequently, research to
chemically acclimatize penicillin to stop cleavage by
penicillinases (-lactamases) began (D’Costa et al., 2006).
Following penicillin, streptomycin came to practice in 1944 for
the treatment of tuberculosis (TB) (TB Alliance, 2019). During
the course of clinical practice with streptomycin, resistant strains
of Mycobacterium tuberculosis developed. Even though
innovative findings of streptomycin and isoniazid were used to
fight TB, there was still rapid progress in resistance. The
administration of anti-TB drugs in cocktail form has developed
as an important therapeutic routine with notable recovery;
however, multidrug resistance remains constant to TB
treatment throughout the world for a variety of reasons. In the
last two decades, M. tuberculosis strains have become extremely
drug-resistant (XDR) to front-line antibiotics, including
ethionamide, para-amino salicylic acid, cycloserine, ofloxacin,
amikacin, and ciprofloxacin. Later, they may become totally
drug-resistant strains (Velayati et al., 2009). The evolution of
multidrug resistance in M. tuberculosis through horizontal gene
transfer (HGT) is not evidenced by any authenticated research.
Hence, it is predicted that antibiotic resistance inM. tuberculosis
might be attributed to spontaneous mutation.

Similarly, the most common Gram-negative pathogens, like
Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae,
cause many diseases in humans. Since the past half-century,
antibiotic resistance development was observed towards these
diseases due to antibiotic misuse and overuse. Particularly, the
lactam group of antibiotics and their associated inactivating
lactamase enzymes are more prevalent; nearly 1,000 resistant
lactamase groups have been reported (Livermore et al., 2006).
The development and transmission of resistance to lactam
antibiotics among enteric groups of bacteria in the community
as well as in hospital infections is majorly increased by HGT.
Another major nosocomial pathogen, Pseudomonas aeruginosa,
originated from a burn wound infection in which the antibiotic
resistance mechanisms progressed accidentally due to treatment
with new antibiotic derivatives over the existing lactam and
aminoglycosides. P. aeruginosa is extremely difficult for patients
infected with cystic fibrosis since the pathogen is extremely
persistent and has the ability to bypass the human defense
mechanism. Prolonged antibiotic regime among cystic fibrosis
patients is closely linked with resistance development.

Acinetobacter baumannii, a Gram-negative nosocomial
pathogen, causes severe mortality and morbidity due to its R
genes and pathogenicity factors (Peleg et al., 2008).
Acinetobacter obtained pathogenic determinants due to their
dynamic existence and biodegradation abilities in harsh
environments; moreover, several strains in nature are
competent for DNA uptake and have a high chance of
spontaneous transformation. Recent molecular research
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
reported that A. baumannii has rapid evolution, with a
minimum of 28 genomic islands encrypting antibiotic
resistance determinants; additionally, 50% of these inserts also
translate virulence in the form of type IV secretion systems
(Gomez and Neyfakh, 2006).

Staphylococcus aureus, a Gram-positive superbug, is highly
associated with the human population as nasal commensal in
30% of the population, and its occurrence is linked with common
skin infections. Unlike M. tuberculosis, it does not have a strong
historical status, but S. aureus has developed as a major
multidrug-resistant nosocomial infection (Enright et al., 2002).
After the discovery of penicillin, S. aureus infections became
manageable, but the strain developed resistance over the course
of time. The innovative discovery of methicillin in 1959 was
assumed to be an effective antibiotic against penicillinases, but
within 3 years, the methicillin-resistant S. aureus (MRSA)
developed. At present, MRSA has started to transfer, with
higher virulence and transmission features, outside the hospital
and stands as a major community-acquired pathogen (DeLeo
and Chambers, 2009).

Due to the frequent use of antibiotics, the majority of
epidemic bacterial pathogens related to human disease
developed into multidrug-resistant (MDR) strains. “Superbugs”
is the term given to describe microbes with higher morbidity and
mortality due to numerous mutations. These “superbugs” result
in increased resistance to antibiotics exactly prescribed for their
treatment. Thus, the healing choices for these microbes become
less with prolonged hospitalization. Sometimes the “superbugs”
attained enhanced virulence and a higher level of transmission.
As a result, antibiotic resistance was considered a potential
virulence factor (Davies and Davies, 2010).

Carriers of Antibiotic Resistance
Understanding of several carriers of antibiotic resistance is an
important fact needed to face the global problem. The essential
features which are potential carriers of antibiotic resistance
include sanitation settings, infection control standards, water
quality, standard of drug, diagnostics and treatments, and
migration quarantine. Apart from mutations, in diverse genes
of the bacterial chromosome, the direct transfer of genetic
material between organisms plays an important role in the
circulation of antibiotic resistance. The transfer of plasmid
among bacteria is one of the vital features which may transfer
genes of antibiotic resistance to the host cell (Holmes et al.,
2016). Antibiotics may influence this process by inducing the
transmission of resistance elements; furthermore, they employ
selective pressure to the development of resistance (Munita and
Arias, 2016).

Sometimes the environment can offer a path for resistant
bacteria to form colonies or infect host organisms (Mazel, 2006).
This is referred to as “transmission event”, while variations in
their DNA sequence as well as genetic transmission among
bacterial species are considered as “evolution events”. In the
case of a resistant pathogen that is already common among
humans, the significance of a single transmission to one more
person is more restricted than for an evolutionary event,
resulting in the advent of a new, potential resistance genotype
June 2022 | Volume 12 | Article 883839
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in pathogens with hypothetically global significances. Even
though few pathogens, like Vibrio spp., survive in the
environment, it is a comparatively unfriendly environment
than a human or domestic animal host. Hence, development in
the environment is quite limited for those kinds of pathogens. It
is possible that minor growth changes between resistant and
non-resistant strains, triggered by sub-minimum inhibitory
concentration (MICs) of antibiotics, are a minor factor for the
opportunity that environmental exposure becomes adequately
enough for the colonization or infection of a host. The rest of the
living and non-living features like temperature, oxygen pressure,
nutrients, predation, and competition with other species, all
discrete to the antibiotic resistance habit of the bacteria, are
possible to be more significant for environmental transmission
chances for both resistant and non-resistant bacterial strains
(Larsson and Flach, 2021).

Basically, additional genetic elements present in bacteria have
the capacity of up-taking resistance genes and helping their
transmission; based on the genus of the pathogen, the nature
of genetic factors differs. Plasmid-mediated resistance
transmission is the most common mode of HGT (Norman
et al., 2009). Unexpectedly, bacteriophages taking up antibiotic
resistance genes have been reported in the environment or from
resistant bacteria found in hospitals; there is still no inquiry
about the connection of phages with the insertional mechanisms
essential for the development of mobile resistance factors or with
the functions of chromosomally linked genes. Usually, they are
termed as “fingerprints”, flanking genes encrypting resistance or
virulence on various vectors. These actions are found to be quite
common in S. aureus. Among bacterial genera like Streptococci,
Meningococci, and other related genera, the exchange of both
virulence and pathogenicity genes is unlimited. The main mode
of DNA transfer is found to be transformation (Springman et al.,
2009). Acinetobacter spp. is competent in nature to uptake DNA
directly from the environment with frequent HGT (Barbe, 2004)
because pathogenic bacterial strains transfer large genomic
islands (Perez et al., 2007). Throughout the history of bacterial
evolution, HGT has occurred; two independent sets of actions
should be taken into account, which is mainly distinguished by
their time span and the strength of selection pressure. Bacterial
evolution over billions of years cannot be related to the mode of
antibiotic resistance development and transfer over the last
century. The selection pressure of intense antibiotic treatment
and clearance is even higher; the selection is majorly necessary
for existence in hostile environments rather than for features
offering resistance in gradually developing groups of populations.

