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ABSTRACT
Electrical waves in the heart form rotating spiral or scroll waves during life-threatening arrhythmias, such as atrial or ventricular fibrilla-
tion. The wave dynamics are typically modeled using coupled partial differential equations, which describe reaction–diffusion dynamics in
excitable media. More recently, data-driven generative modeling has emerged as an alternative to generate spatio-temporal patterns in physi-
cal and biological systems. Here, we explore denoising diffusion probabilistic models for the generative modeling of electrical wave patterns in
cardiac tissue. We trained diffusion models with simulated electrical wave patterns to be able to generate such wave patterns in unconditional
and conditional generation tasks. For instance, we explored the diffusion-based (i) parameter-specific generation, (ii) evolution, and (iii)
inpainting of spiral wave dynamics, including reconstructing three-dimensional scroll wave dynamics from superficial two-dimensional mea-
surements. Furthermore, we generated arbitrarily shaped bi-ventricular geometries and simultaneously initiated scroll wave patterns inside
these geometries using diffusion. We characterized and compared the diffusion-generated solutions to solutions obtained with corresponding
biophysical models and found that diffusion models learn to replicate spiral and scroll wave dynamics so well that they could be used for data-
driven modeling of excitation waves in cardiac tissue. For instance, an ensemble of diffusion-generated spiral wave dynamics exhibits similar
self-termination statistics as the corresponding ensemble simulated with a biophysical model. However, we also found that diffusion models
produce artifacts if training data are lacking, e.g., during self-termination, and “hallucinate” wave patterns when insufficiently constrained.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0194391

I. INTRODUCTION

Waves in excitable media exhibit complex spatio-temporal
dynamics.1,2 In two-dimensional media, they form linear, focal,
or rotating spiral-shaped waves or compositions thereof. In three-
dimensional media, they manifest as planar or spherical focal waves
or, if perturbed, take on more complicated rotational shapes referred
to as scroll waves. Spiral and scroll wave dynamics have been studied
for many decades, as they are associated with heart rhythm disor-
ders, such as atrial fibrillation, polymorphic ventricular tachycardia,
or ventricular fibrillation.2–12 In the heart, electrical excitation ini-
tiates the contraction of the heart muscle, and it is hypothesized
that the abnormal, rapid, and irregular contractions during cardiac

tachyarrhythmias are caused by spiral- and scroll-shaped waves of
electrical excitation.

The electrical waves can be reproduced and studied in com-
puter simulations using biophysical models.13–15 These models con-
sist of coupled partial differential equations (PDEs), which describe
the electrical excitability u and refractoriness r of cardiac muscle cells
and the coupling between them; see Eqs. (1) and (2). The equations
model reaction–diffusion dynamics, where the exchange of currents
through ion channels between cells are modeled as a diffusive pro-
cess and the cells as nonlinear oscillators. Integrating these equations
in time and over space in a spatially extended system using, for
instance, the finite difference or finite element method produces
nonlinear waves of electrical excitation mediated via diffusion.
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Diffusion, on the other hand, is a term that has recently
emerged in the field of artificial intelligence (AI), referring to a class
of generative neural networks, which employ a diffusive process
to generate data.16–18 The training procedure consists of a forward
noising process where noise is iteratively added to the training data.
The neural networks, termed denoising diffusion probabilistic mod-
els (DDPMs)18 or diffusion models, learn to reverse this process,
ultimately enabling them to create data from noise, as shown in
Fig. 1. Diffusion models are very successful in generating data, such
as images,19–21 videos,22 and audio,23 and they are increasingly also
used for technical applications in physics, engineering, medicine,
and biology.24–28 Diffusion models likely also have many useful
applications in cardiology that have yet to be explored. For example,
they could be used in electrophysiological studies to generate syn-
thetic action potential wave patterns and arrhythmia morphologies,
either to fill in or reconstruct missing measurement data, or to simu-
late cardiac dynamics in a data-driven fashion. Diffusion-generated
solutions could be particularly useful in situations in which mea-
surements can only be obtained partially or indirectly, or when
biophysical model equations or parameters are lacking.

