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Abstract

Haplotype-aware diploid genome assembly is crucial in genomics, precision medicine,
and many other disciplines. Long-read sequencing technologies have greatly
improved genome assembly. However, current long-read assemblers are either
reference based, so introduce biases, or fail to capture the haplotype diversity of
diploid genomes. We present phasebook, a de novo approach for reconstructing the
haplotypes of diploid genomes from long reads. phasebook outperforms other
approaches in terms of haplotype coverage by large margins, in addition to achieving
competitive performance in terms of assembly errors and assembly contiguity.
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Background
There are generally multiple copies of hereditary material in most eukaryotic organ-
isms, where each copy is inherited from one of the ancestors. The copy-specific nucleic
acid sequences are called haplotypes, and the haplotype-specific contigs that assem-
bly programs compute for reconstructing them are often referred to as haplotigs. Most
vertebrates (such as human and mouse) and many higher plants (such as maize and
arabidopsis) are diploid, which means that there are two copies for each chromosome.
Haplotype reconstruction plays a crucial role in various disciplines. For example,

haplotype information is important in functional genomics since there is widespread
allele-specific gene expression across the human genome [1]; haplotype information also
crucially supports studies on population demography, gene flow, and selection in con-
servation genomics [2]; the haplotype-specific combinations of genetic variants usually
affect disease phenotypes and clinical responses, which is of great concern in precision
medicine [3, 4].
Over the last few years, long-read sequencing technologies such as single-molecule

real-time (SMRT) sequencing of Pacific Biosciences (PacBio) and nanopore sequencing of
Oxford Nanopore Technologies (ONT) have improved genome assembly greatly because

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-021-02512-x&domain=pdf
http://orcid.org/0000-0003-3529-0856
mailto: aschoen@cebitec.uni-bielefeld.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Luo et al. Genome Biology          (2021) 22:299 Page 2 of 26

sequencing reads are sufficiently long (generally ranging from several kbp to hundreds of
kbp, or even to a few Mbp) to also span more complex repeat regions [5–8].
Although long reads have tremendous advantages in terms of read length in comparison

with next-generation sequencing (NGS)–derived short reads, they suffer from (substan-
tially) elevated sequencing error rates. In particular, PacBio CLR and ONT reads, as the
most representative examples of long reads, have a sequencing error rate as high as 5 to
15%.While PacBioHiFi reads havemuch lower error rates (<1%), and in comparison with
NGS reads are still long, such reads considerably sacrifice on read length in comparison
with PacBio CLR and ONT. The significant differences in terms of read length and error
characteristics explain why short-read genome assembly tools cannot be directly applied
for long-read data; novel approaches are required.
Existing methods for haplotype reconstruction of diploid genome from long reads basi-

cally fall into two classes. The first one involves alignment-based methods, which are
referred to as haplotype assembly programs. Recent works such as WhatsHap [9], Hap-
Cut2 [10], andHapCol [11] are designed for diploid haplotype assembly. It is characteristic
for these tools to make use of a high-quality reference as a backbone sequence. They align
reads to it to call variants using external tools. Subsequently, variants are separated into
different haplotypes based on their own phasing algorithms. The output haplotigs of these
tools then reflect modified reference sequence patches. However, because only minor
modifications of the backbone sequence can be applied, the haplotigs can be affected by
non-negligible biases.
For avoiding reference induced biases, de novo assembly-based methods can be used

as an alternative. A series of remarkable de novo genome assemblers specialized for
long-read sequencing data have been developed so far. FALCON [12], which follows the
hierarchical genome assembly process, and its haplotype-aware version FALCON-Unzip
are mainly designed for PacBio long reads. Improved Phased Assembler (IPA) [13] is
designed to produce phased genome assemblies from PacBio HiFi reads. Canu [14] uses
adaptive overlapping algorithm and sparse assembly graph construction which helps to
separate repeats and haplotypes, and its modification version HiCanu [15] is tailored for
haplotype aware assembly from PacBio HiFi reads. Moreover, Flye [16] tries to generate
optimal assemblies using repeat graphs. Generic long-read assemblers Shasta [17] and
Wtdbg2 [18] considerably speed up the large-scale long-read assembly based on novel
graph representations. Notably, Hifiasm [19] is a haplotype-resolved assembler specifi-
cally designed for PacBio HiFi reads. A graph-based approach to haplotype aware diploid
assembly was proposed in [20], which combines accurate short-read data and long-read
(PacBio) data in a hybrid (employing both NGS and long reads) type framework.
There are various other long-read assembly approaches, all of which are not designed to

produce haplotype-aware assemblies. They usually collapse homologous sequences into
one consensus sequence and therefore do not distinguish between the haplotypes of a
diploid genome sufficiently accurately.We refer the reader to [17, 21] for a comprehensive
overview of such tools.
In summary, long-read assemblers are either designed to work for only specific types of

data, such as PacBio HiFi or ONT, or they do not address haplotype-aware assembly of
diploid genomes by design. In somewhat more detail, there is no method that combines
the following three important points: it generates high-quality haplotype-aware genome
assemblies only based on long-read data (1); is capable of handling all three of PacBio
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CLR, PacBio HiFi, andNanopore reads (2); and does not depend on high-quality reference
sequence as a backbone (3).
Here, we present phasebook and suggest it as an approach that to the best of our knowl-

edge is the first one to address all (1), (2), and (3) in combination. By bridging the gap
in the body of existing work, phasebook appears to be the first approach that presents
a framework that allows to reconstruct the haplotypes of diploid genomes de novo from
long reads without having to specialize in a particular sequencing technology.
We evaluate phasebook on different long-read sequencing data, namely PacBio

CLR/HiFi reads and Nanopore reads. Benchmarking results on both simulated and real
data indicate that our method outperforms state-of-the-art tools (both haplotype assem-
bly and de novo assembly approaches) in terms of various aspects. Thereby, an application
scenario of major interest is to reconstruct individual haplotypes of the major histo-
compatibility complex (MHC) region, spanning ∼ 5 Mbp of chromosome 6 and playing
a pivotal role in the adaptive immune system. Because of its great hereditary variabil-
ity, haplotype identity is of utmost interest with respect to numerous human diseases
and the corresponding medical treatments. Overall, phasebook generates more complete,
more accurate, and, with respect to full contig length statistics, comparably long haplotigs
compared with other approaches in this particularly challenging case.

Results
We have designed and implemented phasebook, a novel approach to assemble indi-
vidual haplotypes of diploid genomes from long-read sequencing data, namely PacBio
HiFi, PacBio CLR, and Oxford Nanopore reads. In this section, we provide a high-level
description of the workflow and evaluate its performance on both simulated and real
data, in comparison with an exhaustive selection of existing state-of-the-art tools. These
tools include both de novo long-read assemblers and reference-based haplotype assembly
approaches.

