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Background
Next-generation sequencing (NGS) has greatly advanced our ability to investigate the 
biological consequence of somatic mosaic variants. In cancer, detection thresholds for 
mosaic variants are often set around 0.10 variant allele fraction (VAF) on the basis that 
a tumor with a clone at less than 0.20 cellular contribution is not an appealing thera-
peutic target. In non-malignant mosaic overgrowth, VAF may be well below 0.10 and 
may not correlate with apparent affection status of the sampled tissue [1, 2]. Further-
more, affected tissue (e.g., brain) may not be accessible for sampling in which case a 
proxy tissue (peripheral blood or skin) may be used as a sample source with a VAF well 
below 0.05 [3]. Identifying somatic mosaic variants at low VAF is challenging because of 
the sequencing error that is inherent to the technology [4, 5]. Current somatic mosaic 

Abstract 

Background:  The widespread use of next-generation sequencing has identified an 
important role for somatic mosaicism in many diseases. However, detecting low-level 
mosaic variants from next-generation sequencing data remains challenging.

Results:  Here, we present a method for Position-Based Variant Identification (PBVI) 
that uses empirically-derived distributions of alternate nucleotides from a control 
dataset. We modeled this approach on 11 segmental overgrowth genes. We show 
that this method improves detection of single nucleotide mosaic variants of 0.01–0.05 
variant allele fraction compared to other low-level variant callers. At depths of 600 × 
and 1200 ×, we observed > 85% and > 95% sensitivity, respectively. In a cohort of 26 
individuals with somatic overgrowth disorders PBVI showed improved signal to noise, 
identifying pathogenic variants in 17 individuals.

Conclusion:  PBVI can facilitate identification of low-level mosaic variants thus 
increasing the utility of next-generation sequencing data for research and diagnostic 
purposes.

Keywords:  Mosaic variants, Prediction of mosaic variants, Somatic overgrowth 
disorder

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

Dudley et al. BMC Bioinformatics          (2021) 22:181  
https://doi.org/10.1186/s12859-021-04090-y

*Correspondence:   
celine.hong@nih.gov 
1 National Human Genome 
Research Institute, National 
Institutes of Health, 50 South 
Drive Room 5140, Bethesda, 
MD 20892, USA
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04090-y&domain=pdf


Page 2 of 17Dudley et al. BMC Bioinformatics          (2021) 22:181 

variant callers address low-level detection with a variety of approaches and target appli-
cations [6]. However, maximizing sensitivity while reducing false positives near the lim-
its of sequencing error is an ongoing challenge.

Most somatic mosaic variant callers employ a matched sample calling strategy, likely 
due to their development for applications in cancer diagnostics [7] and research [8]. In 
this strategy, sequence data from affected (tumor) and unaffected (non-tumor) tissues 
are compared to identify variants with VAF that are significantly higher in the tumor 
sample. In mosaic overgrowth disorder testing the inability to unambiguously identify 
unaffected tissues, combined with low VAF in some affected tissues, requires a differ-
ent approach to variant calling. Furthermore, an evaluation of current unmatched call-
ers has shown that most struggle to maintain both high sensitivity and precision at 
VAF < 0.05 [9]. Consequently, developing appropriate methods for detecting low-level 
(VAF < 0.05) variants in unmatched samples is critical to interpretation of NGS data in 
these conditions.

In this work we present a simple and highly sensitive method designated as Position-
Based Variant Identification (PBVI) that enables sensitive low-level variant calling by 
modeling NGS error directly from a control dataset. PBVI focuses on single-nucleotide 
variants (SNVs) since they account for a majority of currently-identified pathogenic 
variants in individuals with somatic overgrowth disorders. The underlying assumption 
of PBVI is that the empirical distribution of alternate nucleotides in NGS data from a 
control dataset can be used to determine the probability that a candidate variant with 
a certain VAF is not sequencing error. Previous work has shown clear patterns in NGS 
error on Illumina platforms due to factors including; preferential nucleotide misincorpo-
ration for a given reference nucleotide, sequence mappability, variant position within a 
read, and the tendency of certain genomic positions to be error-prone due to the preced-
ing sequence of nucleotides. While previous studies have shown that modeling empirical 
distributions of nucleotides in control data can be used to aid identification of high-con-
fidence variants, PBVI builds on previous work by assessing forward and reverse strands 
independently allowing for preceding sequence to be considered in our variant calling 
algorithm with simplified statistical approach [10–15].

We test the performance of PBVI on simulated data and compare the performance to 
two mosaic variant callers, VarDict [16] and LoFreq [17]. We validate PBVI by detecting 
variants in a set of samples from 26 individuals with somatic overgrowth disorders again 
comparing the performance of this method to VarDict and LoFreq.

