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ABSTRACT

Correctly predicting the disulfide bond topology in a
protein is of crucial importance for the understanding
of protein function and canbeof great help for tertiary
predictionmethods. Theweb server http://clavius.bc.
edu/~clotelab/DiANNA/ outputs the disulfide con-
nectivity predictiongiven input of aprotein sequence.
The followingprocedure isperformed.First,PSIPRED
is run to predict the protein’s secondary structure,
then PSIBLAST is run against the non-redundant
SwissProt to obtain a multiple alignment of the input
sequence. The predicted secondary structure and the
profile arising from this alignment are used in the
training phase of our neural network. Next, cysteine
oxidation state is predicted, then each pair of
cysteines in the protein sequence is assigned a like-
lihood of forming a disulfide bond—this is performed
by means of a novel architecture (diresidue neural
network). Finally, Rothberg’s implementation of
Gabow’s maximum weighted matching algorithm is
applied to diresidue neural network scores in order
toproduce the final connectivityprediction.Ournovel
neural network-based approach achieves results
that are comparable and in some cases better than
the current state-of-the-art methods.

INTRODUCTION

Disulfide bonds are covalently bonded sulfur atoms from
nonadjacent cysteine residues, which stabilize the protein
structure and are often found in extracytoplasmatic proteins.
The knowledge of cysteine connectivity (i.e. which, if any,
pairs of cysteines form a bond in a given protein sequence) can
reduce greatly the conformational space for protein structure
prediction algorithms. Moreover, as shown by Chuang and
co-workers (1), a similar disulfide connectivity pattern fre-
quently implies a structural similarity even when the sequence

similarity is undetectable. Notwithstanding, only a few
attempts have been made to solve this problem. In contrast,
many methods have been developed for the related, but
simpler problem of cysteine oxidation state prediction, i.e.
to determine the cysteines that are involved in a disulfide
bond, without predicting the connectivity pattern. Recent
methods based on machine learning techniques have reached
an outstanding accuracy of 90% on certain test data (2–5).
In spite of this, accuracy for the disulfide connectivity problem
remains measured. The reason for this is simple—amino acids
that flank half-cystines (disulfide-bonded cysteines) are quite
different from those that flank free cysteines (non-bonded
cysteines) (6,7). In contrast, the residues that flank two incor-
rectly paired half-cystines are quite similar to those that flank
the half-cystines in a disulfide bond. Two recent and remark-
able papers based on different approaches (8,9) outperform
early attempts by Fariselli and co-workers (10,11). The Vullo
and Frasconi method (9) uses recursive neural networks (12) to
score undirected graphs that represent cysteine connectivity.
The method of Zhao and co-workers (8) is based on recurrent
patterns of sequence separation between bonded half-cystines.
Web servers that allow online disulfide connectivity prediction
are available for Vullo/Frasconi (http://cassandra.dsi.unifi.it/
cysteines) and, as a prototype, for Fariselli/Casadio (http://
gpcr.biocomp.unibo.it/cgi/predictors/cys-cys/pred_dconcgi.cgi).
Here, we describe a web server for disulfide connectivity
prediction that implements our novel approach, which results
in comparable and sometimes better than the state-of-the-art
methods (8,9). Algorithm details and performance of the
method are described previously by Ferrè and Clote (13).

METHODS

The stand-alone program for disulfide connectivity prediction,
implemented in our web server DIANNA (for DiAminoacid
Neural Network Application), uses a three-step procedure.
First, a neural network is trained to recognize cysteines
in an oxidized state (sulfur covalently bonded) as distinct
from cysteines in a reduced state (sulfur occurring in reactive
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sulfhydryl group SH), based on the previous work by Fariselli
et al. (14) only those monomers that have at least two pre-
dicted half-cysteines are submitted to the second step. The
neural network input is a window of size w centered at
each cysteine in the sequence. This first filtering step is called
Module A. Then, a second neural network (Module B) is used
to score each pair of symmetric windows of size w, each one
centered at a cysteine in the input sequence. The network input
contains evolutionary information, i.e. each residue is encoded
by 20 input units corresponding to the PSIBLAST-computed
profile row (obtained from the multiple alignment of the input
sequence against the non-redundant SwissProt), and secondary
structure information, computed using PSIPRED (15) and
encoded in unary format by the addition of three input units,
e.g. helix is encoded 1 0 0, coil is 0 1 0 and sheet is 0 0 1).
Using secondary structure information leads to a marked
improvement and is justified by the bias in the secondary
structure preference of free cysteines and half-cystines (16).
The architecture of the Module B neural network is as follows.
Given an encoded input containing secondary structure
information, thus having w · 23 input units, we designed a
first hidden layer containing w