Approach

See Fig. 1 for an illustration of the following description. For full details on the following
outline, see descriptions of the individual steps in the workflow figure in the “Methods”
section.

Motivation and related work

From a larger perspective, phasebook pursues a divide-and-conquer strategy: in the
divide stage, it collects contiguous raw reads into small local clusters. Each of the clus-
ters then refers to a local instance of the minimum error correction (MEC) problem,
the solution of which yields two haplotype-specific super reads. In the conquer stage,
all haplotype-specific super reads are assembled following the overlap-layout-consensus
(OLC) assembly paradigm, using an overlap graph where nodes correspond to the super
reads and edges indicate that two super reads are likely to stem from identical haplotypes.
As such, phasebook reflects a combination of an approach that solves theMEC problem

without reference sequence first and performs OLC-ased assembly in a haplotype-aware
setting second.
The key insight is to first phase (and error correct) reads locally and only then perform

global assembly. Local phasing is possible because local coordinate systems can be raised
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Fig. 1 An overview of phasebook. The purple text represents that this step is optional. Correct errors from raw
reads is recommended for long reads with high sequencing error rate such as PacBio CLR and ONT reads.
Filter overlaps based on SNPs is recommended for small genomes or specific genomic regions such as MHCs
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in a way that does not introduce biases that hamper the process. Having phased reads
before assembly (and having corrected errors accordingly) then renders global assembly
using OLC techniques easy in comparison with OLC-based approaches that work with
unphased data.
As a whole—combining the MEC problem in a divide stage with OLC-bsaed assembly

in a conquer stage—the workflow of phasebook appears to be a novelty, to the best of our
judgment. The components of phasebook are inspired by a few recent approaches.
The divide stage is inspired by WhatsHap [9], as an approach that is based on the

minimum error correction (MEC) framework. However, while WhatsHap achieves good
performance in phasing long third-generation sequencing reads in particular, it crucially
depends on the availability of high-quality reference. Here, we set the framework for
solving the MEC problem when high-quality reference genome sequence is not available.
After solving the resulting local MEC instances, phasebook adopts techniques to sup-

port haplotype-aware de novo assembly based on overlap graphs, in full consistency with
prior steps, in the conquer stage. In this, phasebook is inspired by recent, related work on
short reads that focuses on overlap graph based assembly (see SAVAGE [22] or POLYTE
[23], for example). Here, we adapt these techniques to dealing with long reads. For com-
puting the necessary overlaps, we make use of Minimap2 [24], as the superior current
approach to compute overlaps among long reads in sufficiently short time also for large
datasets.

Overview of Technical Steps

Each of the two stages falls into two basic steps.
In the divide stage, phasebook first determines the clusters where each of the clus-

ters reflects a collection of reads that overlap each other in terms of genomic position
(executed by “Algorithm 1” in Fig. 1).
Secondly, during divide, phasebook solves an instance of the MEC problem for each

such cluster. For this, as abovementioned, phasebook follows the algorithmic principles
of WhatsHap [9, 25]. The decisive challenge for making this possible is to provide local
reference sequence with which one can solve the local instances of the MEC problem.We
recall that we operate in a de novo setting, such that we cannot expect reference sequence
to exist in the first place. Here, we need to provide sufficiently reliable reference sequence
for the small segments of the genome the clusters of reads stem from.
See “Assembly” and “Reads mapping to call SNPs” in Fig. 2 for the descriptions in the

following paragraph. For computing such local reference sequences for each of the read
clusters, we first construct a local overlap graph, and subsequently compute an ad hoc
reference for each of the clusters based on the overlap graph (see the “Read overlap graph”
and “Ad hoc reference construction” sections). After polishing this ad hoc reference, we
determine the polymorphic loci using Longshot [26], as a state-of-the-art tool for calling
variants in long reads (see the “SNP calling” section); note that we need these variants
for phasing reads by solving the MEC problem in the following. We determine a multiple
alignment of all reads in a cluster based on the ad hoc reference. Overall, the procedure
implies in particular to have setup reference coordinates, as provided by the positions in
the ad hoc reference, that are sufficiently free of sequential biases.
In Fig. 1, this comprises all steps from “assemble to ad hoc reference” to “polish and trim

super read” (where polishing and trimming may be required in low coverage areas). As
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Fig. 2 A schematic diagram for read phasing and super read generation in a read cluster. The blue reads
belong to haplotype 1, and the orange reads belong to haplotype 2. The bold sky blue read means that this
read is a seed read. We use WhatsHap to separate reads into two different groups based on SNPs involved in
long reads. The dash line regions in super reads represent the bases with sequencing low coverage, which
can be optionally trimmed to generate corrected super reads

pointed out above, see also Fig. 2 for further illustrations. Solving the local MEC problem
for each cluster results in two super reads that reflect local haplotypes for each cluster
(one of which generated as per the blue, and one of which generated as per the red branch
in Fig. 1).
In the conquer stage, phasebook first constructs an overlap graph on all super reads

emerging from the divide stage (comprising all steps from “Merge super reads” to “Fil-
ter overlaps based on SNPs” in Fig. 1). In this graph, edges indicate that two overlapping
super-reads stem from the same haplotype, based on statistical considerations. The num-
ber of super reads is much smaller than the number of raw reads, which renders the
construction of this overlap graph easily manageable (which arguably is a virtue of the
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design of the workflow overall). Because super reads are haplotype-specific, the corre-
sponding overlap graph virtually consists of two components each of which reflects one
of the haplotypes, with only a handful spurious edges connecting the components, see
Fig. 3 for further illustration.
Finally, in the second step of the conquer stage, super reads are assembled into haplotype-

specific contigs by careful elimination of redundant and spurious edges, where the
identification of spurious edges is based on evaluating (putative) polymorphic sites. After
edge elimination, phasebook lays out paths in the resulting connected components of the
overlap graph, indicated by “Simplify graph” and “Merge simple paths” in Fig. 1.
See the “Methods” section for full details on each of the sub-steps involved in the overall

workflow.

Fig. 3 A schematic diagram for super read overlap graph construction. The blue super reads belong to
haplotype 1, and the orange super reads belong to haplotype 2. The solid arrow lines (blue or orange)
represent non-transitive edges, and the dash arrow lines represent transitive edges. The solid arrow lines
(reddish purple) represent spurious edges caused by incorrect super read overlaps from different haplotypes
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Datasets

Simulated data

We simulated various datasets using different long-read sequencing technologies, namely,
PacBio CLR, PacBio HiFi, and ONT. Generally, PacBio CLR and ONT reads have high
sequencing error rate (5∼ 15%), while PacBio HiFi reads have much lower error rate
(< 1%). We selected two human MHC haplotypes from the Vega Genome Browser: PGF
and COX. Subsequently, we used PBSIM [27] model-based simulation to generate PacBio
CLR reads of N50 length 20 kbp and average sequencing error rate 10% for each of the
two haplotypes at a coverage of 25×. We used PBSIM sampling-based simulation to gen-
erate PacBio HiFi reads of N50 length 10 kbp for each of two haplotypes at a coverage of
15× by utilizing human individual HG00731 as the sample profile, which was downloaded
from EBI. Besides, we used NanoSim V2.6.0 [28] as an approved simulator to generate
ONT reads of N50 length 20 kbp and average sequencing error rate 10% using the built-in
pre-trained model human_NA12878_DNA_FAB49712_albacore for each of the two
haplotypes at a coverage of 25×. For each sequencing platform, the reads from each of
the two haplotypes were combined respectively, resulting a read set for a pseudo-diploid
genome (PGF and COX). Additionally, we used PBSIM model-based simulation to gen-
erate PacBio CLR reads of N50 length 20 kbp and average sequencing error rate 10% for
each of the two haplotypes at a coverage of 15×, 25×, 35×, and 45×, in order to evaluate
the effect of sequencing coverage.