Results
Robustness of direct modeling approach

The overview of the PBVI method is described in Fig. 1. We evaluated the robustness 
of PBVI in combination with the OverGrowth Position-Based model (PBVI-OG) for 
classifying low-level variants by simulating variants in three independently generated 
BAM files and measuring sensitivity. We introduced synthetic variants directly into 
our sequencing files by using SomatoSim, a SNV simulation tool (see Methods). The 
advantages of this approach compared to generating synthetic reads from a reference 
file or admixture of sequencing files are that this approach allows for error profiles to 
be preserved and does not limit the VAFs, locations, and number of variants that can 
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be simulated [7]. For each BAM file, variants were simulated with a VAF between 0 
and 0.06 (see Additional file 1: Table S1). Sensitivity (SEN) was used to assess variant 
calling throughout the paper. Additionally, we examined the proxy positive predic-
tive value (pPPV) as an estimate to PPV. At low level VAFs it is difficult to determine 
truth from error in experimental data, making positive predictive value impossible 
to accurately assess. However, we hypothesized that as the total number of identified 
variants increased beyond that of the simulated variant set, this indicated a decrease 
in positive predictive value, thus we used the ratio of simulated variants (true posi-
tive) over the total number of variant calls as a proxy measurement for the positive 
predictive value. We determined the sensitivity and pPPV of PBVI-OG for identifying 
simulated variants and compared the results to the two unmatched mosaic variant 
callers, LoFreq and VarDict (see Table 1, Additional file 1: Table S2). The sensitivity 
of all callers is both read depth- and VAF-dependent (Figs.  2, 3, Table  1). Overall, 
the average sensitivity and pPPV across the simulated variant sets across all depths 
was PBVI-OG, SEN = 0.74, pPPV = 0.88; LoFreq, SEN = 0.62, pPPV = 0.85; VarDict, 
SEN = 0.85, pPPV = 0.72. While VarDict had the higest average sensitivity, it had low 
pPPV compared to both PBVI-OG and LoFreq due to the high number of variant calls 
at depths < 600 × (Fig. 2). While LoFreq had comparable pPPV to PBVI-OG, the over-
all sensitivity was lower than PBVI-OG. PBVI-OG had the highest average pPPV with 
the highest average sensitivity across the simulated variant sets.

Specifically, PBVI-OG demonstrated a higher sensitivity as compared to LoFreq 
at all combinations of VAF and read depths except for read depth 150 ×, VAF < 0.02 

Fig. 1  Overview of approach. a Model building from a control dataset. Nucleotide counts from each BAM 
file in the control dataset were used to build the model. Nucleotides (d) are summed at each position (n) and 
aggregated across all BAM files in the control dataset (N). Position-Based Variant Identification (PBVI) splits 
counts into two sperate matrices dependent on whether the count is on the forward (f) or reverse (r) strand. 
b Variant calling overview and workflow
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(PBVI-OG, SEN = 0.01; LoFreq, SEN = 0.03). LoFreq also had higher standard error 
for calculated average sensitivity values at all read depths (Fig. 2a).

At VAF ≤ 0.01 and 600 × depth, PBVI-OG showed increased sensitivity compared 
to VarDict (PBVI-OG, SEN = 0.3; VarDict, SEN = 0), a trend that continued at 1200 × 
depth (PBVI-OG, SEN = 0.8; VarDict, SEN = 0) (Fig. 3c, d). VarDict showed higher sen-
sitivity for all VAFs at depths < 600 ×, likely attributed to the high number of variant 
calls, showing the lowest pPPV at depths < 600 × (Fig.  2c). VarDict called more than 

Table 1  Sensitivity and proxy positive predictive value (pPPV) summarized for each caller at varying 
depths. The pPPV values are shown in parenthesis

Simulation 1 Simulation 2 Simulation 3 Mean SE

PBVI-OG

150× 0.46 (0.90) 0.44 (0.88) 0.45 (0.88) 0.45 (0.89) 0.01 (0.01)

300× 0.71 (0.92) 0.72 (0.92) 0.70 (0.93) 0.71 (0.92) 0.01 (0.00)

600× 0.87 (0.91) 0.85 (0.88) 0.89 (0.92) 0.87 (0.90)_ 0.01 (0.01)

1200× 0.96 (0.88) 0.96 (0.80) 0.98 (0.78) 0.97 (0.82) 0.01 (0.03)

LoFreq

150× 0.55 (0.82) 0.36 (0.76) 0.31 (0.79) 0.41 (0.79) 0.07 (0.02)

300× 0.74 (0.87) 0.55 (0.83) 0.46 (0.85) 0.58 (0.85) 0.08 (0.01)

600× 0.84 (0.89) 0.71 (0.86) 0.60 (0.88) 0.71 (0.87) 0.07 (0.01)

1200× 0.93 (0.87) 0.77 (0.87) 0.67 (0.89) 0.79 (0.87) 0.08 (0.01)

VarDict

150× 0.89 (0.45) 0.82 (0.40) 0.84 (0.39) 0.84 (0.42) 0.02 (0.02)

300× 0.90 (0.77) 0.86 (0.71) 0.86 (0.73) 0.87 (0.74) 0.01 (0.02)

600× 0.87 (0.87) 0.85 (0.83) 0.83 (0.87) 0.85 (0.86) 0.01 (0.01)

1200× 0.87 (0.87) 0.85 (0.83) 0.83 (0.87) 0.85 (0.86) 0.01 (0.01)

Fig. 2  Sensitivity comparison at different depths. a The average sensitivity and standard error is calculated 
and plotted for different depths tested. b The average total number of variant calls and standard error is 
plotted. c The proxy positive predictive value (pPPV) and standard error is plotted for different depths tested
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twice the number of variants at 150 × depth as compared to 600 × depth (average num-
ber of calls of 294 vs. 136) suggesting that a high percentage of variants called by VarDict 
at low read depths are likely to be false positives.