In this numerical study, we explore diffusion models for their
application in cardiac electrophysiology and arrhythmia research.
We investigated whether they can be used to reconstruct or sim-
ulate electrical impulse phenomena in computer simulations of
excitable media and simulated electrical spiral and scroll waves in
two- and three-dimensional square-, bulk-, and heart-shaped tissues
with isotropic and anisotropic diffusive spread of the excitation.

More specifically, we used diffusion models for the following
tasks.

FIG. 1. Diffusion-based generative modeling of electrical wave dynamics in cardiac
tissue. (a) Forward diffusion process and generative reverse denoising process.
The training data consist of spiral and scroll wave dynamics in excitable media. (b)
General diffusion model architecture for processing image data with underlying
U-Net architecture. (c) ResNet Attention block. (d) Diffusion model for gener-
ating scroll waves in heart-shaped geometries represented as pointclouds with
corresponding scalar-valued data (Point-Voxel Diffusion29).

Task 1: Generation of parameter-specific two-dimensional spiral
waves; see Sec. III A.

Task 2: Generation of scroll waves in bi-ventricular heart-shapes;
see Sec. III B.

Task 3: Evolving spiral wave dynamics over time; see Sec. III C.
Task 4: Reconstruction of three-dimensional scroll waves from

two-dimensional surface observations; see Sec. III D.
Task 5: Inpainting of two-dimensional spiral wave dynamics; see

Sec. III E.
Task 6: Unconditional generation of two-dimensional spiral wave

patterns; see Sec. III F.

We determined how reliable diffusion models are when gen-
erating such spatio-temporal physiological dynamics. Generative
neural networks, such as diffusion models, generative adversarial
networks (GANs), or large language models (LLMs) are known to be
capable of producing a continuum of output including false or unde-
sired output, which is often referred to as “hallucination.” We show
that diffusion models can generate electrical waves in many different
ways: out of the blue in an unconstrained generative process or when
the generative process is constrained or guided by parameters or
boundary conditions such as partial data, or a recent dynamical state
of the system. In particular, the latter generative mode corresponds
to diffusion-based data-driven modeling of cardiac dynamics. We
found that hallucination occurs when the generation task is insuf-
ficiently constrained, which raises concerns over the reliability of
diffusion models in diagnostic applications.

II. METHODS
A. Simulations of electrical wave dynamics in heart
muscle tissue

We simulated nonlinear waves of electrical excitation using
coupled partial differential equations (PDEs) in (i) two-dimensional
rectangular-shaped, (ii) three-dimensional bulk-shaped, and (iii)
three-dimensional heart-shaped geometries, respectively. In all three
cases, we used the phenomenological Aliev–Panfilov model,15

∂u
∂t
= ∇ ⋅ (D∇u) − ku(u − a)(u − 1) − ur, (1)

∂r
∂t
= (ε0 +

μ1r
u + μ2

)(ku(a + 1 − u) − r). (2)

The dynamic variables u and r represent the local electrical excita-
tion and refractoriness in dimensionless, normalized units, respec-
tively. The parameters D, k, a, ε0, μ1, and μ2 determine the
properties of the waves (e.g., excitability, wavelength, conduction
speed/diffusivity, number of waves, and distance between them).
We varied the parameters D and ε0 to change the properties of the
excitation waves and produce different training data for different
tasks (Tasks 1–6); see Table I and Secs. III A–III G. The simulations
in the simplified (rectangular, bulk) and heart-shaped geometries
were performed as described by Lebert, Mittal, and Christoph30 as
well as Lebert et al.,31 respectively. Correspondingly, the system in
Eqs. (1) and (2) was integrated using the forward Euler method and
the smoothed particle hydrodynamics method,32,33 respectively. All
the simulations were performed in dimensionless units with Δx = 1
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TABLE I. Parameters of the biophysical model (Aliev–Panfilov15) used to simulate
electrical wave patterns. Task 1: Parameter-specific generation of spiral waves; see
Figs. 2 and 3. D′ and ε′0 were varied systematically over a 5 × 5 grid of values, as
shown in Fig. 2(a). Task 2: scroll wave dynamics in a bi-ventricular heart-shaped
medium; see Fig. 4. Here, D is an anisotropic diffusion tensor; see Lebert et al.31 The
diffusion coefficient D� perpendicular to the fiber orientation was set to 0.1 mm2/ms;
the parallel coefficient D