Genetic Insights of Antibiotic Resistance
Bacterial resistance towards antibiotics might be native, a unique
feature of specific bacterium which is based on its biological
phenomena, whereas acquired resistance is obtained through (i)
the attainment of exogenous genes by plasmids through
conjugation, transposons (conjugation), integrons, and
bacteriophages through transduction, (ii) gene mutation, and (iii)
a blend of the above-mentioned processes (Mims et al., 2004).
Generally, chromosomal mutations are occasional and control
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
resistance to structurally similar compounds (Rice et al., 2003).
These kinds of spontaneousmutations take place as mistakes during
replication or a damaged DNA that escaped from the repair system.
The antibiotic resistance of E. coli against quinolones developed due
to alterations in a minimum of seven and three amino acids in the
gyrA gene or parC gene, respectively (Džidić et al., 2008). In
contrast, only a single-point mutation in the rpoB gene is related
to a wide-ranging resistance to rifampin (Rice et al., 2003). Through
mutation, antibiotic uptake or efflux system can be altered (Hooper,
2001). Adaptive mutations take place only during the nonlethal
selection of microorganisms. In this mutation, the new gene holder
gets deleted at a specific recombination site (attI site) and at a
promoter that starts gene transcription. The majority of class I
integrons in the 3′ conserved segment has a supplementary gene
suII accountable for resistance to sulphonamides (Hooper, 2001;
Daikos et al., 2007).

Out of 21 reported anti-microbial resistance (AMR) genes,
the vital genes accountable for MDR Salmonella and E. coli are
AmpC, bla-TEM-1, bla-CTXM-15, VIM-1, NDM-1, floR, and
tetG and the recently found mcr-1 gene with resistance to
colistin. Diverse modes of resistance and new transmission
vectors and genes are reported consistently. Bacteria carry two
mechanisms for resistance, known as intrinsic resistance and
acquired resistance (Lynch et al., 2013). The capacity of a
bacterium to overcome the attack of a particular antibiotic by
innate structural or functional phenomena is called intrinsic
resistance. Pseudomonas is an outstanding example of an
intrinsic resistance mechanism because of the absence of a
vulnerable target site for a specific antibiotic. Triclosan is a
versatile antibiotic, particularly against Gram-positive bacteria
and several Gram-negative bacteria, but is unable to control the
growth of Pseudomonas. Besides this, they are highly resistant to
aminoglycosides, quinolones, and b-lactams.

Moreover, various other processes have also been reported to
be involved in microbial resistance against an antibiotic,
including the upregulation of efflux pumps, structural
modification of porins, enzyme synthesis, and cell-to-cell
communication (Porras et al., 2020), and this is represented in
Figure 1. Membrane proteins that have the ability to transfer
antibiotics from the cell, thereby sustaining their low
intracellular concentrations, are known as efflux pumps. When
the permeability of the outer membrane (OM) gets lowered, the
antibiotic uptake also gets reduced (Džidić et al., 2008).
Assessment of efflux pumps is one of the most crucial factors
in the analysis of antibiotic resistance. In single-component
efflux systems, substrates are passed through the cytoplasmic
membrane, but in Gram-negative bacteria, multicomponent
pumps and a periplasmic membrane synthesis protein
component transfer the substrates through the cell envelope
(Alekshun and Levy, 2007; Džidić et al., 2008). Efflux pumps
can be unique to each type of antibiotic. The majority of them are
multidrug transporters that have the ability to pump various
antibiotics like macrolides, tetracyclines, fluoroquinolones;
thereby, it remarkably offers to MDR (Dz ̌idić et al., 2008).
Frequently, bacteria resistant to tetracyclines secrete higher
levels of membrane proteins which are used as efflux pumps
June 2022 | Volume 12 | Article 883839
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for antimicrobial drugs. To remove toxic compounds from the
cytoplasm and periplasm, P. aeruginosa utilizes more than four
potential MDR efflux pumps (Strateva and Yordanov, 2009).
MDR efflux pumps like MexV-MexW-OprM are responsible for
resistance to antibiotics such as fluoroquinolones, tetracyclines,
chloramphenicol, erythromycin, and acriflavine (Strateva and
Yordanov, 2009). The higher-level expression of MexAB-OprM
efflux pumps leads to increased inhibitory concentration against
antibiotics like penicillins, cephalosporins, chloramphenicol,
fluoroquinolones, macrolides, novobiocin, sulfonamides,
tetracycline and trimethoprim, dyes (SYBR safe, Gelgreen), and
detergents (SDS, Triton X-100) (Thomson and Bonomo, 2005).
In Gram-negative bacteria, the b-lactam antibiotics can pass
through a membrane protein occupied with a water molecule
termed porin. When P. aeruginosa-specific OprD2 porin is
absent, it results in resistance to imipenem, whereas resistance
to meropenem takes place due to variations in the MexAB-OprM
efflux system (Bradford, 2001; Džidić et al., 2008). Bacterial
genera like Enterococcus aerogenes, Klebsiella spp., Proteus
mirabilis, Serratia marcescens, Morganella morganii, H.
influenzae, and Helicobacter pylori are reported to have
homologs of Mex and Acr efflux systems (Piddock, 2006). The
chief elimination system for macrolides, which is encrypted by
the mef gene, is predominant in Gram-positive bacteria that is
used for the removal of fluoroquinolones and aminoglycosides
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
from the bacterial cell. E. coli and K. pneumoniae are comprised
of an elimination system of tetracyclines and chloramphenicol,
which is encoded by ramA gene. The same phenomena provide
antibiotic resistance to norfloxacin (Grundmann et al, 2006).

The OM of Gram-negative bacteria encompasses an internal
layer that contains phospholipids and an external layer that has
the lipid A molecule. Hence, the nature of OM arrangement
lessens drug uptake to a cell and passes via the OM. Antibiotics
are transferred to a cell by the following mechanisms: (i)
diffusion via porins, (ii) diffusion across the bilayer, and (iii)
self-influenced uptake. The mode of transport is mainly based on
the chemical composition of an antibiotic (Džidić et al., 2008).
The reduced OM permeability of P. aeruginosa provides
acquired resistance to multiple antibiotic groups. Little
hydrophilic molecules, like b-lactams and quinolones, can pass
through the OM only via porins. Acquired resistance is a
distinctive feature of maximum resistance to almost all
aminoglycosides, particularly to tobramycin, netilmicin, and
gentamicin (Ferguson et al., 2007). Bacterial quorum sensing
(QS), also called cell-to-cell communication, helps chemical
signals, called autoinducers, activate to regulate pathogenic
behaviors and assist bacteria to escape from antibiotics and
host immune response. The three types of QS signals in
bacteria are acyl-homoserine lactone, auto-inducing peptide,
and autoinducer-2. QS signaling activation and subsequent
FIGURE 1 | Molecular mechanisms of bacteria resisting antibiotics.
June 2022 | Volume 12 | Article 883839
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biofilm formation lead to the antimicrobial resistance of the
pathogens, thus increasing the therapy difficulty of bacterial
diseases (Jiang et al., 2019).

Consequences of Antibiotic Resistance
Antibiotic-resistant bacteria are also termed as superbugs. The
anxiety created by these organisms is not only relevant for the
laboratory but has also emerged as a global risk responsible for
the high death rate and lethal infections (Lipp et al., 2002).
According to predicted statistical models, bacterial AMR caused
an estimated 495 million deaths in 2019, with 127 million (95%)
deaths attributed to bacterial AMR (Antimicrobial Resistance
Collaborators, 2022). World Health Organization (WHO) has
cautioned that a post-antibiotic period will be affected with
infections often, and even minor wounds may lead to death if
antibiotic resistance is not addressed properly. Multidrug-
resistant bacteria cause more deaths worldwide. Several
countries are fronting the problem of nosocomial infections
through S. aureus as waves of clonal distribution. All over the
world, MRSA strains are reported to be quickly spreading (Lowy,
2003). Assessed expenditure because of multidrug-resistant
bacterial infection results in added healthcare charges with loss
of outcome (Freire-Moran et al., 2011). The majority of the
pharma corporations have the usual routine of antibiotic
allocation, which may no longer be effective or missing
regulatory sanctions (Levy and Marshall, 2004). According to
the findings of the literature research, the cost of AMR is quite
expensive and varies greatly by nation (Utt and Wells, 2016).
According to a recent World Bank research, antibiotic resistance
would increase the poverty rates and has a greater impact on low-
income countries than the rest of the world (worldbank.org,
2019). According to studies, global GDP could fall by 1% year by
2050, with developing countries losing 5–7% of their GDP (Utt
and Wells, 2016). This proportion equates to between 100 and
210 trillion US dollars (worldbank.org, 2019). By 2050,
multidrug-resistant tuberculosis alone might cost the globe
$16.7 trillion (tballiance, 2019). The World Bank research
shows that global exports are increasing. The scientific report
proved that more antibiotic practice may influence the increased
frequency of resistant bacteria; however, the limited use of
antibiotics still exhibited lower resistance rates. When
antibiotics are administered too often or at random, it
enhances selective pressure for bacteria to develop resistance
(Laxminarayan and Brown, 2001).