Control dataset size is important for optimizing model performance

To understand the effect of model size on the performance of PBVI-OG, we simulated 
different total nucleotide counts by scaling the OG model, thus keeping the proportion 
of reference to alternate nucleotides constant, and measured the effects on sensitivity of 
variant calling on the simulated BAM datasets (Fig. 4a). We observed a notable increase 
in sensitivity as a larger percentage of the full model was employed. We observed that 

Fig. 3  Sensitivity plot for different depths (DP) and Variant Allele Fractions (VAFs). a–d Different depths 
tested. DP150, DP300, DP600, DP1200 indicates sensitivity plots for 150×, 300×, 600×, and 1200× depths, 
respectively. The VAF range is indicated as lower bound (inclusive)- upper bound (exclusive)

Fig. 4  Simulation of model variables. a Classification performance on simulated dataset of low-level variants 
as function of model size. b Minimum variant allele fraction (VAF) as function of alternate nucleotides present 
in model. The line color represents depth in the test sample
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the simulation reached comparable performance to the full model (average coverage per 
position 26,769) at model nucleotide counts equivalent to half of the full model. Spe-
cifically, the sensitivity calculated for this simulation when using the full model size was 
0.87 and the sensitivity when using half of the full model size was 0.84.

Alternate nucleotides in the control dataset modulate limits of detection

Next, we investigated how the presence of alternate nucleotides in the model, which 
would include both sequencing error and true variants in the control dataset, affected 
the theoretical ability of PBVI to identify variants. We determined the minimum VAF at 
which PBVI would call variants in relation to model alternate nucleotide counts at simu-
lated depths specified to 150 ×, 300 ×, 600 × and 1200 ×. As expected, we observed a 
positive correlation (R2 > 0.90) of the limits of detection to the number of model alternate 
nucleotide counts (Fig. 4b). For a given sample read depth and model reference nucle-
otide count (assumed to be 26,082), the minimum VAF detectable by PBVI decreased 
as the number of model alternate nucleotide counts decreased. When the depth in the 
sample was ~ 600 × and the alternate nucleotide count in the model was set to the inher-
ent sequencing error rate on Illumina platforms (26 out of 26,082 ≅ 0.001), the minimum 
VAF called by the PBVI was ~ 0.01. When we increased the alternate nucleotide counts 
in the model to 60 (out of 26,082), the minimum VAF detected was ~ 0.015.

These simulations also allowed us to compare the effects of variations in sample read 
depths on detection limits. We observed an inverse correlation (R2 = 0.69) of the mini-
mum VAFs detected to the sample read depth. When the model was set to the inherent 
sequencing error rate on the Illumina platforms as mentioned above, the minimum VAF 
required to be called by the model for sample read depths of 150 ×, 300 ×, 600 ×, and 
1200 × was 0.04, ~ 0.023, ~ 0.013, and ~ 0.009, respectively.

Effects of position‑based and nucleotide specific modeling

To demonstrate the effects of position-based factors on variant calling, we determined 
the lower limit of variant detection for all possible variants in a single gene from our 
11 gene model, PIK3CA. We calculated the minimum VAF detected by the model at a 
test depth of 600 × for each possible alternate nucleotide across the entire ORF of the 
gene. The results for positions with cytosine as the reference nucleotide are presented 
in Fig. 5a. A boxplot and summary of the mean minimum VAF detected across PIK3CA 
for specific reference nucleotide/alternate nucleotide combinations are shown in Fig. 5b 
and in Additional file 1: Table S3. As expected, the minimum VAF required to call a vari-
ant not only varied across positions with the same alternate nucleotide, but also across 
alternate nucleotides at the same position (Fig.  5a). Higher peaks observed in Fig.  5a 
suggested that the errors observed across the ClinSeq® population were non-random, 
indicating position-specific errors within the cohort data. Across PIK3CA, we found 
that the minimum VAF necessary for identifying a variant was higher for C > A variants, 
compared to C > G or C > T and higher for T > G, compared to T > A or T > C (Fig. 5b).