∥
was randomly chosen for each simulation from the interval

0.2–0.4 mm2/ms. Tasks 3, 5, and 6: spiral wave dynamics in 2D isotropic medium;
see Figs. 5, 8, and 9. Task 4: scroll waves in anisotropic 3D bulk shown in Fig. 6.
Here, D is an anisotropic diffusion tensor with D� = 0.05 and D

∥
= 0.2; see the work

of Lebert, Mittal, and Christoph30 for details.

Task Task Task Task Task Task
Param 1 2 3a/5a 3b/5b 4 6

D D′ D 1 1 D 1
K 8 8 8.5 7.5 8 8
A 0.1 0.2 0.1 0.1 0.05 0.05
ε0 ε′0 0.002 0.003 0.001 0.002 0.002
μ1 0.2 0.2 0.16 0.16 0.8 0.2
μ2 0.3 0.3 0.3 0.3 0.3 0.3

and integration time steps, which proved to be numerically stable.
The two-dimensional simulations were isotropic, whereas the three-
dimensional simulations were anisotropic with a locally varying fiber
direction and faster wave propagation along the fiber direction; see
Table I. The fiber architectures were created as described by Lebert,
Mittal, and Christoph30 as well as Lebert et al.31 The bi-ventricular
heart geometries and underlying rule-based fiber architectures were
randomly initialized.

The simulation/model parameters were chosen specifically for
each task; see Table I. For example, we simulated a range of
parameter-specific spiral wave dynamics (Task 1), as shown in
Figs. 2(a) and 2(b), by varying the parameters D and ε0 and by apply-
ing a random number of pacing stimuli applied in random locations
to cause wave break and create spiral waves. We simulated two dif-
ferent regimes of spiral wave dynamics, as shown in Figs. 5 and 8,
using two different parameter sets: one with few (Tasks 3a, 5a) and
one with more spiral waves (Tasks 3b, 5b). We simulated scroll wave
dynamics in a bulk with 128 × 128 × 40 voxels, as shown in Fig. 6
(Task 4), and in bi-ventricular geometries, as shown in Fig. 4 and
described by Lebert et al.30 (Task 2) using a fixed set of parameters.
For each task, we performed hundreds of simulations to generate
sufficient training data and separated training data and data used
for evaluation. For example, for Task 4, we performed 125 simu-
lations, where 100 simulations were used for training and 25 for
evaluation, as described by Lebert, Mittal, and Christoph.30 The ini-
tial conditions u0, r0 were randomized and, therefore, different in
each simulation; also see the work of Lebert et al.31 If the spiral or
scroll wave dynamics self-terminated prematurely, we restarted the
simulation.

Using the simulation data, we generated different training
datasets for each task; see Tasks 1–6 presented in Table I and Secs.
III A–III G for details. We found that the diffusion models discussed
in Secs. III A and III F can already generate spiral wave patterns
with as few as 100 training samples; see supplementary material,
Fig. 2. However, in order to increase the diversity and quality of
the generations, we typically used thousands to tens of thousands of

training samples for all Tasks 1–6; see Table III. Each training dataset
consisted of samples randomly chosen from only the different train-
ing simulations. Correspondingly, each evaluation dataset consisted
of samples randomly chosen from only the evaluation simulations.
Training and evaluation datasets were sampled from completely sep-
arate datasets. There is no overlap or crosstalk between training and
evaluation samples.