Even though the excess use of antibiotics is strictly restricted
all over the world, the over-prescription of antibiotics remains
the same. Van Boeckel et al. (2015) reported that there will be
around 67% rise in antibiotic consumption by 2030, which would
nearly double in quickly developing and densely populated
countries like Brazil, Russia, India, China, and South Africa
(Van Boeckel et al., 2015). In modern medicine, antibiotic
treatment is one of the important tactics to combat bacterial
infections. The “golden era” of antibiotics extended from the
1930s to the 1960s, which gave rise to several antibiotics (Nathan
and Cars, 2014). That era ended as scientists were unable to
sustain the pace of antibiotic discovery in the aspect of evolving
resistant bacterial pathogens. Constant failure in the discovery of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
new antibiotics and unlimited use of antibiotics are the
influencing factors responsible for the advent of antibiotic
resistance (Nathan, 2004). Hence, drug-resistant pathogens are
considered the major alarm to healthcare sectors globally.

Automatous Insight on Phytochemicals to
Overcome Drug Resistance
Due to the increasing efficiency of the development and spread of
antibiotic-resistant strains, it is very imperative to determine a
novel alternative and effective treatment measures to combat
drug-res i s tant pathogens . Consequent ly , b ioact ive
phytochemicals have been developed as an alternative to
conventional antibiotics in combating such antibiotic-resistant
pathogen-mediated infections. Many phytochemicals have
demonstrated their potential as antimicrobial agents or
antibiotic-reverting agents of prevailing antibiotics (Khare
et al., 2021). These phytochemicals have proven to be suitable
alternatives to address the development of antibiotic resistance
associated with conventional antibiotics.

Plants are a rich source of phytochemicals with a great
concern for novel drug discovery. In the present era, modern
society relies on herbal medicine and ayurvedic medicine to
overcome various diseases like impetigo contagiosa (Sharquie
et al., 2000), chronic gastritis (Gaby, 2001), tuberculosis
(Mativandlela et al., 2008), pediatric seizures (Akhondian et al.,
2007), and urinary tract infections (Jepson et al., 2012).
Fundamentally, phytochemicals are the chemical compounds
that are synthesized in plant cells themselves to protect them
from predators and pathogens. However, only a few of those
plants have been explored and investigated (Gurnani et al.,
2014). Crude bioactive compounds are extracted or isolated
from plants or plant parts to test against various diseases and
disorders due to the continuous evolution of resistant
microorganisms, which is the prime risk factor to society in
the present state of affairs.

Subsequently, therapeutic possibilities for the treatment of
various microbial infections have become inadequate, leading to
frequent infection and failure to cure or reduce the infection that
increases morbidity and mortality, which was evident during the
COVID-19 pandemic. Hence, it is needed to develop a novel
alternative or complementary antimicrobial drug which is safer
and non-toxic to health (Chitsazian-Yazdi et al., 2015). Herbal
medicinal plants are a rich source of bioactive phytocompounds,
which have potential against various diseases (Shakeri et al.,
2018). Many of these plants or phytochemical compounds are
proven to be applied in therapeutics. The satisfying medicinal
properties of herbal medicinal plants are also active due to the
accompanying phytocompounds, such as phenols, terpenoids,
alkaloids, carotenoids, flavonoids, isothiocyanates, indoles,
monoterpenes, etc. (Molyneux et al., 2007).

They have been shown to impede the major resistance-
developing factors like efflux pumps, replication machinery,
cell microstructure, membrane permeability and integrity, and
other virulence mechanisms, including QS and biofilm
development, which are essential for the victuals and resistance
of pathogenic bacteria (Figure 2). Many of the phytochemicals
have been ascertained to be effective against drug-resistant
June 2022 | Volume 12 | Article 883839
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strains. Hence, by reviewing the mode of action, these
phytochemical agents could pave the way towards the
development of novel drugs. Besides bactericidal activity,
several plant-derived compounds have also been discovered
recently for their potential as adjuvants with antibiotics for re-
sensitizing or reverting antibiotic resistance ability. These
phytochemicals interfere with the structural membrane by
increasing the cell permeability and cellular leakage, through a
modification in the bacterial cell wall and cell membrane,
resulting in the loss of ATP, attenuation of protein synthesis,
destruction of intracytoplasmic, alteration in pH, fragmentation
of DNA damage, inhibition of bacterial gene expression, ion
binding, inhibition of DNA gyrase, free radical formation drug
efflux pumps, mobile genetic elements, QS, and biofilm
development (Bazzaz et al., 2018; Yu et al., 2020a).

Cell Membrane Inhibitors
It is a known fact that bacterial cell membranes act as a protective
barrier against antimicrobial agents. Cell membrane
permeability regulates the movement of antibiotics into the
bacterial cell. It is believed that the mechanism of alteration in
the fatty acid and membrane proteins, to monitor the cellular
influx of the antibiotics, is reforming their membrane
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
permeability (Yu et al., 2020b). Nevertheless, hydrophobic
phytochemicals interact with membrane lipids in such a way to
interrupt the cellular structure, eventually leading to higher
membrane permeability. This makes bacterial cells unable to
monitor the leakage of cellular molecules from the bacterial cells.
Several research findings have confirmed the strong abilities of
phytochemicals in targeting cell membrane permeability. The
altered membrane permeability is possibly attributed to apparent
damages to the cellular integrity and functions (Scazzocchio
et al., 2017).

Cell Wall Synthesis Inhibitors
Cells are made up of peptidoglycan, which consists of repeating
N‐acetylmuramic acid and N‐acetylglucosamine residues linked
together by short chains of amino acids. The amino acid residues
are the key components to provide strength and protection to
bacteria. The synthesis of bacterial cell walls has been found to be
inhibited by several phytochemicals (Upadhyay et al., 2014). The
interaction of such phytochemicals with membrane proteins
attached to bacterial cell walls eventually leads to an
interruption in membrane penetrability. The effective
antibacterial potential of phytochemicals belonging to
flavonoids in counteracting infectious pathogens is attributed
FIGURE 2 | Phytochemicals conferring various bacterial resistance factors.
June 2022 | Volume 12 | Article 883839
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to their ability to complex with bacterial cell walls (AlSheikh
et al., 2020).

Drug Efflux Pump Inhibitor
Bacterial efflux pumps, which diminish the concentration of the
administered antibiotics by transporting the antibiotic molecules
out of the cell, have evolved as important transporters in drug-
resistant strains. As reviewed by Shriram et al. (2008), the
bacterial efflux pumps are characterized in two super-families,
namely, ATP-binding cassette multidrug transporters and
secondary transporters using proton motive force based on
their energy source. Further classifications are made based on
the secondary transporters, which are further sub-classified into
four families based on the substrate specificities; these include
major facilitator superfamily, resistance nodulation cell division,
multidrug and toxic compound extrusion, and small-MDR
family (Putman et al., 2000; Sun et al., 2014). The presence of
the efflux pumps in bacterial membranes enables the successful
exclusion of the antibiotics out of the cell and thus prevents the
active interaction of bacterial targets with antibiotics, leading to
the development of resistance. Some phytochemicals are
reported as efflux pump inhibitors (EPI) and thus revert
antibiotic resistance. The antimicrobial activity of some
phytochemicals against bacterial pathogens is conferred by the
disruption of bacterial FtsZ Z-ring formation and the subsequent
inhibition of bacterial cytokinesis (Kelley et al., 2012).

Mobile Genetic Elements
Plasmids are mobile genetic elements and are well recognized for
transferring resistance genes through horizontal gene transfer
among bacterial pathogens. Hence, the elimination of R-plasmid
would reduce the transfer of resistance genes among bacteria.
The antibacterial as well as resistance reversal potentials of
phytochemicals, like essential oils, are attributed to their
capability to obliterate R-plasmids. Several phytochemicals
with plasmid curing ability have shown strong antibacterial
activities when combined with antibiotics like amoxicillin,
polymycin, and lincomycin (Si et al., 2008). Hence, the
synergistic activity of phytochemicals with conventional
antibiotics might possibly reduce the chance of developing
drug resistance (Skalicka-Woźniak et al., 2018).