OG model performance on somatic overgrowth disorders cohort

To determine the performance of our OG model on real datasets, we performed vari-
ant calling on 27 libraries from 26 individuals with somatic overgrowth disorders 
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using PBVI-OG, LoFreq, and VarDict. Four libraries from three individuals with 
known causative variants at low VAF (0.026–0.065) were run as positive controls, an 
additional 23 libraries were from individuals not previously studied. All results were 
filtered for variants with < 10 variant alleles in gnomAD v2.1.1 and variants were 
assessed for pathogenicity based on information in the Catalogue of Somatic Muta-
tions in Cancer (COSMIC), ClinVar, and the literature. PBVI-OG called a total of 171 
single nucleotide variants (SNVs) with a combined p-value that met our < 0.05 cut 
off after Bonferroni correction (1–13 SNVs per sample, average 2.3 × 10−1 SNV/kb). 
LoFreq called a total of 22 SNVs (0–5 SNVs per sample, average 2.9 × 10−2 SNV/kb), 
and VarDict called a total of 907 SNVs (1–106 SNVs per sample, average 1.2 SNV/
kb). A manual review for known pathogenic variants in PIK3CA showed an additional 
variant that was not detected by any of the three callers. Variants were assessed for 
pathogenicity and 19 libraries from 18 individuals were determined to harbor path-
ogenic (P) or likely pathogenic (LP) [18] variants for somatic overgrowth disorders. 
PBVI-OG and VarDict called 18/19 of these variants and LoFreq called 12/19 of these 
variants. An additional variant with VAF below 0.01 (5/615 reads, p-value > 0.05) was 
identified by manual review of positions in PIK3CA known to contribute to somatic 
overgrowth. This variant was not identified by PBVI-OG as the p-value was above 0.05 
after Bonferroni correction. Nine samples contained P/LP variants with VAF < 0.05, 
ddPCR probes were available to confirm variants in six of these samples and two vari-
ants were confirmed with a restriction enzyme digest designed to detect the known 
causative variant in AKT1 for Proteus syndrome. Confirmation was not attempted 
for the ninth variant with VAF < 0.05 as a ddPCR probe was not readily available. A 
summary of library statistics, including the number of variants that were identified by 
each of the three callers (PBVI-OG, LoFreq and VarDict, filtered for gnomAD v2.1.1 
variant allele count < 10) and average depth of coverage is presented in Additional 
file 1: Table S4. Variants of interest are presented in Additional file 1: Table S5.

Fig. 5  Minimum Variant Allele Fraction (VAF) for positions in PIK3CA with reference nucleotide cytosine 
required for Position-Based Variant Identification using the OverGrowth (PBVI-OG) model at 600× test 
sample depth. a Minimum VAF callable at every position where the reference nucleotide is cytosine and for 
each alternate nucleotide was calculated and plotted for the model. Blue (adenine), green (guanine), yellow 
(thymine). b Boxplot of minimum VAF detected for all nucleotide changes
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PBVI-OG and VarDict both demonstrated high sensitivity identifying 95% (18/19) 
of P/LP variants, while LoFreq had a lower sensitivity identifying 63% of P/LP variants 
(12/19) in this cohort. A single variant with a VAF < 0.01 was identified in the data that 
was not called by any of the three callers. PBVI-OG had a positive predictive value of 
10% with 18/177 variants being determined to be P/LP. Positive predictive value for Var-
Dict was low at approximately 2% (18/907) while LoFreq had the highest positive pre-
dictive value of 55% (12/22). Combining sensitivity and positive predictive value the 
PBVI-OG model outperformed the other two callers for this dataset.

Discussion
The identification of mosaic variants in individuals with somatic overgrowth disor-
ders can be challenged by a low VAF that approaches the limit of sequencing error. As 
sequencing error is not consistent across all positions, due to the effect of position-
based attributes including sequence context and mappability, we set out to improve low-
level variant calling by directly modeling sequencing error from a control dataset. Our 
method, PBVI, compares observed nucleotide counts in pooled reads from a control 
dataset to nucleotide counts in a test sample to determine which alternate nucleotides 
are likely to be true variants. Germline variants in the control dataset can be filtered 
from the model if desired although we chose not to do this as our goal was to identify 
pathogenic variants in patients with somatic overgrowth. We reasoned that alternate 
nucleotides in the control dataset were either biologically real, and thus not likely to be 
pathogenic for overgrowth disorders, or not biologically real, and thus were a result of 
sequencing artifacts. PBVI does not distinguish these two types of alternate nucleotides 
if they are included in the control dataset and both were counted during the OG model 
building. While previous studies have used pooled datasets [12, 13], PBVI improved 
upon this by considering forward and reverse reads independently allowing for the con-
sideration of sequence context. The underlying reliance of PBVI on p-values derived 
from strand-specific alternate read counts resulted in removal of variants with alter-
nate reads limited to either the forward or reverse strands. As the forward and reverse 
strands have distinct sequence context preceding a position, sequencing error resulting 
from sequence context may be strand-specific and such positions would be filtered from 
the variant list.

The performance of PBVI was compared to two unmatched mosaic callers, LoFreq 
[17] and VarDict [16] using the OG model. PBVI performs variant identification by com-
paring sample data to error present in a control dataset. We therefore tested PBVI-OG 
using data simulated into experimental BAM files which were not sanitized for low level 
variants. While this method of testing performance allows for determination of sensitiv-
ity it is impossible to test for true precision as mosaic variant truth is unknown in the 
data. In isolation, it is impossible to determine if a variant, even one present in only one 
read, is a true mosaic variant or sequencing error. In place of precision one can, however, 
consider the number of variants that are returned in addition to the simulated variants. 
If we consider the simulated variants to be the variants of interest, we can ask what frac-
tion of identified variants these represent (pPPV).