Real data

To evaluate our method on real sequencing data, we downloaded PacBio HiFi and CLR
sequencing reads of human individual HG00733 from EBI and SRA (accession number:
SRR7615963) and Oxford Nanopore PromethION sequencing reads of human individual
NA19240 from ENA where the project ID is PRJEB26791. Subsequently, we extracted
reads primarily aligned to chromosome 6, which is∼ 170Mbp in length. The approximate
sequencing coverage per haplotype of chromosome 6 for these three types of long reads
is 18×, 44×, and 26×. Full-length haplotypes have been reconstructed for HG00733 and
NA19240 in a recent study [29] by applying multi-platform sequencing technologies and
specialized algorithms. Hence, we downloaded the corresponding haplotype sequences
as the ground truth for benchmarking experiments with the focus on chromosome 6.
As for a whole human genome, we benchmarked tools on the individual HG002, on all
three kinds of long reads. In addition, we benchmarked tools on PacBio CLR sequencing
data of Arabidopsis thaliana (A. thaliana). More details about data sources are shown in
“Availability of data and materials” section.

Run other approaches for comparison

Reference-guided haplotype assembly

Haplotype assembly methods such as WhatsHap and HapCut2 take as input a reference
genome sequence and a variant set (unphased VCF file), and output a phased VCF file.
For simulated data, we selected another MHC haplotype (named DBB) as the reference
also from the Vega Genome Browser. For real data, we extracted the sequence of chromo-
some 6 fromGRCh38 as the reference for HG00733 (Chr6) andNA19240 (Chr6) datasets.
Likewise, we used the GRCh38 and assembly TAIR10.1 as references for HG002 and A.
thaliana datasets, respectively. Note that the Chr6 haplotypes of HG00733, NA19240, and
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HG002 are quite diverged from GRCh38 Chr6, and the TAIR10.1 is one of the parental
strain of the sequenced A. thaliana. Subsequently, we aligned sequencing reads to refer-
ence genomes and called variants usingMinimap2 and Longshot, respectively. Ultimately,
we followed the method proposed in [23] to reconstruct contigs for each haplotype block
from phased VCF files using bcftools consensus.

De novo haplotype aware assembly

For the sake of a fair comparison of the performance of the assembly programs, we
chose to use the results which keep the haplotype information rather than collapse it.
Consequently, we used the combination of primary contigs and associated contigs for
Hifiasm and Falcon, and added the option -keep-haplotypes when running Flye, for
haplotype-aware comparisons. For the remaining assemblers, we just compared with the
contigs as output, because of the lack of alternative options. Note that we failed to run
Falcon-Unzip on our datasets1, because no adequate read overlaps were generated likely
due to too low coverage, thus only results of Falcon are reported. To avoid excessive,
redundant computations for whole genomes, we downloaded the assemblies of HG002
(HiFi, ONT) whenever available as previously published. For HG002 (CLR), we success-
fully ran tools such as Canu, WhatsHap, and HapCut2 but failed to run others because of
limited computational resources.
In addition to phasebook itself, we implemented a strategy that combines stand-alone

error correction (and not necessarily combining error correction with phasing as in
phasebook) with phasebook’s HiFi mode, referred to as phasebook-hi in the following. As
for error correction, we used Canu because it offers error-corrected versions of the raw
reads as convenient, separate output. The idea behind phasebook-hi was the development
of a somewhat more aggressive version of phasebook that trades off exactness in terms
of phasing (as demonstrated by more misassemblies and switch errors by phasebook-
hi) with enhanced contiguity (as indicated by more long haplotigs in phasebook-hi).
Preempting a detailed discussion, it seems that phasebook-hi leads to improvements in
general when dealing with relatively variant poor diploid genomes (such as A. thaliana).
We benchmarked phasebook-hi on both simulated and real data (PacBio CLR and ONT
reads) for comparison.

Assembly performance evaluation

The assembly performance was evaluated by means of several commonly used metrics,
routinely reported by QUAST v5.1.0 [30] , as a prominent tool that evaluates assemblies
relative to a reference (see the “Metrics” section for specific explanations. For reference-
guided haplotype assembly approaches, we generated contigs for each haplotype from
phased variants, even if haplotypes share highly similar regions. De novo assembly
approaches, however, can assemble genomic sequences from regions shared by the differ-
ent haplotypes only once, which can be interpreted misleadingly. To circumvent the issue,
for evaluating reference-guided methods, we used the parameter -ambiguity-usage
one, whereas for de novo assemblers, we used the parameters -ambiguity-usage
all and -ambiguity-score 0.999 so as to obtain reasonable alignments of contigs
with both haplotypes.

1We contacted the authors, but received no response; note that the latest update in the GitHub repository is from 4 years
ago. This seems to be in agreement with earlier attempts to contact the Falcon-unzip crew[20].



Luo et al. Genome Biology          (2021) 22:299 Page 10 of 26

In addition to QUAST, we used Merqury v1.3 [31] as a reference-free genome assem-
bly evaluation tool. This way, one could assess the performance relative to the individual
haplotypes, whenever parental sequencing data was available which was applicable for all
genomes under consideration here (see more details in section “Commands and versions
of tools used for comparison” in Additional file 1).

Metrics

Haplotype completeness

Haplotype completeness is measured by two metrics, namely, haplotype coverage (HC)
and k-mer recovery rate.
Haplotype coverage is the percentage of aligned bases in the ground truth haplotypes

covered by haplotigs, which is reported by QUAST and used to measure the overall
completeness of the assembly.
k-mer recovery rate is reported by Mercury and consists of two aspects. First, k-mer

completeness (k-mer recovery “All” in Tables 1, 2, and 3) is equal to the number of solid k-
mers found in the assembly divided by the solid k-mers in the read set. Second, maternal
and paternal hap-mer completeness (k-mer recovery “Mat” and “Pat” in Tables 1, 2, and
3) is calculated analogously, but only for the haplotype it refers to.