B. Denoising diffusion model
We used a denoising diffusion probabilistic modeling18 neural

network architecture, which we refer to as diffusion model for sim-
plicity. Diffusion models consist of a forward diffusion process and
a reverse diffusion process, as shown in Fig. 1. During the forward
diffusion process, Gaussian noise is added incrementally to an input
image until it is indistinguishable from random noise. This produces
a sequence of samples (x0, . . . , xT) with increasing noise, starting
from the data point x0 from the real data distribution q(x) and
ending with what is indistinguishable from an isotropic Gaussian
distribution,

q(xt ∣xt−1) = N(xt ;
√

1 − βtxt−1, βtI). (3)

The step sizes are controlled by a variance schedule βt ,

q(x1:T ∣x0) =
T

∏
t=1

q(xt ∣xt−1). (4)

When sampling new data from the data distribution q(x), a model
pθ is learned to estimate q(xt−1∣xt), which is also approximated by
a Gaussian distribution. This is referred to as the reverse diffusion
process,

pθ(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1∣xt), (5)

pθ(xt−1∣xt) = N(xt−1; μθ(xt , t), Σθ(xt , t))). (6)

This allows the model pθ to only have to estimate the two parameters
μ and Σ of the estimated denoising step. Commonly, Σθ is fixed to a
constant variance schedule and is not learnable. This means that in
order to estimate pθ, a model needs to learn μθ(xt , t). Electrical wave
dynamics can be treated as image-like data, and the U-Net archi-
tecture from Dhariwal and Nichol34 is used to estimate the noise at
each step of the reverse diffusion process. The model is trained using
pairs taken from the forward diffusion process xt and xt−1 and tak-
ing the mean squared error (MSE) between the noise estimated by
the model and the true noise at that step.

We implemented six different diffusion models for different
tasks (Tasks 1–6); see the results in Secs. III A–III G for additional
task-specific details. Throughout this paper, we refer to conditioned
and unconditioned diffusion models. Conditioned diffusion models
exert a task that is constrained. For instance, the parameter-specific
model in Sec. III A is conditioned by the input parameters that
guide the diffusion process to produce certain types of wave pat-
tern, and the inpainting model in Sec. III E is conditioned by the
surrounding wave pattern as it needs to fill in the missing parts
while matching the pattern to the surrounding pattern. While con-
ditioned diffusion models generate wave patterns under certain
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FIG. 2. Parameter-specific generation of spiral wave dynamics using diffusion-based generative modeling (Task 1); see also the supplementary material, Videos 1–5. (a)
Different simulations of spiral waves while varying parameters D and ε0 in Eqs. (1) and (2), or diffusion constant and time scale separation parameter, respectively, which
influence the width and distance between the waves, respectively. (b) The diffusion model was trained with data consisting of multi-spiral wave dynamics for the same
parameter combinations (D, ε0) as in panel (a) with 500 simulations per combination. Some parameter combinations (white) were left out during training (5 of 20). (c) The
diffusion model generates parameter-specific spiral wave patterns for all parameter combinations, even though it was not trained on all of them. (d) The diffusion model can
generate a full dynamical state with both dynamic variables u and r as well as (e) multiple time steps of such states at once: (u, r)(x, y, t1, . . . , tn) with tn = 2, 3, . . . , 15.
(f) Diffusion-generated multi-time-step sample (tn = 10) showing spatio-temporal spiral wave pattern with fast and slow variables (corresponds to ts = 100 simulation time
steps; see Sec. III A).

constraints, an unconditional model can dream up any wave pat-
tern without any guidance. All the diffusion models preprocessed
the images by down-sampling them to 64 × 64 in order to reduce
memory consumption during training and then up-sampling the
generated images to 128 × 128. We did not see a decrease in per-
formance from doing this down- and up-sampling. The conditioned
diffusion models in Secs. III A, III C, and III E were implemented
following the work of Saharia et al.20 using an implementation by
Jiang and Belousov.35 The unconditioned diffusion model in Secs.
III F and III G was implemented following the work of Ho et al.18

using the diffusers library.36 The diffusion model in Sec. III B was
implemented following the work of Zhou et al.29 using the official
codebase. All the diffusion models include a U-Net37 architecture
and were implemented in PyTorch.38