When comparing PBVI to LoFreq, PBVI-OG had higher sensitivity at almost all com-
binations of read depth and VAF. In our comparisons, LoFreq generally returned fewer 
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variants overall suggesting it is a more stringent caller. At read depths of 150 ×, VarDict 
had higher sensitivity as compared to both PBVI-OG and LoFreq but improved sensi-
tivity was accompanied by increased calling of non-simulated variants. As read depth 
increased, VarDict returned fewer non-simulated variants suggesting that the increased 
sensitivity of VarDict at low read depths came at the cost of specificity.

There are two model variables that can directly influence the performance of PBVI: 
the total nucleotide counts (model size) and alternate nucleotide counts summed across 
the control cohort at each position. PBVI relies on control data to model error and it 
is important to understand the effect of model size on performance as this dictates the 
amount of control data that must be available for model building. It was determined 
that using fifty percent of the OG model in model simulation analysis, with an average 
coverage of 13,385 reads per position, gave a sensitivity of 0.84 which was just slightly 
reduced from the sensitivity achieved using the whole model (0.87). With exome cov-
erage of 100 × this suggests an effective model could be built from a control cohort 
of approximately 130 individuals. It is important to note that as this is a comparative 
method, variants present in the control individuals at increased VAF (either germline 
or common mosaic) used for model building may not be identified in the sample even if 
present. It is therefore imperative that the phenotypic features under investigation not 
reside in the control dataset. The effect of alternate nucleotides in the model was also 
investigated by direct modeling of variables and calculation of p-values. PBVI removes 
presumed error by comparing alternate nucleotide counts in sample and control data. 
As alternate nucleotide counts increase in the model, either due to recurring error in the 
control dataset or due to germline occurrence of the variant, the VAF required for a vari-
ant to be called in the sample data will increase.

The PBVI method is based on the assumption that each position in the genome has 
a position-based and alternate nucleotide-specific error associated with it, with some 
positions having low error and others having high error as compared to the average 
error for Illumina sequencing of ~ 0.1%. Error is expected to include misincorporation, 
based on the underlying nucleotide with known rates of preferential base misincorpora-
tions and sequence context. Systematic error is also expected to include mapping error. 
In order to understand the effect of underlying error on the ability of PBVI-OG to call 
variants we assessed the VAF required at each position in PIK3CA for variant identifica-
tion at 600 × read depth (Fig. 5). The limit of mosaic variant calling is higher for C > A 
variants which is consistent with previously known preferential C > A nucleotide mis-
incorporation. We found that the observed trends in the mean minimum VAF across 
positions in PIK3CA mirrored the preferentially misincorporated nucleotides reported 
in the literature (A > C, C > A, G > T), but not T > G (Fig. 5b). Note that heterozygous var-
iants, including common SNPs, were not removed from the OG model. Including such 
variants in the model limits the calling of low-level mosaic variants at these positions as 
higher alternate reads in the model correlate with higher detectable VAFs, as shown in 
Fig. 4.

As PBVI-OG was designed for low-level mosaic variant detection in individuals with 
overgrowth disorders, it was piloted on a set of 27 samples from 26 individuals. PBVI-
OG and VarDict identified 18/19 variants, with a final variant identified through man-
ual review for known pathogenic variants in PIK3CA. LoFreq identified 12/19 variants. 
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When clinically analyzing variants both sensitivity and specificity are important as iden-
tified variants need to be assessed for pathogenicity. When a caller has reduced speci-
ficity, the result is extra time and effort for variant confirmation and/or pathogenicity 
assessment. PBVI-OG returned 171 variants that passed filter compared to 22 variants 
for LoFreq and 907 variants for VarDict. The cost of LoFreq only returning 22 variants 
was reduced sensitivity which is not a desirable trade off. VarDict, however, returned 
over five times the number of variants as compared to PBVI which increases the down-
stream analysis of variant pathogenicity.

Conclusions
In this work, we developed an approach for low-level variant calling in non-matched 
samples that can be adapted for a wide range of mosaic diseases. PBVI-OG had the high-
est average sensitivity and pPPV across the simulated variant sets, and was shown to 
have better sensitivity at low VAF and high read depth as compared to LoFreq and VarD-
ict. As well, PBVI-OG demonstrated a better combination of both sensitivity and proxy 
positive predictive value as compared to LoFreq and VarDict when used for analysis of 
27 overgrowth samples. The work presented here is based on the Illumina sequencing 
platform and the generalizability of this method across platforms and chemistries is not 
known. As the control data were generated on an Illumina HiSeq instrument and sam-
ple data was generated on an Illumina MiSeq instrument, our data suggest that trends 
in error across these two platforms are consistent. It is possible that using control data 
generated on the same instrument would have resulted in improved performance. 
Lastly, our measures of caller performance were somewhat limited by a lack of large 
orthogonally validated, low-level variant datasets. Nevertheless, using a position-based, 
nucleotide-specific modeling approach, we demonstrated that we can effectively detect 
low-level variants with improvement in sensitivity and positive predictive value as com-
pared to other unmatched variant callers.