2

� �
¼ w w�1ð Þ=2 units, one for

each pair 1< i < j< w of positions, with connections to input

units representing the profile for residues at position i, j and
secondary structures at those positions. Thus, each of the
w (w� 1)/2 hidden units in the first hidden layer (the diresidue
layer) is connected to 2 (20 + 3) = 46 input units (Figure 1).
A second hidden layer, containing five units, all fully connec-
ted with those of the first hidden layer, is then fully connected
to the single output unit. We designed this unusual neural
network architecture, with the aim of emphasizing the signal
that arises when using diresidue position-specific scoring
matrices (13), i.e. for all windows of length w, for positions
1< i < j< w and amino acids a, b, we consider the frequency
of occurrence of amino acid a in position i when amino acid
b is found in position j; moreover, though there are many
hidden units, the training phase is still reasonably fast since
the diresidue layer is not fully connected with the input layer.

Finally, following Fariselli and Casadio (10), our algorithm
applies the Edmonds–Gabow maximum weight matching
algorithm (17,18), using Ed Rothberg’s implementation
wmatch (http://elib.zib.de/pub/Packages/mathprog/matching/
weighted), to the weighted complete graph, whose nodes
are half-cystines and whose weights are values output from
the neural network of Module B. This last step is called
Module C.

Figure 1.A toy example of the diresidue neural network architecture. Six input units (named 1, . . , 6) are connected to the w
2

� �
units of the first hidden layer (7, . . , 21),

called the diresidue layer. Each pair of input units is connected to a distinct unit in the diresidue layer. The units of the diresidue layer are then fully connected to
the five units (22, . . , 26) of the second hidden layer, which are fully connected to the single output unit. Using the second hidden layer provided a better performance
than connecting the diresidue layer units directly to the output unit. In the DIANNA application, each residue is encoded by 23 input units (20 encoding the
evolutionary information and 3 for the secondary structure information); therefore, each unit in the diresidue layer is connected to 23 + 23 = 46 input units that code a
pair of residues.
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SERVER DESCRIPTION

The web server takes as input a protein sequence in FASTA
format and can output the following: (i) oxidation state
prediction for all the cysteines in the input sequence, using
our implementation of the neural network described in (14)
(Module A); (ii) a score for each pair of cysteines in the input,
obtained by our diresidue neural network (Module B); (iii) the
disulfide connectivity prediction obtained using the maximum
weighted matching algorithm (Module C) applied to the scores
ofModule B. The user is warned if Module A predicts less than
two half-cystines in the input sequence. A statistical evaluation
of the connectivity prediction is not attempted. A sample out-
put is shown in Figure 2.

DISCUSSION

Trained and tested on a list of proteins having at most five
and at lest two bonds, equivalent to those used in (9,11), the
software achieves a rate Qp of 49% for perfect predictions

(i.e. the fraction of proteins for which there are no false-
positive or false-negative predictions made), 86% accuracy
and 51% Matthews’ correlation coefficient (13). For proteins
having two and four bonds, the fraction of perfect predictions
improves to 62 and 55%, respectively. Although future
improvement for disulfide connectivity is still desired, our
approach is nonetheless reliable when used on proteins having
a relatively small number of disulfide bonds.
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Figure 2. Output from DIANNA when given as input the sequence for human
growth hormone receptor (SwissProt ID GHR_HUMAN, PDB code 1kf9
chain F). This protein has 6 cysteines that form 3 disulfide bonds, with con-
nectivity pattern 1–2, 3–4, 5–6 (between cysteines 6 and 16, 33 and 44, 58 and
72). The upper portion of the output page reports the Module B score (see text)
for each pair of cysteines, ranging from 0 to 1 (scores >0.9 are highlighted). In
the lower portion, the proposed connectivity (i.e. the Module C output) is
shown.
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