C. General training details
The networks were trained using the Adam39 optimizer with

a learning rate of 10−4 for the bulk prediction task and 10−3 for all
other tasks. We used a batch size of 8 for the bulk prediction tasks
and a batch size of 32 for all the other tasks. All neural network mod-
els were implemented in PyTorch.38 Training and reconstructions
were performed on a NVIDIA RTX A5000 graphics processing unit
(GPU); see Table II for an overview of training durations.

TABLE II. Different model sizes (trainable parameters) and training times used in this
study. Training was performed on a single NVIDIA RTX A5000 GPU.

Model Trainable parameters Training time

Task 1 308, 672, 266 2 days
Task 2 31, 092, 676 0.5 day
Task 3 62, 644, 805 1.5 days
Task 4 965, 266, 792 9 days
Task 5 62, 640, 193 1.5 days
Task 6 113, 673, 219 1 days
Classification 11, 689, 512 5 min

D. Evaluation
We evaluated the diffusion models accuracies using the root

mean squared error (RMSE), the mean absolute error (MAE), or the
multi-resolution perceptual error (MR)40 depending on the model
and task. We computed the errors per frame, averaging over all the
frames of a separate evaluation dataset that was not part of the train-
ing dataset. While RMSE and MAE correspond to a measure of the
average difference per pixel, MR is a measure for the similarity of
two patterns and, in more general terms, for how the waves percep-
tually look to the human eye. The issue with RMSE and MAE is that
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they can produce high errors when images are similar but not per-
fectly congruent (e.g., a shifted or slightly wider spiral wave pattern,
which is otherwise identical). By contrast, the MR calculates the dif-
ference between two images over their embedding in feature space
and, therefore, provides a much more holistic comparison of two
images over multiple spatial scales and feature hierarchies;40 see also
Fig. 8 and Sec. III E. We used MR in addition to RMSE and MAE to
overcome their limitations related to a crude pixel-wise comparison.
MR captures when two patterns are qualitatively very similar, which
RMSE and MAE do not capture per se.

III. RESULTS
A. Parameter-specific generation of spiral wave
dynamics

Diffusion models can generate parameter-specific spiral wave
patterns when given a set of parameters as input, as shown in
Fig. 2. We trained a diffusion model to generate a parameter-specific
spatio-temporal spiral wave pattern from 2 input parameters D and
ε0 (Task 1), also shown in Figs. 2(d) and 2(e),

(ξ(x, y), D, ε0)→ (ũ, r̃)(x, y, t1, . . . , tn). (7)

Here, ξ(x, y) is the initial noise; D and ε0 are parameters of
the biophysical Aliev–Panfilov model in Eqs. (1) and (2), which
influence the spiral wave properties; and (ũ, r̃) is the generated
spatio-temporal spiral wave pattern consisting of multiple time steps
tn, as shown in Figs. 2(d)–2(f). The diffusion model generates both
dynamic variables u, r and multiple frames (t1, . . . , tn) at once (here
usually n = 5). We refer to this generation process as multi-time-
step generation ‘conditioned by the parameters D and ε0’. We found
that the generative process can be conditioned and consequently
guided by parameters to produce spiral wave dynamics with specific
properties, which equally arise with a corresponding biophysical
model with the same parameters, as shown in Figs. 2(b) and 2(c).
Spiral wave shapes can be very different depending on the model
parameters; see Figs. 2(a), 2(b), and 9 in Qu et al.41 and Figs. 5–9
in Bartocci et al.42 Here, the Aliev–Panfilov model produces spiral
waves with wider/thinner arms and longer/shorter diastolic inter-
vals when varying the parameters D and ε0 in Eqs. (1) and (2), as
shown in Fig. 2(a). Our diffusion model reproduces these different
parameter-specific regimes when conditioned with the respective
parameters, as shown in Figs. 2 and 3. Importantly, the diffusion
model can generate parameter-specific spiral wave dynamics, even
if the parameter combination was not part of the training data.
However, it fails to generate plausible wave patterns outside the dis-
tribution of training data, as shown in the supplementary material,
Fig. 3, which is generally known to be true for many deep learning
models.