Enzyme Inhibitors
The antimicrobial potential of several phytochemicals has
interconnection with nucleic acid synthesis by blocking the
DNA gyrase enzyme which plays a vital role in the replication
of DNA molecules (Wu et al., 2013). In some instances,
phytochemicals, including flavonoids, are interrupted with
helicase (DnaB and RecBCD) activity and hence prevent the
DNA replication process (Xu, 2001).

Targeting Biofilm Formation and
Quorum Sensing
Biofilms are the structural community of microbial populations
enclosed in an exopolysaccharide matrix (Davey and O’toole,
2000), and their development is regulated by a QS mechanism, in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
which bacteria can communicate with each other through self-
synthesized chemical signals. These signal molecules will be
released into the surrounding environment. At threshold
concentration, the signal molecule will bind with the
appropriate receptor to form a signal receptor complex.
Binding of the signal receptor complex with the promoter will,
in turn, trigger the expression of virulence factors, such as
secretion of virulence enzymes, antibiotic pigment production,
extracellular polymeric substance production, and biofilm
formation. The mechanisms of biofilm development and QS
are reported to be highly effective approaches evolved by the
bacteria for conferring drug resistance, its persistence, and
spread. Therefore, targeting bacterial biofilms and quorum
sensing are emerging as effective approaches for combatting
drug resistance. Nevertheless, eliminating or impeding biofilm
is challenging. However, several phytochemicals have been
reported to exhibit antibiofilm and anti-QS activity. These
compounds are considered as novel alternatives to antibiotics
towards the prevention of biofilm formation by infectious
pathogens. The attenuation of the transcription of genes
critical for biofilm formation is attributed to the QS inhibitory
activity of phytochemicals (Packiavathy et al., 2014).

Attenuating Bacterial Virulence
Capsular polysaccharides, produced by some bacteria, are
considered as important factors and play a crucial role in the
development of virulence (Taylor and Roberts, 2005) as well as to
protect the bacteria from phagocytosis (Hyams et al., 2010).
Capsular polysaccharides also aid in the adhesion and formation
of biofilm. Additionally, capsular polysaccharides aid to enhance
the survival rate of pathogens inside the host. Several bacteria
displayed a reduced amount of capsular polysaccharide
production upon exposure to plant-derived phytochemicals
(Derakhshan et al., 2008). They are found effective in reducing
the synthesis of capsule secretion by regulating the expression of
bacterial regulators of capsule synthesis. Like quorum sensing,
adhesion and capsular polysaccharides play a dynamic role in
bacterial communication and growth inside the host; it becomes
imperative to exploit them for therapeutics for overcoming the
burden of increasing antibiotic resistance among microbes.

Exploring Phytochemicals for Combating
Antibiotic Resistance Among
Pathogenic Bacteria
Antibiotics comprise a crew of chemotherapeutic agents, either
to kill (bactericidal) or to arrest (bacteriostatic) the bacteria to
control microbial infections for, e.g., b-lactam antibiotics,
tetracyclines, macrolide antibiotics, aminoglycosides,
oxazolidinones, quinolones, lincosamides, cyclic peptides, and
sulfa drugs (Gilbert and McBain, 2003). Conversely, the
persistent usage of antibiotics is piloted to endure the selective
pressures of their environment by the bacteria, resulting in the
emergence of multi-drug resistance (Furuya and Lowy, 2006).
Antibiotic-resistant infections are becoming a serious issue all
over the world. A high proportion of nosocomial infections are
instigated by MDR Gram-negative bacteria or by MRSA (Luyt
June 2022 | Volume 12 | Article 883839
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et al., 2014). Similarly, vancomycin-resistant enterococci and an
increasing number of bacterial pathogens are developing
resistance to several conventional antibiotics (Golkar
et al., 2014).

In 2013, the Center for Disease Control and Prevention stated
the era as the “post-antibiotic era”, and the WHO warned that
the emergence of antibiotic resistance is becoming a serious issue
for the human race. Though the pharmaceutical industry
developed diverse antibiotics to address resistance issues, the
curing proportion of patients was comparatively less, making
bacterial infections worse (Spellberg and Gilbert, 2014). As an
alternative treatment of the bacterial resistance to antibiotics,
plant-based antimicrobial agents displayed an effective role in
combatting pathogenic bacteria without emerging resistance to
these plant-derived phytochemicals, possibly by exploiting
diverse mechanisms of action, which could prevent bacterial
adaptation as reported (Essawi and Srour, 2000). The remarkable
antimicrobial activity, nontoxic nature, and affordability of the
discernible phytochemicals are the basis for their extensive usage
as potential antimicrobial agents as well as antiseptics in clinical
and industrial settings (Livermore, 2003). In the recent past, they
have been employed as a source for the discovery of novel
antibiotics in the pharmaceutical sector. It is noteworthy that
natural products, in particular, plant extracts in the form of
either pure compounds or crude extracts, offer boundless
prospects towards the development of novel drug discoveries
due to their unrivaled accessibility and chemical diversity.

The evolution of MDR among bacterial pathogens has
directed reconnoitering the perspective of phytochemicals
sourced from plants as an alternative therapeutic approach to
fight infectious diseases. Among the alternative and potential
strategies against MDR pathogens, plant sources possibly play a
vital role in offering a vast range of chemicals as secondary
metabolites with potent action to combat bacterial infections
(Anand et al., 2019; Anand et al., 2020). Such phytochemicals
comprise various members of alkaloids, coumarins, flavonoids,
quinones, etc. (Mbaveng et al., 2015; Anand et al., 2019; Anand
et al., 2020; Mohammed et al., 2021). Owing to the potent
applications of phytochemicals as antimicrobials, herbal
medicines, food enhancements, and cosmetics, they have
gained the attention of researchers; hence, several
phytochemicals have been endorsed for their effective
antimicrobial activities against various pathogenic bacteria,
including MDR strains (Shriram et al., 2018; Anand et al.,
2019; Yu et al., 2020a; Mohammed et al., 2021). Among the
reported phytochemicals, the Food and Drug Administration
approved a few of them based on clinical assessments. The
effective role of various phytochemicals against multi-drug
resistant pathogens has been reviewed (Figure 3 and Table 1).

Molecular and Biochemical Evidence of
Phytochemicals to Treat
Bacterial Pathogens
Attenuation of bacterial virulance is considered as a key role of
phytochemicals to combat bacterial resistance potential.
Interestingly, the chemical structure and the properties of
natural phytocompounds reveal their antimicrobial potential
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
by these mechanisms (Khameneh, et al., 2015). Hence,
isolation and profiling of the bioactive-rich compounds, such
as alkaloids, phenols, flavonoids, terpenoids, etc., owing to
antimicrobial activity, is an essential part for the development
of novel and natural antimicrobial drugs, and they have specific
clinical importance due to their bioactivity which does not lead
to resistance. Generally, these bioactive compounds are broadly
classified as polyphenolics, alkaloids, tannins, glycosides, and
steroids. Among these, polyphenols exhibit antimicrobial activity
against a wide range of microorganisms. Particularly,
polyphenolic compounds, such as flavanol and phenolic acids,
were proven to have the greatest activity due to various scientific
reasons, including attenuating the virulence factor of bacteria,
including enzymes and toxins, dropping the extracellular
polysaccharide activity, and performing as extracellular
polysaccharide inhibitors. Much scientific research had
evidently proved that an increase in the concentration of
compounds stimulated the inhibition potential of pathogens
(Bazzaz et al., 2018).