Methods
Control dataset

Exome data generated from the ClinSeq® A2 cohort was used as the control dataset for 
this study [19]. All 502 individuals in this cohort were free from apparent somatic over-
growth disorders at the time of enrollment. Genomic DNA was isolated from periph-
eral blood using standard protocols (Gentra Blood Kit; Qiagen, Gaithersburg, MD). 
Sequencing was performed at the NIH Intramural Sequencing Center. Briefly, sequenc-
ing libraries were generated from 100 ng of genomic DNA using the Accel-NGS 2S DNA 
Library Kit (Swift Biosciences, Ann Arbor, MI) on a Biomek FX robot (Beckman Coulter, 
Eldersburg, MD) with median insert size of 250 bp. Libraries were then dual-indexed, 
pooled in groups of eight, and enriched with the xGen Exome Research Panel (IDT, 
Rockville, MD). Sequencing was performed on the HiSeq 4000 (Illumina, San Diego, 
CA). After demultiplexing, reads were processed according to the GATK best practices 
workflow using GATK v4.0.2.0 [20]. Reads were filtered for mapping quality > 20. Aver-
age sequencing coverage was 64 ×.
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Somatic overgrowth dataset
Next generation sequencing data from 26 individuals with apparent somatic over-
growth disorders were evaluated for this study, which included individuals diagnosed 
with Proteus syndrome (MIM:176920) [21] and other segmental overgrowth phenotypes 
[22]. Three individuals had known variants at the time of the study and the remain-
ing 23 individuals were untested for mosaic variants. Affected areas of the body were 
biopsied and DNA was extracted using the Gentra Puregene kit (Qiagen, German-
town, MD) according to manufacturer’s directions. In one case, two distinct samples 
were processed for a single individual. Dual-indexed sequencing libraries were pre-
pared according to manufacturer’s protocols using the NEBNext dsDNA Fragmentase, 
NEBNext Ultra II DNA Library Prep Kit for Illumina, and NEBNext Multiplex Oli-
gos for Illumina kits (New England Biolabs, Beverly, MA). An 11 gene custom cap-
ture panel (OverGrowth v1) was designed to include genes known to be causative or 
potentially causative for somatic overgrowth disorders (Integrated DNA Technologies 
(IDT), Coralville, IA) and included the following genes: AKT1 (MIM:164730), FGFR1 
(MIM:136350), GNAQ (MIM:1600998), KRAS (MIM:190070), PDGFRB (MIM:173410), 
PHLPP1 (MIM:1609396), PIK3CA (MIM:171834), PIK3R1 (MIM:171833), PIK3R2 
(MIM:603157), RASA1 (MIM:139150), TEK (MIM:600221). Briefly, ~ 1  µg of genomic 
DNA was fragmented, purified with the MinElute PCR Purification Kit (Qiagen), end-
prepped and adaptor-ligated, size-selected for 320  bp fragments with AMPure XP 
beads (Beckman Coulter, Sykesville, MD), and dual-indexed during seven cycles of PCR 
enrichment. After library preparation, libraries were quantified with Qubit fluorometry 
(Thermofisher, Rockville, MD) and pooled with 100 ng of each sample in sets of eight 
to ten samples. Capture of DNA fragments was performed using the xGen Lockdown 
Probe Pool and xGen lockdown Reagents according to manufacturer’s protocols (IDT). 
All libraries were run on an Illumina MiSeq v2 nano flow cell at 10 ppM loading concen-
tration. In total, 27 libraries were sequenced. Additionally, three samples used for simu-
lated dataset creation underwent a second round of library preparation with an updated 
capture panel (OverGrowth v2) designed to include 16 genes (additional genes: AKT2 
(MIM:164731), AKT3 (MIM:611223), GNAS (MIM:139320), MTOR (MIM:601231), 
PTEN (MIM:601728)), and libraries were sequenced on a v2 standard flow cell to gener-
ate high depth sequence data.

After sequencing, demultiplexing was performed on-machine by Illumina’s MiSeq 
Reporter v2.6 software. Fastq files for each sample were then processed according to 
GATK’s best practices workflow using GATK v3.8–1.0 with Base Recalibration step 
removed as recommended for smaller dataset (< 100 M bases) [20]. Reads were filtered 
for mapping quality > 20.

The ClinSeq® and overgrowth studies were approved by Institutional Review Boards at 
the National Institutes of Health.

Overgrowth model generation

PBVI compares alternate nucleotide counts in control sequence data to alternate nucle-
otide counts in test data to differentiate likely error from likely true variation. PBVI 
requires alternate nucleotides at each position in the control data to be arrayed in a 
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table format, this table is referred to as the “model”. For these analyses the model was 
restricted to positions targeted by the OverGrowth v1 panel. A RefSeq BED file was 
downloaded from the UCSC table browser containing genomic coordinates for coding 
exons of the 11 genes in the custom capture OverGrowth v1 panel. The BED file was 
a total of 29,083 bp. Nucleotide counts were extracted from each BAM file in the con-
trol dataset at positions that overlapped the BED file using a custom python script. The 
custom python script produced a text file wherein each row is a position in the BED 
file and the columns contain the sum of nucleotide counts across all BAM files. This 
python script is parametrized by the minimum base quality of nucleotides to count b, 
the minimum mapping quality of reads to be considered for counting m, and the number 
of samples to use during model building s. Forward and reverse nucleotides are counted 
separately and then summed to also obtain the total nucleotide counts at each posi-
tion. The script was parametrized with b = 0 and s = 502. The total number of positions 
included in the model was 28,119. For each position, observed counts for each nucleo-
tide (A, G, C, and T) were summed across the control dataset. To incorporate strand-
awareness in our approach, the position information was stored separately in matrices 
to account for the forward or reverse strand of a read. We refer to the model as Over-
Growth Position-Based (OG) model (Fig. 1). PBVI python scripts were run using python 
2.7. All relevant files and custom scripts are available at github.com/BieseckerLab/PBVI.