Contiguity

N50, NG50, NGA50, and Phased N50 (phased block N50) are used to measure the con-
tiguity of an assembly. N50 is defined as the length for which the collection of all contigs
of that length or longer covers at least half of the assembly. NG50 is similar to N50 except
that half of the true genome, and not the assembly needs to be covered. NGA50 is simi-
lar to NG50 insofar as contigs are replaced by only the blocks of the contigs that can be
consistently aligned with the true genome. Phased N50 is similar to N50 where instead of
contigs, phased blocks of contigs are considered; unlike the other metrics, Phased N50 is
reported by Merqury, but not by Quast.

Accuracy

Quality value (QV) and switch error rates, as reported by Merqury, are estimated in a
reference-free way. Besides, N-rate is defined as the proportion of ambiguous bases (‘N’s)
in the assembly, which is reported by QUAST.

Duplication ratio

Duplication ratio is equal to the total amount of aligned bases in the assembly divided
by the total amount of aligned bases in the reference sequences, which is reported by
QUAST.

Benchmarking experiments

Summary

In the following evaluation, we focus on the criteria that relate to performance in terms
of phasing, like haplotype coverage, k-mer recovery rate, NGA50 and Phased N50, and
switch error rate, apart from a basic evaluation of haplotigs in terms of error content,
first and foremost (see Tables 1, 2, and 3 for the corresponding statistics). Please note that
values like N50 and NG50, and contig length in general, are relatively meaningless in a
setting that addresses to assemble genomes in a haplotype-aware manner (contig length
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alone comes regardless of haplotype awareness, so highlights effects that can be seriously
misleading). We therefore list these numbers only for completeness, see Additional file 1:
Tables S1, S2 and S3 for the corresponding statistics.
We performed benchmarking experiments including all methods on the simulated and

real data as described above, for all three types of long reads, namely, PacBio HiFi, PacBio
CLR, and Oxford Nanopore reads (see details in the section “Commands and versions of
tools used for comparison” in Additional file 1). In summary, the results show that for both
simulated and real PacBio HiFi reads, Hifiasm and phasebook share top performance.
phasebook apparently reconstructs more complete (indicated by HC, k-mer recovery),
comparably equally continuous (indicated by NGA50, phased block N50), and accurate
(QV, switch error, N-rate) haplotigs than the other approaches. While Hifiasm is on a
par with phasebook on HiFi data, advantages of phasebook are most evident for PacBio
CLR, and Nanopore reads, where it outperforms other methods in terms of haplotype
coverage on both simulated and real data in terms of a relatively large margin. At the
same time, phasebook maintains better or similar performance in terms of various other
metrics (NGA50, phased block N50, QV, switch error, and N-rate). More details on the
results are provided in the following sections.

PacBio HiFi reads

Table 1 shows the assembly statistics on PacBio HiFi reads. In the simulation experi-
ment (MHC), phasebook achieves the largest haplotype coverage (HC 99.4%), while on
real data (HG00733-Chr6), it reconstructs the second largest part of the haplotypes (HC
91.2%), rivaled only by Hifiasm (HC 93.5%). On whole-genome real data (HG002), phase-
book also obtains the second largest the haplotype completeness (all 97.5%, maternal
80.0%, paternal 85.0%), outperformed only by the reference-guided approaches HapCut2
and WhatsHap (all 98.8%, mat 87.8%, pat 90.2%). Apart from HapCut2 and WhatsHap
requiring a reference genome, this is further compensated by the fact that HapCut2 and
WhatsHap fail to achieve a large fraction of the haplotype sequence when dealing with
Chromosome 6 (HC, only <76.5%), the effects of which are likely to persist also on the
entire genome. As for assembly contiguity, phasebook outperforms Flye and Wtdbg2
among de novo assemblers in terms of NGA50 and Phased N50 in both MHC and
HG00733-Chr6 datasets.
The currently most predominant reference-guided methods (WhatsHap and HapCut2)

only yield less than 60% and 77% haplotype coverage in MHC and HG00733-Chr6
datasets, respectively, though achieving the highest k-mer recovery in HG002. Mean-
while, they have NGA50 and phased block N50 about twice as short in MHC compared
with phasebook, whereas yielding similar and longer length in HG00733-Chr6 and
HG002 datasets, respectively. Further, they have lower QV and much higher switch error
rates in comparison with phasebook on all three datasets, and they clearly the largest N-
rates in comparison with other methods. All these effects can be attributed to making
use of a reference genome. De novo assemblies, which do not suffer from biases that are
inherent to reference genome based approaches, do not have such high switch errors and
N-rates (in fact they do not contain any N).
See also Additional file 1: Table S1 for contig length statistics. While the N50 of phase-

book is much smaller, the amount of very long contigs is substantially greater than that of
other approaches, so proves to be very well able to compute very long contigs. In general,
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phasebook generates substantially more contigs, which explains the relationship between
N50 and long contigs. We point out again that contig length only has ambiguous value in
the context of haplotype-aware assembly. The great N50 for Flye and Wtdbg2, for exam-
ple, could be due to collapsing bubbles and smoothing tangled regions in the assembly
graph, which is indicated by the relatively large amount of erroneous bases and misas-
semblies for the two tools, which further also prevents them from separating the two
phases.

PacBio CLR reads

See Table 2 for the following discussions. Note that here we do not only consider phase-
book itself, but also its more aggressive version phasebook-hi (reflecting to error correct
reads first, where here Canu’s error correction is used, and then applying phasebook’s
HiFi mode to the pre-corrected reads).
In comparison with all other approaches, phasebook achieves the second largest and

the largest haplotype coverage on the simulated MHC region (HC 95.2%) and on the real
HG00733-Chr6 (HC 92.9%) data, respectively (HC 52 ∼ 74% throughout for all other
approaches). phasebook-hi achieves the largest and the second largest haplotype cov-
erage in MHC (HC 98%) and HG00733-Chr6 (HC 81%) data. Moreover, phasebook-hi
outperforms Canu in terms of both maternal and paternal k-mer recovery. On HG002,
phasebook only achieves higher maternal haplotype completeness compared with Canu.
In A. thaliana data, phasebook shows higher haplotype completeness than other de novo
assemblers such as Flye and Wtdbg2 but is outperformed by Canu in this respect. How-
ever, the best performance is achieved by phasebook-hi in k-mer recovery (all 94.9%, mat
89.5%, pat 88.8%), compared with all other methods. Interestingly, reference-based meth-
ods achieve high maternal, but rather low paternal k-mer recovery. This is very likely
explained by the fact that high-quality maternal genome sequence has been used as the
reference for these reference-dependent tools (note that this choice reflects the practi-
cally most reasonable decision, because the genome of the mother is the genome that
resembles the genome under analysis the most and is of highest quality).
Apart from this, phasebook and phasebook-hi outperform all other de novo approaches