Alkaloids
Alkaloids are a cluster of heterocyclic nitrogenous compounds
possessing wide-ranging antimicrobial potential. Alkaloids were
proven to be an active antimicrobial agent due to the presence of
heterocyclic compounds with highly flexible chemical structures.
Alkaloids such as quinolone, dictamnine (Siriwong et al., 2015),
and kokusagine, which are isolates of Teclea afzeli, showed
antibacterial activity by enzymatic alteration, disturbing
physiological processes such as restricting DNA synthesis and
repair mechanisms (Yan et al., 2021). Many scientific reports
suggest that the supreme groups of alkaloids, such as
isoquinolines, aporphines, quinolones, and phenanthrenes,
show suitable antibacterial activity against a wide range of
bacterial pathogens, including B. cereus, S. aureus, and K.
pneumonia (Porras et al., 2020), which can inhibit type II
topoisomerase enzyme, subsequently hindering DNA
replication, and reduce the consumption of O2 against bacteria.
Plant-derived compounds such as curcumin, tannin, and
piperine were proven to possess fantastic antimicrobial
potential by directly targeting the DNA or protein. A
combination of piperine, which was isolated from Piper
nigrum, and ciprofloxacin attenuated the development of
mutant S. aureus. Moreover, the administration of piperin and
gentamicin has an inhibitory effect on multidrug-resistant
organisms. Diterpenoid alkaloids, commonly isolated from
plants, belong to Ranunculaceae and were reported to have
antimicrobial properties. The mechanism of action of
quaternary alkaloids, such as berberine and harmane, is
accomplished by their ability to interpolate with DNA, thus
leading to impairment in cell division and subsequent cell death
(Boberek et al., 2010). Similarly, berberine has a serious
antimicrobial potential against bacteria, fungi, protozoa, and
even viruses by aiming at DNA intercalation, affecting RNA
polymerase, gyrase, and topoisomerase, and by inhibiting
cell division (Yi et al., 2007). The phytochemical compound
Berberis spp. inhibited the growth of E. coli by blocking the
synthesis of cell division and protein and DNA synthesis
June 2022 | Volume 12 | Article 883839
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(Boberek et al., 2010). The antimicrobial compound
chanoclavine, which was isolated from Ipomoea muricata, had
shown synergistic activity when co-administered with
tetracycline, which seems to inhibit EP, and reported as being
effective and ATPase dependent (Dwivedi et al., 2019). Maurya
et al. (2013) reported I. muricata-derived lysergol against E. coli
by targeting the efflux pump. Another efflux pump inhibitor,
reserpine, extracted from Rauwolfia serpentina, showed
antimicrobial activity against Gram-positive pathogens
Staphylococcus spp. and Streptococcus spp. Similarly, conessine,
an alkaloid compound isolated from Holarrhena antidysenterica,
displayed a potent inhibitory activity against P. aeruginosa by
inhibiting the bacterial efflux pump (Siriyong et al., 2017).
Sanguinarine, a benzophenanthridine alkaloid originating from
the rhizomes of Sanguinaria canadensis, exhibited antimicrobial
and anti-inflammatory properties. The antibacterial activity
exhibited by this molecule is accomplished by the intrusion of
bacterial cytokinesis (Kelley et al., 2012). The synergistic effect of
this compound with vancomycin, and EDTA was found to be
effective against Gram-negative bacteria (Hamoud et al., 2015).
In MRSA strains, sanguinarine enables the release of membrane-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
bound cell wall autolytic enzymes, resulting in cell disruption
(Obiang-Obounou et al., 2011).

Plasmid, a self-replicating, circular DNA coding for various
gene groups, exhibits antibiotic resistance to bacteria. Some
phytochemicals have been reported to target such plasmids
(Buckner et al., 2018). 8-Epidiosbulbin-E-acetate, from
Dioscorea bulbifera, is ascertained to cure the antibiotic-
resistant R-plasmids of the clinical isolates of E. faecalis, E. coli,
Shigella sonnei, and P. aeruginosa with effective curing efficacy
(Shriram et al., 2008). Tomatidine, derived from Solanaceous
plants, was documented to display antibacterial activity against
Listeria, Bacillus, and Staphylococcus spp. The possible
mechanism of action of tomatidine is postulated as an ATP
synthase inhibitor (Guay et al., 2018).

Organosulfur Compounds
Allicin, an organosulfur compound from Allium sativum, has
antibacterial activity against P. aeruginosa and S. epidermidis.
The antibacterial action mechanism of allicin includes DNA
synthesis inhibition, protein synthesis inhibition, and sulfhydryl-
dependent enzyme inhibition (Reiter et al., 2017). Similarly, the
FIGURE 3 | Promising phytochemicals against Multi Drug Resistant bacteria.
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TABLE 1 | Plant based antimicrobial compounds and their mechanism of action.

Class of
compound

Phytochemical Target pathogen Mechanism of Action Ref

Alkaloids Dictamnine Saccharomyces cerevisiae Inhibiting type II topoisomerase Heeb et al., 2011;
Guo et al., 2008

Sanguinarine Carbapenem-resistant Serratia marcescens Inhibiting replication and transcription Awasthi et al., 2011;
Fu et al., 2021

Chelerythrine MRSA and Escherichia coli Damaging the bacterial cells He et al., 2018; Wang
et al., 2021

Matrine E. coli and Bacillus subtilis Inhibiting the synthesis of proteins Xiu et al., 2017,
Caffeine P. aeruginosa Interaction with the quorum sensing proteins and

inhibiting biofilm formation
Chakraborty et al.,
2019; Anjani et al.,
2020

8-epidiosbulbin E-
acetate

E. coli, E. faecalis, P. aeruginosa and S.
sonnei

Plasmid curing Shriram et al., 2008

Reserpine Staphylococcus sp., Streptococcus sp. and
Micrococcus sp.

Efflux pump inhibitor Sridevi et al., 2017

Piperine M. resistant, S. aureus (MRSA) and S.
aureus

Efflux pump inhibitor Khameneh et al.,
2015

Berberine E. coli and
C. albicans

Cell division inhibitor, Protein and DNA synthesis inhibitor Boberek et al., 2010;
Zoric et al., 2017

Chanoclavine E. coli Efflux pump inhibitor Dwivedi et al., 2019
Solasodine C. albicans Destruction of bacterial membrane Chang et al., 2017
Conessine P. aeruginosa and M. luteus Efflux pump inhibitor Siriyong et al., 2017
Tomatidine Listeria, Bacillus and

Staphylococcus spp
ATP synthase inhibitor Boulet et al., 2018;

Guay et al., 2018
Lysergol E. coli Efflux pump inhibitor Maurya et al., 2013

Organosulfur
compounds

Diallyl Sulfides C. albicans Inhibiting glutathione (GSH) S-transferase (GST) activity.
Interaction with the quorum sensing proteins and
inhibiting biofilm formation

Velliyagounder et al.,
2012; Li et al., 2019

Allicin S. epidermidis, P. aeruginosa and
S. agalactiae

Sulfhydryl-dependent enzyme inhibitor, DNA and protein
synthesis inhibitor

Reiter et al., 2017

Ajoene C. jejuni, Streptococcus spp,
Staphylococcus spp and E. coli

Sulfhydryl-dependent enzyme inhibitor Rehman and Mairaj,
2013

Sulforaphane E. coli Destruction of bacterial membrane, ATP synthase
inhibitor, DNA and protein synthesis inhibitor

Wu et al., 2012

Phenolic
compounds

Sophoraflavanone G MRSA Interacting with peptidoglycan and inhibiting cell wall
biosynthesis

Mun et al., 2014

Acetosyringone S. cerevisiae Depolarization of the bacterial cell membrane Saravanakumar et al.,
2016; Szatmári et al.,
2021

Chlorogenic acid Providencia alcalifaciens, Moraxella
catarrhalis, S. aureus, and E. coli

Interacting with some crucial enzymes Neetu et al., 2020

Galangin S. aureus Damaging of the cytoplasmic membrane and inhibition of
b-lactamase

Ouyang et al., 2017

Chrysin H. pylori Cell membrane disruption, DNA gyrase inhibition Wu et al., 2013; Lee
et al., 2017

Tannic acid S. aureus Ion binding Diniz-Silva et al.,
2016

(+)-Catechin MRSA Inhibition of bacterial gene expression Sinsinwar and Vadivel
(2020)

Resveratrol M. smegmatis and C. jejuni Efflux pump inhibitor Lechner et al., 2008;
Klancnik et al., 2017

Baicalein M. smegmatis, MRSA and C. albicans Efflux pump inhibitor Lechner et al., 2008;
Chan et al., 2011