Position‑based variant identification (PBVI)

Variant calling was based on a 2 × 2 Fisher’s exact test in which the alternate and refer-
ence nucleotide counts of candidate variants in samples were compared to alternate and 
reference nucleotide counts in the model. An input file was defined as a sample BAM file. 
For each input file, nucleotide counts were generated at every position that overlapped 
28,119 positions in the OG model. The candidate variant was defined by the alternate 
nucleotide with the largest VAF. Candidate variant nucleotide counts were then matched 
to model nucleotide counts based on chromosome, position, nucleotide identity, and 
by strand. For each candidate variant, two separate Fisher’s exact tests were performed 
on nucleotide counts found on each strand and combined into a single p-value using 
Stouffer’s method [23]. The Bonferroni multiple testing correction was applied with the 
number of tests set to the total number of positions in the model (28,119). Variants with 
Bonferroni corrected p-value of < 0.05 were classified as called variants.

As the performance of PBVI is dependent on the model it is appropriate to detail the 
model that is used for any analysis. In this manuscript, except where specified, PBVI was 
used in conjunction with the OG model and is notated as PBVI-OG.

Comparison analysis
For all comparisons, LoFreq and VarDict were run as recommended with default 
parameters.

Simulated datasets

Simulated BAM files were generated using the somatic SNV simulation tool, SomatoSim 
(http://​www.​github.​com/​Biese​ckerL​ab/​Somat​oSim). In brief, SomatoSim introduces 
variants into an existing, experimentally generated, BAM file at positions specified in 

http://www.github.com/BieseckerLab/SomatoSim
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an input BED file [32]. Our experimentally-generated BAM files were from three over-
growth samples run on a standard v2 flow cell. We compiled a variant list that consisted 
of confirmed somatic missense variants from COSMIC v89 [24]. The coordinates of 
COSMIC variants were converted to hg19 using PyLiftover, annotated using Annovar 
[25]. The variants then were filtered to exclude variants found in gnomAD v2.1.1 [26], 
and overlapping our 11 gene custom capture panel.

For each of three different experimentally generated BAM files (average read depth 
969 ×), we targeted to simulate ~ 0.5% of the total available locations. Approximately 
150 variants were randomly selected from our variant list and used to generate a unique 
input BED file for SomatoSim. The resulting VAFs of the simulated variants ranged from 
0.0 to 0.06 and were binned into 0.01 ranges.

To assess the impact of sample read depth on sensitivity, additional BAM files at vary-
ing depths were derived from the three simulated BAM files to compare the effect of 
depths on variant calling. For each experimentally-generated BAM file, we generated 
four different simulated BAM files, where the average coverage across the simulated var-
iant positions was 150 ×, 300 ×, 600 ×, and 1200 ×. The 150 ×, 300 ×, and 600 × BAM 
files were generated using the down-sampling feature of SomatoSim (option –down-
sample) and the 1200 × BAM file was generated by merging the 600 × BAM file with 
itself using SAMtools [27]. The SomatoSim option –random-seed was set to 0. The simu-
lated variants in the 12 total BAM files are summarized in Additional file 1: Table S1.

Effects of the OG model size on classification performance

The effect of the model size was investigated using process described above. The OG 
model was scaled from 0 to 1.0 times its original size, with an increment size of 0.05. 
For example, if the original alternate and reference model nucleotide counts at a given 
position were 10 and 1000, then a scaling factor of 0.1 would modify these values to 1 
and 100, respectively. Variants in the three simulated BAM files were recalled using the 
scaled OG models and sensitivity was recalculated.