in terms of NGA50 (MHC, HG00733-Chr6) and NG50 (HG002, A. thaliana) quite drasti-
cally. In A. thaliana, phasebook has shorter NG50 than Canu, while phasebook-hi has the
greatest NG50. phasebook also achieves the lowest switch error rate across all methods
in MHC and A. thaliana data, and the second lowest switch error rate in HG00733-Chr6
and HG002. On HG002, phasebook is rivaled only by the reference assisted methods in
that respect. Note further that Flye, which outperforms phasebook in terms of QV (Flye
42.9; phasebook 32.6) and switch error rate (Flye 3.12; phasebook 5.50), Flye obtains truly
lower haplotype coverage (Flye 52%; phasebook 92.9%), and no NGA50, which puts this
into perspective.
The reference-guided methods WhatsHap and HapCut2 generate more contiguous

haplotigs (larger Phased N50 and NG(A)50). Nevertheless, as we already observed in
PacBio HiFi read data, this comes at the cost of substantially elevated N-rates and switch
errors. Additionally, these methods only reconstruct 56 ∼ 63% haplotype coverage in
MHC and HG00733-Chr6 datasets, which is much lower in comparison with phasebook.
phasebook-hi generally trades higher switch error rates (being on a par with those of

the other methods, while phasebook itself tends to have substantially lower switch error



Luo et al. Genome Biology          (2021) 22:299 Page 16 of 26

rates)) in compensation for greater (haplotype-aware) contiguity of the assembly, so may
present an interesting option for certain applications. On A.thaliana, phasebook-hi even
appears to be the best method overall. A likely explanation is that the modified protocol
of phasebook-hi is favorable on diploid genomes that are relatively variant sparse.
We also evaluated the effects of using correcting errors for raw reads (step “Correct

errors from raw reads” in Fig. 1) or not, where correcting reads is the default. See Addi-
tional file 1: Tables S5 and S9: results for MHC and HG00733-Chr6 show that using this
option improves the assembly in terms of contiguity and accuracy (QV, switch error), and
also improves haplotype coverage onHG00733-Chr6 quite substantially (Additional file 1:
Table S5), at the expense of 4 times more CPU time (Additional file 1: Table S9). The gen-
eral recommendation therefore is to use it, unless one cannot afford the requested amount
CPU time. Note, however, that the requested amount does not appear to be excessive, as
being roughly on a par with that of other methods.
As for contig length statistics regardless of haplotype awareness, see Additional file 1:

Table S2, similar effects as for HiFi data show.While showing relatively small N50, phase-
book, and phasebook-hi in particular, generate larger amounts of long contigs than the
othermethods. This shows that phasebook’s assemblies are similarly fragmentary as those
from the other methods.

Oxford Nanopore reads

See Table 3 for the following results. Importantly, phasebook achieves the largest haplo-
type coverage on all (simulated) MHC (HC 97.0%), (real) NA19240-Chr6 (HC 84.4%), and
(real) HG002 (overall/maternal/paternal k-mer recovery, 92%/62.2%/63.2%) data com-
pared with all other approaches (HC 56 ∼ 77% in MHC, 56 ∼ 65% in NA19240-Chr6;
overall/maternal/paternal k-mer recovery 83 ∼ 89%/34.4 ∼ 40.9%/44.2 ∼ 51.6% in
HG002).
Meanwhile, phasebook-hi achieves the second largest haplotype coverage in MHC

and NA19240-Chr6 data. In addition, phasebook generates haplotigs with the lowest
switch error rate (about 6 ∼ 14 times lower) and second largest QV (Flye having
best QV) on MHC data. phasebook-hi further outperforms other de novo assemblers
in terms of NGA50 on MHC and NA19240-Chr6, while phasebook outperforms alter-
native approaches on NA19240-Chr6 and HG002 data (evaluation of phasebook-hi on
HG002 was not possible because of not being able to run Canu on HG002 by ourselves
due to a lack of resources at the time of the analysis). Meanwhile, both phasebook and
phasebook-hi achieve similar Phased N50 in MHC and HG002 data.
Reference-guided methods generate more contiguous haplotigs (larger N50, phased

block N50, and NGA50 values). As we have already observed in PacBio HiFi/CLR
datasets, this comes at the expense of significantly higher N-rate and switch errors,
especially in MHC data. Notably, these methods only obtain approximately 56% haplo-
type coverage in MHC and NA19240-Chr6 data, which is much inferior to the result
reconstructed from our reference-free approach.
As for contig length statistics, we observe effects very similar to those from HiFi and

CLR reads: relatively small N50 values are put into perspective by large amounts of long
contigs (in particular on the whole human genome HG002, phasebook delivers the by
far greatest amount of contigs longer than 500 kb). This demonstrates that phasebook,
just as the other methods, is very well possible to generate very long contigs. At any rate,
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we would like to recall that basic contig length statistics can be rather misleading in the
evaluation of ploidy aware assemblers.

Effect of sequencing coverage

In order to evaluate the effect of sequencing coverage on noisy long read assembly perfor-
mance, we used twoMHC haplotypes (PGF and COX) as a template for a diploid genome.
We then simulated PacBio CLR reads with different sequencing coverage, namely, 15×,
25×, 35×, and 45× per haplotype. Subsequently, we ran phasebook and all other tools on
these four datasets. The benchmarking results are shown in Additional file 1: Table S4.
As the sequencing coverage varies, phasebook always achieves the best performance in

terms of haplotype coverage (95 ∼ 97%), clearly outperforming all other tools (52 ∼ 76%).
In addition, it yields haplotigs with much lower switch error rate (0.6 ∼ 1.3%, 3 to 10
times lower) at all different sequencing coverages. At a coverage of 15×, phasebook has
the lowest QV with respect to all other methods, while being second best on all other
coverage rates, with Canu taking first place in that respect (QV phasebook 37.7 ∼ 41.2
versus 39.4 ∼ 41.8 from Canu).
The explanation for this effect is that phasebook corrects sequencing errors at hap-

lotype level, whereas other methods correct errors by considering reads from the two
haplotypes jointly. This yields improvements at low coverage rates for the other methods;
however, other methods do not improve error rates on increasing coverage. Note in gen-
eral that correcting sequencing errors in noisy long reads experiences difficulties starting
from 15× and less. Besides, the haplotype coverage of phasebook slightly improves on
increasing sequencing coverage, and the accuracy (QV and switch errors) of phasebook is
improved when sequencing coverage increases from 15× to 25×; furthermore, only slight
improvements are observed when raising sequence coverage to 35× and 45×.