Biochanin A M. smegmatis, MRSA and Chlamydia spp. Efflux pump inhibitor Lechner et al., 2008;
Zou et al., 2014

Formononetin M. smegmatis Efflux pump inhibitor Lechner et al., 2008
Luteolin Mycobacteria spp. and

M. smegmatis
Efflux pump inhibitor Lechner et al., 2008;

Rodrigues et al.,
2011

Kaempferol MRSA and C. albicans, Efflux pump inhibitor Randhawa et al.,
2016; Shao et al.,
2016

S. aureus Efflux pump inhibitor Holler et al., 2012a
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TABLE 1 | Continued

Class of
compound

Phytochemical Target pathogen Mechanism of Action Ref

Kaempferol
rhamnoside
Myricetin M. smegmatis Efflux pump inhibitor Lechner et al., 2008
Rhamentin S. aureus Efflux pump inhibitor Brown et al., 2015
Quercetin S. aureus Efflux pump inhibitor Brown et al., 2015

Chrysosplenol-D S. aureus Efflux pump inhibitor Stermitz et al., 2003
Chrysoplentin S. aureus Efflux pump inhibitor Stermitz et al., 2003
Silybin S. aureus Efflux pump inhibitor Stermitz et al., 2001
Biochanin A S. aureus Efflux pump inhibitor Morel et al., 2003
Genistein S. aureus Efflux pump inhibitor Morel et al., 2003
Orobol S. aureus Efflux pump inhibitor Morel et al., 2003
4′,6′-Dihydroxy-3′,5′-
dimethyl-2′-
methoxychalcone

S. aureus Efflux pump inhibitor Belofsky et al., 2004

4-phenoxy-4′-
dimethylamino
ethoxychalcone

S. aureus Efflux pump inhibitor Holler et al., 2012b

4-dimethylamino-4′-
dimethylamino
ethoxychalcone

S. aureus Efflux pump inhibitor Holler et al., 2012b

Bergamottin epoxide MRSA Efflux pump inhibitor Abulrob et al., 2004
5,7-dihydroxy-6-(2-
methylbutanoyl)-
8-(3-methylbut-2-
enyl)-4-phenyl-2H-
chromen-2-one

MRSA Efflux pump inhibitor Campos et al., 2009

5,7-dihydroxy-8-(2-
methylbutanoyl)-
6-(3-methylbut-2-
enyl)-4-phenyl-2H-
chromen-2-one

MRSA Efflux pump inhibitor Campos et al., 2009

Epigallocatechin
gallate

S. aureus DNA gyrase, Inhibiting the B subunit of DNA gyrase,
penicillinase, and b-lactamase

Gradisar et al., 2007

Chebulinic acid M. tuberculosis DNA gyrase Patel et al., 2015
3-p-Trans-coumaroyl-
2- hydroxyquinic acid

S. aureus Damage to the cytoplasmic membrane Wu et al., 2016

p-Coumaric acid O. oeni and
L. hilgardii

Damage to the cytoplasmic membrane Campos et al., 2009

Apigenin H. pylori and E. coli d-Alanine:d-alanine ligase Wu et al., 2008
Sophoraflavanone B MRSA Direct interaction with peptidoglycan Mun et al., 2014
Naringenin E. faecalis Beta-Ketoacyl acyl carrier protein synthase (KAS) III Jeong et al., 2009
Eriodictyol E. faecalis Beta-Ketoacyl acyl carrier protein synthase (KAS) III Jeong et al., 2009
Taxifolin E. faecalis Beta-Ketoacyl acyl carrier protein synthase (KAS) III Jeong et al., 2009
Sakuranetin H. pylori FabZ Zhang et al., 2008
3,6-Dihydroxyflavone E. coli Beta-Ketoacyl acyl carrier protein

synthase (KAS) III and I
Farhadi et al., 2019

Curcumin S. aureus Sortase A Park et al., 2005
S. aureus and E. coli leaky membrane Tyagi et al., 2015

Morin S. aureus Sortase A and B Kang et al., 2006
4′,7,8-trihydroxyl-2-
isoflavene

H. pylori urease inhibitor Xiao et al., 2013

Coumarins Daphnetin P. fluorescens and Shewanella putrefaciens Cell membrane Disruption, Type III secretion inactivation Yang et al., 2016;
Yang et al., 2018

Esculetin Ralstonia pseudosolanacearum Cell membrane Disruption, Type III secretion inactivation Holler et al., 2012a;
Yang et al., 2018

Umbelliferone R. pseudosolanacearum Cell membrane Disruption, Type III secretion inactivation Holler et al., 2012a;
Yang et al., 2018

Aegelinol S. enterica serovar Typhi, E. aerogenes, E.
cloacae and S. aureus

DNA gyrase inhibitor Basile et al., 2009

Agasyllin H. pylori DNA gyrase inhibitor Basile et al., 2009
4′-senecioiloxyosthol DNA gyrase inhibitor Tan et al., 2017
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TABLE 1 | Continued

Class of
compound

Phytochemical Target pathogen Mechanism of Action Ref

S. enterica serovar Typhi, E. aerogenes, E.
cloacae and S. aureus

Osthole H. pylori DNA gyrase inhibitor Tan et al., 2017
Asphodelin A 4′-O-b-
D-glucoside

B. subtilis DNA gyrase inhibitor El-Seedi, 2007

Asphodelin A B. subtilis, S. aureus,
K. pneumonia and MSRA

DNA gyrase inhibitor El-Seedi, 2007

Clorobiocin S. aureus, E. coli, P. aeruginosa, C. albicans
and B. cinerea

DNA gyrase inhibitor Maxwell, 1993

Novobiocin DNA gyrase inhibitor Maxwell, 1993
Coumermycin A1 DNA gyrase inhibitor Maxwell, 1993
Bergamottin epoxide MSRA Efflux pump inhibitor Roy et al., 2013
6-Geranyl coumarin S. aureus Efflux pump inhibitor de Araujo et al., 2016
Galbanic acid MDR clinical isolates of S. aureus Efflux pump inhibitor Bazzaz et al., 2010

Terpenes a-Pinene H. pylori Disrupting cell membrane integrity Konuk and Ergüden,
2020; Jeyakumar
et al., 2021

Limonene S. aureus Disrupting cell membrane integrity Konuk and Ergüden,
2020; Jeyakumar
et al., 2021

Linalool P. aeruginosa Disrupting cell membrane integrity, changing in the
nucleoid morphology, and interfering with cellular
respiration

Nguyen et al., 2018;

Sabinene Multi drug-resistant strains Disrupting cell membrane integrity and inhibiting DNA
synthesis

Matias et al., 2016

a-Terpineol E. coli Lossing membrane-bound autolytic enzymes, the
cytoplasm leakage and inability to osmoregulate

Carson et al., 2002;
Li et al., 2014

Citronellol Trichophyton rubrum Deteriorating membrane integrity Lopez-Romero et al.,
2015; Pereira et al.,
2015

a-Bisabolol Propionibacterium acnes and S. epidermidis Disrupting cell membrane integrity Sieniawska et al.,
2015

Farnesol S. aureus Cell membrane disturbance Togashi et al., 2010
Nerolidol S. aureus Cell membrane disturbance Togashi et al., 2010
Dehydroabietic acid S. aureus Cell membrane disturbance
(4R)-(-)-carvone C. jejuni, E. faecium and E. coli Cell membrane disturbance De Carvalho and Da

Fonseca, 2006
(4S)-(+)-carvone L. monocytogenes Cell membrane disturbance De Carvalho and Da

Fonseca, 2006
Thymol C. albicans Inhibits H (+)-ATPase in the cytoplasmic membrane, cell

membrane disturb a efflux pump
Sharifzadeh et al.,
2018

Carvacrol A. niger, A. fumigatus, A. flavus,
A. ochraceus, A. alternata, B. cinerea,
Cladosporium spp.,
P. citrinum, P. chrysogenum,
F. oxysporum and R. oryzae,

Cell membrane disturbance, efflux pump inhibition Abbaszadeh et al.,
2014

Eugenol A. niger, A. fumigatus, A. flavus, A.
ochraceus, A. alternata, B. cinerea,
Cladosporium spp., P. citrinum,
P. chrysogenum, F. oxysporum and
Rhizopus oryzae

Cell membrane disturbance Abbaszadeh et al.,
2014

Menthol A. niger, A. fumigatus, A. flavus, A.
ochraceus, A. alternata, B. cinerea,
Cladosporium spp., P. citrinum,
P. chrysogenum, F. oxysporum and R.
oryzae

Cell membrane disturbance Abbaszadeh et al.,
2014

Cinnamaldehyde H. pylori Cell membrane disturbance Ali et al., 2005
Ursolic acid E. coli Cell membrane disturbance Broniatowski et al.,

2015
a-Amyrin E. coli Cell membrane disturbance Broniatowski et al.,

2015
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investigation by Rehman and Mairaj (2013) suggested that the
antimicrobial action of ajoene, from A. sativum, inhibits the
sulfhydryl-dependent enzyme inhibitor of Campylobacter jejuni.
The use of Diplotaxis harra-derived sulforaphane as an ATP
synthase inhibitor and DNA/protein synthesis inhibitor was
examined, and the results revealed that this compound
effectively arrests the growth of E. coli. Furthermore, this
compound has also been proven to destroy the membrane of
the target pathogen (Li et al., 2017).