Effect of model alternate nucleotide counts

We next evaluated the interplay of model VAF, sample read depth, and minimum detect-
able sample VAF with optimal conditions. For these analyses the OG model reference 
count was set to 26,082 (the mean model reference nucleotide counts in the 11 genes), 
the OG model alternate nucleotide count was varied from 0 to 100, and the sample 
test depth was set to 150, 300, 600 or 1200. Nucleotide counts were distributed evenly 
between forward and reverse strands to simulate variants supported by both strands and 
to control for the effect of strand bias on variant calling for the purpose of studying the 
relationships between variables mentioned above. In order to determine the minimum 
sample VAF that resulted in a significant call for each combination of model alternate 
nucleotide count and sample read depth a 2 × 2 contingency table was constructed to 
test our test cases (test alternate nucleotide count (a), test reference nucleotide count 
(b)) against the OG model (OG model alternate nucleotide count (c), OG model refer-
ence nucleotide count (d)). The following were the values for each variable: a was initial-
ized at one with an increment step of one until significant p-value was reached; b = (test 
depth − a) with test depth = 150, 300, 600, 1200; c was from 1 to 100; and d = 28,119, 
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which was the mean reference nucleotide count for all the positions in the OG model. 
For each value c, we performed a 2 × 2 Fisher’s exact test on the contingency table and 
the value for the test alternate nucleotide count (a) was iteratively increased by one until 
the resulting p-value was significant after Bonferroni multiple testing correction. All 
nucleotide counts in the contingency table were halved such that the resulting forward 
and reverse nucleotide counts tested represented an even distribution between strands. 
The VAF associated with the significant test alternate nucleotide count was then calcu-
lated and recorded. This process continued for every combination of test depth and OG 
model alternate nucleotide count tested.

OG model‑based variant detection limits in PIK3CA

To understand position-specific, nucleotide-dependent errors in the model, we followed 
a process similar to that above to calculate the model-based minimum VAF detected 
for every combination of reference nucleotide and alternate nucleotide at all positions 
in PIK3CA at a test sample depth of 600 ×. For every alternate nucleotide at every posi-
tion in PIK3CA that is in our OG model, we performed two separate 2 × 2 Fisher’s exact 
tests, one for the forward strand and one for the reverse strand, then combined the 
p-values (using Stouffer’s method) when determining significance. When the p-value 
first becomes significant, the VAF was computed as the quotient of the test alternate 
nucleotide count and the depth, which was fixed at 600. To elaborate, in the forward 
strand 2 × 2 contingency table, a = an integer representing the test alternate nucleo-
tide count that is initialized at one, b = (300 − a), c = the OG model alternate nucleo-
tide count for the given position, and d = the OG model reference nucleotide count for 
the given position. For the reverse strand 2 × 2 contingency table, a is initialized at zero. 
Additionally, we alternate iteratively increasing the test alternate nucleotide count, a, 
between the forward and reverse strand, starting with the reverse strand. To examine 
locations with alternate nucleotides in the model arising from sequencing errors and not 
due to heterozygous calls, 96 locations with known heterozygous variants in the cohort 
were removed from the analysis. We then plotted the minimum VAF that we computed 
at each location in PIK3CA for all combinations of reference and alternate nucleotides.

Evaluating variant calling algorithms

To assess variant calling methods, we used sensitivity to measure detection of simulated 
variants throughout the study. Sensitivity was calculated, where

True positives were defined as simulated variants that were identified by a variant call-
ing algorithm. The average sensitivity, standard error, and confidence interval was calcu-
lated for the three simulated BAM files at each depth using R library Rmisc. While we 
used sensitivity as the main metric to assess and compare performance, we used proxy 
positive predictive value (pPPV), defined by true positives over all variant calls, to esti-
mate the PPV. We term this estimation as proxy PPV as we could not rule out the pos-
sibility of identified variants beyond the simulated variants being true mosaic variants in 
the experimental BAM files used for creation of the simulated files.

sensitivity =
true positives

total simulated variants
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All plots in this study were generated using R package ggplot2 [28] and Python mat-
plotlib [29].

Variant calling in 26 Proteus/Somatic Overgrowth patients
BAM files were generated on 27 samples from 26 individuals with somatic overgrowth 
disorders and variants were called with PBVI-OG, LoFreq, and VarDict [16, 17]. Addi-
tionally, positions for known pathogenic variants in PIK3CA were assessed manually. 
Four samples from three individuals were known positive controls, the remaining 23 
samples had not been previously tested. All called variants were assessed for pathogenic-
ity. Nonsynonymous variants were first filtered for rarity in gnomAD v2.1.1 (< 10 alleles) 
and then assessed for pathogenicity based on data found in COSMIC and ClinVar [30]. 
Three individuals were included as positive controls with previously identified mosaic 
variants.

Experimental validation

The known pathogenic AKT1 c.49G > A p.(Glu17Lys) variant was confirmed using a 
described assay [21]. Briefly, the region surrounding NM_001014431.1(AKT1): c.49G > A 
was PCR-amplified using fluorescently-labeled engineered primers that create an MboII 
site in the presence of the variant. The amplified fragments were digested with MboII 
and products were detected on an ABI 3130xl. All other variants assessed to be patho-
genic or likely pathogenic with a VAF > 0.15 were confirmed using Sanger sequence anal-
yses. This threshold was based on prior work suggesting that Sanger sequence analysis 
can detect variant alleles with a VAF > 0.15 (unpubished). Known pathogenic PIK3CA 
variants (c.3140A > G; p.(His1047Arg), c.1633G > A; p.(Glu545Lys), and c.1624G > A; 
p.(Glu542Lys), reference NM_006218.3) with VAF < 0.05 were confirmed using digital 
droplet polymerase chain reaction (ddPCR) as described [31]. Probes were purchased 
from Biorad, Hercules, CA and samples were run in triplicate. A sample was considered 
confirmed if > 3 droplets were variant-positive. For all confirmations both positive and 
negative controls were run.
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