Runtime andmemory usage evaluation

The runtime of phasebook is dominated by two steps. First, the computation of all-vs-all
long read overlaps for which we use Minimap2, as one of the fastest approaches to com-
pute read overlaps. Second, generating corrected super reads consumes a considerable
amount of time, as a consequence of the high rate of sequencing errors in long reads.
Of note, the number of read clusters is approximately linear with the genome size, as

a logical consequence of the design of the clusters. Converting massive amounts of raw
reads into a much reduced set of super reads, parallelized across clusters, and only then
constructing overlap graphs on (the reduced amount of) super reads, and deriving assem-
blies from this (comparatively small) graph greatly speeds up the process, and avoids
consumption of excessive amounts of memory.
In an overall account, our approach is perfectly apt for assembling large genomes, such

as human genomes or other diploid genomes of similar length.
We evaluated the runtime and memory usage of related tools on both simulated and

real data for all three kinds of long read data (namely, as usual, PacBio HiFi, PacBio CLR,
and Oxford Nanopore reads). Results are shown in Additional file 1: Table S6, S7, S8,
respectively.
In detail, for PacBio HiFi data, Additional file 1: Table S6 shows that phasebook takes

64.8 h CPU time on Chr6 data and 6636 h CPU time on whole human genome data
(HG002). In comparison with HiFiasm, the strongest competitor, phasebook requires 1.5
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and 18 times more runtime, but requires only at most half of the memory on HG002. In
comparisonwith other approaches, phasebook requiresmore time, while still being on the
same order of magnitude for Chr6 (other de novo approaches: 14.4 to 41.0 h). In terms of
peak memory usage, phasebook requires roughly similar amounts like Canu and Flye (on
MHC and Chr6). As was to be expected, reference-guided methods, such as WhatsHap
and HapCut2, have advantages in terms of runtime and space consumption.
For PacBio CLR reads, Additional file 1: Table S7 shows that phasebook, Canu, and Fal-

con are orders of magnitude slower when assembling CLR reads relative to HiFi reads.
phasebook requires 1129 h CPU time on Chr6 data, which is similar to Falcon, and twice
the amount of Canu. phasebook-hi instead requires even less time than Canu, while still
requiring more than Flye and Wtdbg2. In addition, Additional file 1: Table S7 shows
that phasebook consumes about 7213 h CPU time on the whole human genome data
(HG002), which is faster than Canu (31,933 h) and also phasebook-hi (28,357 h). As
shared by those methods, this indicates that the error correction routine requires sub-
stantially larger amounts of time than that of phasebook itself. Note that this logic turns
around for A. thaliana: here, both Canu and phasebook-hi require substantially less time
than phasebook, which underscores the impression that these approaches are favorable
for variant poor, diploid genomes
For ONT, Additional file 1: Table S8 indicates that phasebook takes 727 h CPU time on

Chr6 data, which is faster than Canu (1139 h), but somewhat slower than Falcon (508 h),
with Flye, Shasta, and Wtdgb2 being the clearly least runtime intense tools. phasebook
takes about 19,564 h CPU time on the whole human genome data, which reflects a normal
amount of time in general.
Overall, this demonstrates that phasebook and phasebook-hi generally appear to be

relatively slow in comparison with other tools, while, however, never requiring runtimes
that exceed those of others by orders of magnitude. In addition, phasebook is well behaved
in terms of memory usage. In summary, both phasebook versions are very well applicable
in all real world scenarios of interest.

Discussion
Haplotype-aware assembly of diploid genomes, which preserves haplotype identity of the
assembled sequences, plays a crucial role in various applications. Long-read sequencing
data appears to be particularly suitable for addressing this task since long reads can cap-
ture linkage of genetic variations across much longer ranges than short reads. However,
the elevated error rates of long reads induce considerable difficulties, because it can be
challenging to distinguish errors from true variations. The error rates are themajor reason
why existing long-read assemblers tend to collapse assemblies into consensus sequence,
thereby loosing haplotype information. Further, the majority of existing methods for
generating haplotype-aware assemblies tend to require guidance by reference genomes.
The difference in error profile characteristics of the most popular long-read technolo-

gies, such as PacBio HiFi, PacBio CLR, and Oxford Nanopore add to the challenge,
because it seems that each sequencing technology requires specially tailored tools, where
each tool integrates the particularities of the individual sources of errors. In summary,
this explains why prior methods were struggling to address to generate haplotype-aware
de novo assemblies for diploid genomes for all predominant sequencing technologies,
despite the currently overwhelming interest in such tools.
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We have introduced phasebook to overcome this gap in terms of existing methods:
phasebook is (to the best of our knowledge) the first method that successfully addresses all
of these (crucial) points. phasebook reconstructs the haplotypes of diploid genomes, sup-
porting usage of all predominant sequencing technologies, namely PacBio HiFi, PacBio
CLR, and Oxford Nanopore, de novo, that is without requiring external guidance. The
results demonstrate the superiority of the new approach in terms of the majority of
approved assembly related metrics.
Key to success for phasebook is to not just follow standard assembly paradigms (such

as de-Bruijn or overlap graph based assemblies). Rather, phasebook adopts ideas from the
original (non-de novo)WhatsHap, as a predominant tool for reference-guided read based
phasing, and reframes these ideas in a reference-free setting.
In somewhat more detail, phasebook casts the overall assembly problem as several local

instances of the minimum error correction (MEC) problem, and assembles the resulting
solutions of the local instances thereafter. The challenge inherent to this is to establish
the instances of the MEC problem correctly; while this is straightforward in a reference-
aided setting, the setup of appropriateMEC instances in a de novo setting requires careful
consideration of various issues.
Solving the instances corresponds to determining local haplotype-specific patches of

genomics sequence. Just as for the original WhatsHap these patches are extremely accu-
rate in terms of error content. This kills two birds with one stone: the local sequence
patches do not only account for accurately preserving haplotype identity, but also for
correcting errors in the original (long) reads.
The high accuracy of the resulting sequence patches, referred to as super-reads, then

allows for a fairly straightforward procedure that finalizes the generation of high-quality
assemblies: One raises an overlap graph on the super reads and determines the longest
paths in this overlap graph. Because super-reads are (1) long, (2) accurate, and (3)
haplotype-specific, the resulting long and accurate overlaps reliably identify the haplo-
types also across regions of the genomes that extend the read length by considerable
amounts: Full-length assemblies can be easily determined by computing longest paths
in the overlap graph. To further polish assemblies, we implement options for sequenc-
ing error correction and read overlap refinement that account for differences in terms of
sequencing platform characteristics.
Benchmarking results on both simulated and real data indicate that phasebook

achieves the best performance in terms of haplotype coverage, often reconstruct-
ing up to 20–30% more haplotype-specific sequence than the toughest competi-
tors. At the same time, phasebook maintains better or comparable performance
in terms of various other relevant aspects. We also have presented phasebook-
hi, as a more aggressive approach, which trades misassemblies for contiguity over-
all, by correcting reads for errors regardless of haplotype identity. This proves to
be favorable for rather variant poor genomes, such as A. thaliana. The original
approach to partition reads into haplotype-specific groups before correcting errors,
instead, proves to be superior on sufficient amounts of polymorphic sites in the
genome.
Our comparisons consider all state-of-the-art tools that address to assemble diploid