Phenolic Compounds
Phenolic compounds from plants are considered imperative
molecules for drug discovery due to their broad spectral and
important medicinal properties. The structure of phenolic
compound plants includes an aromatic ring with one or more
hydroxyl groups, and these are grouped into flavonoids, phenolic
acids, and non-flavonoids (de Souza et al., 2019). They have been
recognized as potent chemopreventive and therapeutic agents
against diverse pathogenic bacteria and act as natural
antimicrobial weapons by enhancing the sensitivity of MDR
strains to antibiotics (Miklasińska-Majdanik et al., 2018;
Makarewicz et al., 2021). Most notably, by reducing EP activity
as the most significant mechanism, phenolic acids play a vital
role in attenuating the resistance potential of various pathogens.
Compounds such as resveratrol and flavanol are capable of
inhibiting the activity of CmeABC Eps of C. jejuni or Eps of
M. smegmatis (Klancnik et al., 2017). Furthermore, ferulic acid
derivatives, 4-[E-2-(diethylcarbamoyl) vinyl]-2- methoxyphenyl
acetate (E)-methyl 3-{4-[(p-tolylcarbamoyl) methoxy]-3-
methoxyphenyl} acrylate, were found to exhibit antibacterial
activity against MRSA by inhibiting the efflux pump
(Sundaramoorthy et al., 2018). A similar kind of EPI activity
was displayed by baicalein (Chan et al., 2011), kaempferol
(Randhawa et al., 2016), and resveratrol (Klancnik et al., 2017)
against MRSA and C. jejuni, respectively. The phenolic
compound was also acknowledged as a beta-ketoacyl acyl
carrier protein synthase inhibitor. As an example, taxifolin,
from Allium cepa, showed an effective antibacterial activity
against Enterococcus faecalis (Jeong et al., 2009).

Polyphenols (tannins) (Gradisar et al., 2007), chebulinic
acid (Patel et al., 2015), and anthraquinones (Duan et al.,
2014) are natural phenolic compounds that exhibit inhibition
against DNA gyrase. Wu et al. (2016) revealed that a unique
phenolic compound, 3-p-trans-coumaroyl-2-hydroxyquinic
acid, extracted from Cedrus deodara showed antibacterial
activity against 11 foodborne organisms. The mechanism of
action of resistance against S. aureus would possibly cause
damage to the cytoplasmic membrane and thereby cellular
leakage of intracellular organelles due to hyperpolarization
with loss of membrane integrity. It was believed that this
CHA would be a better antimicrobial agent for the food and
beverage industries. In general, compounds such as
hydroxycinnamic acids (p-coumaric, caffeic, and ferulic acids)
are other phenolic compounds that are capable of affecting
membrane integrity. However, similar compounds, like p-
coumaric acid, are believed to be the first prior compounds to
have a potential activity due to their lipophilic nature (Campos
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et al., 2009; Wu et al., 2016). The results from Lanzotti et al.
(2014) revealed antimicrobial activity accounting for the
prevention of sulfhydryl-dependent enzymes, like alcohol
dehydrogenase, thioredoxin reductase, and RNA polymerase,
which was established by identifying the reduced inhibitory
effect of allicin caused by the addition of cysteine and
glutathione in the medium, reacting with its disulfide bond
and resulting in the prevention of cellular damage. Besides this,
allicin was proved to be an inhibitor of DNA and protein
synthesis, which would be a possible target of allicin (Lanzotti
et al., 2014). Phenolic compounds, such as pyrogallol and
catechol, have been examined to show antimicrobial activity
against a wide range of Gram-positive and Gram-negative
bacteria. Pyrogallol and pyrocatechol were found to be
effective against various oral pathogens (Shahzad et al., 2015).
Additionally, halogenated catechols have also been investigated
for their antimicrobial potential against various MDR strains by
impeding the fatty acid synthesis of pathogenic bacteria (Liu
et al., 2021). Borges et al. (2013) investigated the antibacterial
activity of ferulic acid where it was found to be effective against
P. aeruginosa and E. coli at MICs of 100 mg/ml. Similarly, gallic
acid displayed antibacterial properties against Listeria
monocytogenes, P. aeruginosa, and S. aureus. The antibacterial
activity of ferulic acid and gallic acid is attributed to their ability
in disrupting the cell walls of the target pathogens, leading to
local damage and subsequent cellular material leakage.
Similarly, gymnemic acid inhibited the biofilm development
of Candida albicans and Streptococcus bordonii (Veerapandian
and Vediyappan, 2019).

Flavonoids
Plant flavonoids are phenolic compounds holding a 2-phenyl-
benzo-g-pyrane nucleus and two benzene rings with potent
antimicrobial activities. The various groups of flavonoids, such
as flavanols, flavanones, isoflavonoids, chalcones, and
dihydrochalcones, have been reported to exhibit antimicrobial
properties (Górniak et al., 2019). Catechin causes membrane
disruption in MRSA, which results in cell membrane damage by
leakage of potassium ions. Budzyńska et al. (2011) analyzed the 3-
arylideneflavanone-mediated membrane disruption, which leads
to the accumulation of bacterial cells, resulting in the alteration of
membrane integrity and enabling the increased permeability of
pathogenic S. aureus and E. faecalis isolated from clinical samples.
Interference of DNA synthesis activity was reported with
flavonoid, chrysin, and kaempferol (Wu et al., 2013) and morin
and myricetin (Xu, 2001). Some flavonoids have been reported as
sensitizing agents. The combination of pinostrobin-a with
antibiotic ciprofloxacin exhibited a synergistic effect to enhance
the growth inhibitory potential of antibiotic-resistant strains P.
aeruginosa and E. coli by blocking the EPI activity (Christena et al.,
2015). Flavonoids are also recognized as inhibitors of quorum
sensing and biofilm formation. Ouyang et al. (2016) demonstrated
the QS and biofilm inhibitory activity of quercetin in P. aeruginosa
PAO1. The QS activity of quercetin is attributed to the attenuated
expressions of lasI, lasR, rhlI, and rhlR genes with decreased
secretion of virulence factors like elastase, protease,
and pyocyanin.
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Terpenes
Terpenes, also called isoprenoids, are the largest single class of
compounds present in essential oil and are made up of isoprene
molecules (Praveen, 2018). Essential oils (EOs) consist of a
combination of various phytochemicals and are highly
recognized for their effective antimicrobial activity. Additionally,
they have been employed as a traditional medicinal treatment to
encounter antibiotic resistance since they are considered safe to
consume and essential for host tissues (Yu et al., 2020b). Cox et al.
(2001) reported the increased permeability of bacterial membrane
upon treatment with EOs derived from Melaleuca alternifolia.
Farnesol, a phytochemical isolated from essential oils, inhibited
the growth of S. aureus by disrupting the cell membrane (Togashi
et al., 2010). Methyl eugenol, present in the EOs of Cumium
cymium, inhibited the biofilm formation and associated virulence
of Gram-negative bacterial pathogens like P. aerugiosa, E. coli,
Proteus mirabilis, and Serratia marcescens by attenuating the
signal-based QS (Packiavathy et al., 2012). Similarly, the biofilms
of uropathogenic bacteria demonstrated altered biofilm patterns in
the presence of the quorum quencher molecule, Curcuma longa-
derived curcumin (Packiavathy et al., 2014). The EOs of cinnamon
displayed effective bactericidal activity against E. coli and
Staphylococcus strains by altering the membrane permeability
and structural integrity (Zhang et al., 2015). The EOs extracted
from Coriandrum sativum inactivated the MDR uropathogenic E.
coli strain by interrupting the cell membrane permeability
(Scazzocchio et al., 2017). The striking antimicrobial activity of
Plectranthus amboinicus-derived EOs against drug-resistant S.
aureus is attributed to its biofilm inhibitory potential
(Vasconcelos et al., 2017). The striking biofilm and QS
inhibitory potential in reverting the resistance of S. aureus is
attributed to the EOs of Satureja hortensis (Sharifi et al., 2018). An
important compound, cis-cis-p-menthenolide, present in the EOs
ofMentha suaveolens ssp. insularis was found to inhibit the signal-
mediated QS system and biofilm formation of Chromobacterium
violaceium. This compound exhibited a structural similarity to the
natural signal molecule and hence acts as a competitive inhibitor,
which could lead towards the blocking of gene expression and
succeeding biofilm formation (Poli et al., 2018). EOs from
Cinnamomum verum , Thymus vulgaris , and Eugenia
caryophyllata were found to inhibit the growth of several MDR
clinical isolates through the inhibition of biofilm and QS activities
(Al1ibi et al., 2020). Very recently, a study by Önem (2022)
displayed the QS-mediated biofilm inhibitory potential of
Cymbopogon martini EOs and proved that the activity of these
EOs is attributed to the phytochemical molecule geraniol.

As these phytochemicals have proved to inhibit the major
resistance-creating factors such as efflux pumps, replication
machineries, cell permeability, biofilm formation, and QS
inhibition, they are considered crucial promising alternatives to
overcome the decreasing activity of conventional antibiotics. The
combinatorial application of these phytochemicals has proved to
be highly effective against antibiotic-resistant strains. Hence,
there is a pressing need for advanced research, scientific
endorsement, and application of these phytochemicals to
combat MDR pathogens.
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Preclinical and Clinical Studies on the
Antibacterial Effect of Phytochemicals
The transformation of in vitro studies to in vivo investigations
and, finally, to human clinical trials is a great task in the
improvement o f nove l phytocompounds . Var ious
phytochemical medicinal plants exhibited antimicrobial
activity, which can act as an alternative treatment to
conventional medicine. However, it is expensive and time-
consuming to bring a new novel drug/antibiotic to the market.
Hence, the isolation of drugs from natural sources had extended
its importance in the identification of chemical compounds with
resistance properties (Mandal et al., 2014). The preclinical and
clinical analysis guidelines for phytochemical compounds are
required to safeguard the consistency in drug formulation, their
efficacy, and their safety. Compounds isolated from herbal
medicines, which were preclinically tested, against various
infectious diseases and then licensed by completing the
preclinical studies. It may be either one compound or two or
more bioactive constituents being co-administered. Despite there
being a vast number of bioactive compounds identified in recent
centuries, only a few of them are examined via clinical studies.
Moreover, most of the phytocompounds, when used as
monotherapy, require a higher concentration in comparison
with antibiotics. To address these problems, researchers
focused on the combination of increased phytochemicals with
less synthetic antibiotics to inhibit the resistance activity against
various microbes (Touani et al., 2014; Santiago et al., 2015). To
overcome the t ime consumpt ion o f the se ac t i v e
phytocompounds as a drug on the market as a part of
preclinical studies, in si l ico approach with natural
phytocompounds were chosen on the basis of its bioactive
constituents. Besides to interpret the characteristics of
molecular structures such as the interactions of protein–ligand
binding, an analysis of the quantitative structure activity by
QSAR helps predict the compound with a specific target
(Ahamad et al., 2017). Similarly, studies on pharmacophore
models that simulate the 3D arrangements of particles with
various physicochemical features are tangled in the interaction
between ligand and target. A very common in silico approach is
molecular docking, which proposes the structure–activity
relationship on phytocompounds for revealing its mechanism
of action and understanding the positioning of a ligand inside a
protein-binding pocket (Fakhrudin et al., 2010; Zhang et al.,
2011). Earlier studies revealed that more than 16,000
antimicrobial studies were registered in ClinicalTrials.gov from
the year 2000. In approximately only 1 of all 10 registered
scientific investigation studies were antimicrobial mediators
assessed and invest igated. The most common was
interventional trials of drugs and biologicals, in which around
75% were randomized and about 26% were recruited for children
along with adults. Diagonally between all completed
interventional drug trials, only 12% had been rationalized
through the investigation results (Stockmann et al., 2013). In
agreement with the earlier reports, there are also some
pharmacokinetic/pharmacodynamics evaluation studies which
were registered in ClinicalTrials.gov since this is an essential
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and important component in safety and efficacy studies (Ross
et al., 2012).

A standardized herbal concentration of “Tokoro
Combination” and “Rehmannia and Akebia” was formulated
as small granules. Both of these medicines were already approved
by the ministry of health and welfare. These drugs consist of
major compounds like diosgenin, yamogenin, betulin, oleanolic
acid, hederagenin, akeboside, b-sitosterol, stigmasterol, inositol,
catalpol, and glycyrrhizin. In the investigation of Girón et al.
(1988), it was reported that the combination of Solanum
nigrescens extract with nystatin showed better results in
women. Both were provided as intravaginal suppositories in
patients with long-established C. albicans vaginitis. The plant
extract proved to be more effective when compared with
nystatin. Similarly, cranberry juice was given for urinary tract
infection, which was investigated in a team of elderly women
who showed less bacterial infection in their urine than the
untreated control groups (Avorn, 1996). A group of diverse
ayurvedic formulations was examined against a placebo for their
potency against acne vulgaris. Among these, Sunder Vati’s
product revealed a significant reduction of lesion count in
comparison with the other three formulations. Compounds
such as Provir and Virend were clinically investigated against
respiratory viral infection and topical antiherpes agents in 1994,
and their safety and efficacy were studied in phase II studies. The
extract of Opuntia streptacantha exhibited in vitro antiviral
activity and was found to be safe in mice and humans (King
and Tempesta, 2007), yet another compound, berberine, was
proved to have a good result against various infections. A
concentration above 64 µg/ml exhibited better results and was
retained in the intestine, reaching an extraordinary benefit for
intestinal infectious diseases and diarrhea (Lin et al., 2018). In the
same way, there have been reports that Houttuynia cordata
Thunb. has a medicinal property against various diseases, such
as suppuration, sores, pustules, and respiratory infections, in
Chinese pharmacopeia. A compound named houttuynin, which
was isolated fromH. cordata, exhibited antibacterial activity. The
compounds isolated were used alone or in combination with
conventional antibiotics to battle against infectious diseases
(Hou et al., 2018; Liu et al., 2021).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
CONCLUSION

As the emergence of antibiotic resistance among bacterial
pathogens is becoming a major problem in treating infectious
diseases, the progression of novel alternative treatment methods
is therefore evolving rapidly against drug-resistant pathogens all
over the world. As an alternative, phytochemicals have been
employed to combat such infections instigated from antibiotic-
resistant pathogens. So far, several plant-derived bioactive
compounds (phytochemicals) have been reported for their
bactericidal as well as antibiotic reversal potential. The
bioactive potentials of such phytochemicals have been found to
impede the important virulence factors associated with resistance
development, such as cell permeability, efflux pumps, DNA
replication mechanisms, and other processes linked with
bacterial virulence, including biofilm formation and quorum
sensing. Moreover , the synergist ic effects of these
phytochemicals with conventional antibiotics were found to be
very effective against antibiotic-resistant pathogenic bacteria.
Ultimately, several studies have proved the efficacy of
phytochemicals as future drugs, the conversion success, and
the scanty commercial use. Therefore, extreme progress is
needed towards the commercialization of phytochemicals as
proven drugs to encounter MDR-associated infections.
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