genomes in a way that takes ploidy into account. Note that although the focus is on de
novo assembly, we also consider reference-guided approaches so as to judge the current
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state of the art from a larger perspective, which probably indicates the superiority of
partitioning reads into haplotype-specific groups before sequencing error correction.
Among the three kinds of long-read sequencing data, PacBio HiFi data is the most

promising one in terms of distinguishing the different haplotypes thanks to its low error
rates. PacBio CLR and Nanopore reads, on the other hand, come with elevated error
rates. As usual, combining long and highly erroneous reads with accurate short reads may
establish a viable alternative to achieving even better performance than phasebook, at the
expense, of course, of additional efforts in terms of sequencing experiments.
In summary, the results demonstrate that phasebook successfully reconstructs individ-

ual haplotypes of the most polymorphic region (MHC) in the human genome at utmost
quality in terms of completeness, contiguity, and accuracy. The integration of phasebook
in population-scale long-read sequencing projects may open up novel opportunities.
Still, there is room for improvements. Most importantly, phasebook is confined to work

with diploid genomes, so cannot handle polyploid genomes. We consider it worthwhile
future work to expand on the idea of polyploids and to design and implement a method
that can deal with polyploid genomes, or even cancer and metagenomes, while adopting
the ideas of WhatsHap style approaches further.

Conclusions
We have presented phasebook, a novel approach for reconstructing the haplotypes of
diploid genomes from long reads de novo, that is without the need for a reference genome.
The approach is implemented in an easy-to-use open-source tool https://github.com/
phasebook/phasebook. Benchmarking results on both simulated and real data indicate
that ourmethod outperforms state-of-the-art tools (both haplotype assembly and de novo
assembly approaches) in terms of haplotype coverage, while preserving competitive per-
formance or even achieving advantages in terms of other various aspects relevant for
genome assembly. Therefore, the integration of phasebook may reveal new opportunities
in population-scale long read sequencing projects.

Methods
Read cluster generation

Read overlap calculation

We firstly compute all-vs-all overlaps for raw reads using Minimap2 [24], whose seed-
chain-align procedure is known to perform pairwise alignments extremely fast, so can
manage the large amount of read pairs we need to process. Secondly, resulting bad over-
laps are filtered by reasonable, additional criteria. For example, overlaps that are too short
that do not exceed a minimum level of sequence identity and that reflect self-overlaps,
duplicates, or internal matches are removed. In this, we follow Algorithm 5 in [32].

Read clusters

We sort reads by their length in descending order, considering that longer reads tend
to have more overlaps. Processing reads in the corresponding order therefore results in
larger read clusters, which reduces the number of clusters, increases the length of the
resulting super-reads and hence improves the assembly overall. In each iteration, the
longest read having remained unprocessed is selected as the seed read. The correspond-
ing cluster is then determined as the set of reads that overlap the seed read (according to

https://github.com/phasebook/phasebook
https://github.com/phasebook/phasebook
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the criteria listed above), and all of its reads are discarded from the sorted list of reads.
The procedure stops when all reads have been processed. See the details in Algorithm 1.

Algorithm 1 Generate read clusters
Input: The set of raw reads R, minimum cluster size k;
Output: The set of read clusters S
1: Sort R by length in descending order;
2: Initialize a set of used reads: U ← ∅;
3: S ← ∅
4: i ← 0
5: for each read r ∈ R do
6: n ← number of overlaps for read r;
7: if r �∈ U & n + 1 >= k then
8: Ci ← {r, overlapped reads of r} ;
9: U ← U ∪ Ci ;

10: S ← S ∪ {Ci} ;
11: i ← i + 1 ;
12: else
13: next;
14: end if
15: end for
16: return S

Read phasing

Since read clusters contain reads from both haplotypes, we further phase reads into two
haplotype-specific groups. See Fig. 2 for the explanation of this step.

Read overlap graph

For each read cluster, we largely follow the method proposed in [22, 23] to construct
a read overlap graph G = (V ,E) where nodes v ∈ V represent reads and edges e =
(v,w) ∈ E indicate overlaps that are consistent in terms of length, sequence identity (see
the“Parameter settings” section). Edges (v,w) are directed indicating that the suffix of v is
likely to be identical with the prefix of w. Note that the overlaps were already determined
when computing clusters. Appropriate thresholds for sequence identity and length of the
overlaps are user defined.

Ad-hoc reference construction

In order to reduce the complexity of the overlap graph, we remove transitive edges, which
reflects a common procedure. An edge u → v is called transitive if there is a vertex w and
edges u → w,w → v. Subsequently, we determine the longest path in this directed acyclic
graph, and the reads that give rise to it. The resulting reads are then assembled into an ad
hoc reference by concatenating the overlapping reads that give rise to the path.

SNP calling

To remove remaining sequencing errors, and improve variant (SNP) calling and phasing,
we polish the ad hoc reference using Racon [33]. The raw reads are then mapped back
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to the ad hoc reference. SNPs are detected by utilizing a pair-hidden Markov model, as
implemented in Longshot [26].

Read phasing

Reads within a cluster can stem from both haplotypes. One can phase the reads conve-
niently, because the majority of them tend to be sufficiently long to bridge neighboring
polymorphic sites. For performing the phasing, we make use of WhatsHap [25], as a
tool that has been shown to operate at superior performance rates when phasing long
reads. WhatsHap centers on the weighted minimum error correction problem, provid-
ing a solution with runtime linear in the number of variants. The solution corresponds
to partitioning the reads in two groups, each of which immediately corresponds to one of
the two local haplotypes of the diploid genome.

Corrected super read generation

Super read construction

We construct a super-read for each of the two haplotype-specific groups of reads result-
ing from the phasing procedure. For each read group, we construct another read overlap
graph, now comprising only reads as nodes that belong to the same haplotype. Using the
overlap graph, we then assemble the reads in each group into a long haplotype-specific
sequence, which we refer to as super-read. As a result, we generally obtain two super
reads for each read cluster (see Fig. 2). Notably, there are two situations to consider when
handling with homozygous regions since no SNP can be found. Firstly, all the reads in a
cluster cannot be phased into two groups. Then, only one super-read will be computed.
Secondly, some reads in a cluster can be phased into two groups, and some other reads
cannot be safely assigned to phase groups. In this case, we assign the corresponding reads
to both groups. Thus, they contribute to both super-read haplotypes.

Error correction from raw reads

This step is optional and recommended for long reads with high sequencing error rate
such as PacBio CLR and Nanopore reads, while it is not necessary when processing
PacBio HiFi reads because of their great accuracy. For small genomes or specific genomic
regions such as MHCs, we make use of a method for self-correction of long reads in
each read group. This method combines a multiple sequence alignment (MSA) strategy
with local de Bruijn graphs and is implemented in CONSENT [34]. When dealing with
large genomes (e.g., Chr6), to increase efficiency, we use the MSA-based error correc-
tion modules built in MECAT2 [35] and NECAT [36] for PacBio CLR and Nanopore
reads, respectively. Reads in one group are supposed to stem from the same haplo-
type, thus one can avoid the elimination of true variation, which happens when reads
from different haplotypes are mixed together. Therefore, because of the prior arrange-
ment of partitioning reads into haplotype-specific groups, the corrected reads enjoy
error rates that are lower than when running these tools on reads referring to unphased
settings.

Super read polishing and trimming

Using the error corrected reads, we return to the super-reads computed earlier, and polish
each super-read by comparing it with the now error corrected reads. (When using PacBio
HiFi reads, we apply the procedure without prior correction of errors.) As a result, the
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super-reads come with error rates that are comparable to the ones obtained for the error-
corrected raw reads. We finally trim the super read, removing parts of low coverage of
raw reads. The final result is an error corrected super-read.
Note that the steps in the “Read phasing” and “Corrected super read generation”

sections can be parallelized conveniently across clusters, because computations within
clusters are independent of other clusters.

Super read overlap graph construction

Super read overlap graph

The super read overlap graph G′ = (V ′,E′) is very similar to the read overlap graph,
except that it is constructed from the set of corrected super reads instead of raw reads
(see Fig. 3). Thus, each node v ∈ V ′ corresponds to a super read, and there is an edge
vi → vj ∈ E′ if they have sufficient overlap length and sequence identity. For the last point,
consider that the super-reads exhibit very low sequencing error rates, so near-perfect
identity in the overlap is a necessary condition for edges.
Because the number of super reads is substantially smaller than the number of raw

reads, the super read overlap graph can be constructed in short time. For constructing
it, we again compute all-vs-all super read overlaps using Minimap2, filter bad overlaps
(remove self-overlaps, internal overlaps, etc.), and eventually establish the overlap graph
analogous to the procedure of “Read phasing” section, where the only difference is that
parameters differ; in general, because of the low error rates and the extended length of
super reads, more stringent thresholds are necessary.

SNP-based spurious edge removal

As there may still be errors in super reads, one still needs to distinguish between uncor-
rected errors and true variations. As a consequence, super reads can have false-positive
overlaps when considering sequence identity in the overlapping regions alone, which
leads to the introduction of misassemblies.
To control false-positive overlaps, we further refine the edges of the super read overlap

graph by applying a heterozygous SNP-based procedure to remove spurious edges that we
developed. In more detail, for a pair of overlapping super reads, we collect the corrected
reads which belong to the read groups that correspond with the super reads and map the
reads back to the sequence formed by concatenating the pair of super reads along their
overlap.
Subsequently, we genotype the variants involved in the overlap regions and remove

overlaps that contain at least k heterozygous SNPs. In our experiments k = 0, which cor-
respond to requiring perfect overlap. This step might be time-consuming if genome size
is large.We therefore consider it optional and recommend it preferably for small genomes
or particular genomic regions, such as the MHC region in our case.

Final contig generation

Graph simplification

First, we simplify the super read overlap graph by removing tips, because tips are likely
to be introduced by spurious overlaps, hence reflect mistaken junctures of super reads.
Second, we remove all transitive edges, for the exact same reasons for which we remove
such edges in the read overlap graph (see the “Read phasing” section and Fig. 3).



Luo et al. Genome Biology          (2021) 22:299 Page 24 of 26

Merging simple paths

A node v ∈ V ′ in the directed graph G′ is defined as a non-branching node if its indegree
and outdegree are both equal to one, and v is defined as a branching node if either its
indegree or outdegree is greater than one. A simple path is a maximal non-branching
path, that is its internal nodes are non-branching nodes, while starting and final nodes are
branching. For such paths, there is only one possible way to combine the corresponding
super reads. Therefore, we merge every simple path into a single contig. Since the number
of nodes and edges in super read overlap graph G′ is small, it is straightforward and very
efficient to enumerate and merge all simple paths (see Fig. 3).

Final contig polishing

This step is recommendable when the sequencing coverage is low, i.e., less than 20× per
haplotype. The reason is that the ends of super reads are likely to contain an elevated
amount of errors. This needs to be addressed and corrected. So, for each contig generated
from a simple path, we collect all corrected reads involved in the read groups that gave
rise to the super reads forming the simple path and align them to the contig. By evaluation
of the resulting alignment, further errors can be eliminated, resulting in polished contigs
(longer than 1 kbp) as the final output.

Parameter settings

There are mainly two parameters to be set during the read overlap graph construction,
namely, the minimum overlap length and the minimum sequence identity of the read
overlap. In our experiments, the minimum overlap length is 1000 bp, and the minimum
sequence identity of the read overlap is 0.95 for PacBio HiFi reads, and 0.75 for PacBio
CLR and ONT reads, in agreement with the approximate expected amount of identity
according to the inherent error rates. These parameters reflect similar choices used with
other tools [12, 14].

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02512-x.

Additional file 1: Supplement: This contains all supplementary materials referenced in the main text.

Additional file 2: Review history.

Acknowledgements
We would thank Jasmijn Baaijens and Marleen Balvert for their insightful discussions during the early stages of this
project. Further, we thank Tobias Marschall for the useful comments towards the end of the project, and for suggesting
the name of the tool.

Review history
The review history is available as Additional file 2.

Peer review information
Barbara Cheifet was the primary editor of this article and managed its editorial process and peer review in collaboration
with the rest of the editorial team.

Authors’ contributions
XL and AS developed the method. XL, XK, and AS wrote the manuscript. XL and XK conducted the data analysis. XL
implemented the tool. All authors read and approved the final version of the manuscript.

Authors’ information
Twitter handles: @XiaoLuo88872497 (Xiao Luo); @XiongbinK (Xiongbin Kang); @ASchonhuth (Alexander Schönhuth).

Funding
XL and XK were supported by the Chinese Scholarship Council. AS was supported by the Dutch Scientific Organization,
through Vidi grant 639.072.309 during the early stages of the project, and from the European Union’s Horizon 2020
research and innovation programme under Marie Skłodowska-Curie grant agreements No 956229 (ALPACA) and No
872539 (PANGAIA). Open Access funding enabled and organized by Projekt DEAL.

https://doi.org/10.1186/s13059-021-02512-x


Luo et al. Genome Biology          (2021) 22:299 Page 25 of 26

Availability of data andmaterials
The data used to generate PacBio HiFi sample profile when simulating HiFi reads can be downloaded from EBI http://ftp.
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YSQQu9MzYWr [19] and https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=publications/
SHASTA2019/assemblies/raw/ [17], respectively.
Simulated reads of MHCs, real reads of human Chr6 and code for reproducing results can be downloaded from Code
Ocean [38]. Assemblies generated in this paper can be downloaded from Zenodo [39].
The source code of phasebook is GPL-3.0 licensed, and publicly available on Github [40].
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