We performed 12 500 unique simulations in total for 5 × 5 = 25
different parameter pairs (ε0, D) or 500 simulations per parameter
pair. The simulations were performed with combinations of (ε0, D),
as shown in Fig. 2(a). In each simulation, we initialized the spiral
waves shown in Fig. 2(a) and then applied a random number of
pacing stimuli (between 10 and 40) in random locations to cause
wave break and create single- or multi-spiral wave dynamics, as
shown in Fig. 2(b). Only every tenth simulation time step over a
period of 10 000 simulation time steps was written out, resulting

in 1000 frames showing about 2–3 spiral wave rotations. Per sim-
ulation, we extracted 5 multi-time-step training samples showing
each a unique spatio-temporal spiral wave pattern, yielding 2500
samples in total per parameter pair or 62 500 samples in total over
the grid of 5 × 5 parameter pairs. Each sample consists of n = 5
frames {{u(x, y, t1), r(x, y, t1)}, . . . ,{u(x, y, tn), r(x, y, tn)}}, which
are 3 frames apart, effectively covering a period of ts = 150 simu-
lation time steps. Each sample shows a unique spiral wave pattern,
and there is no overlap between training samples. We augmented
the data by randomly flipping or rotating all frames in a sample
by multiples of 90○, effectively increasing the training dataset size
by a factor of 8 and ensuring rotational invariance. It should be
noted that most spirals shown in Fig. 2(b) are clock-wise rotat-
ing as they are simulated data before augmentation. In principle,
the number of frames in a training sample can vary (e.g., 5, 10,
and 15), but we resorted to 5 for simplicity. The parameters were first
encoded using sinusoidal embeddings.43 We then conditioned the
diffusion model by concatenating these sinusoidal parameter encod-
ings to the diffusion time step embedding that is passed into each
residual connection in the underlying U-Net,34 as shown in Fig. 1.
Aside from the parameter conditioning, the generation was uncon-
ditioned, allowing the diffusion model to dream up any spiral wave
pattern.

We verified the parameter-specificity of the diffusion model
by initializing the biophysical model from Eqs. (1) and (2) with
the first diffusion-generated frame {ũ(x, y, t1), r̃(x, y, t1)}, as shown
in Fig. 3(a), and integrating the biophysical model for ts = 150
time steps t1 → t2 → t3 → ⋅ ⋅ ⋅→ ts using either the same parameter
combination (ε∗0 , D∗) or a mismatching parameter combination
(ε0, D) to see if the PDE-evolved solutions co-evolve with the spatio-
temporal spiral wave pattern generated by the diffusion model;
see Fig. 3(b). It should be noted that the diffusion sample times
{tn = 1, 2, 3, 4, 5} correspond to {ts = 1, 31, 61, 91, 121, 151} in simu-
lation time steps because of the subsampling during the training data
creation (every tenth frame stored from simulation) and training
procedure (every third frame used for one training sample). We can
compare the two solutions because the diffusion-generated spatio-
temporal spiral wave pattern shows a plausible spatio-temporal
progression of the wave pattern. Comparing the simulated state
{u(x, y, ts), r(x, y, ts)} at time ts = 151 to the corresponding last state
{u(x, y, tn), r(x, y, tn)} with tn = 5 in the diffusion-generated sam-
ple, as shown in Fig. 3(d), we found that the average pixel-wise error
(MAE) is smallest with matching parameters (ε0, D) = (ε∗0 , D∗), as
shown in Fig. 3(e), regardless of whether they were part of the
training data or not. In other words, the diffusion model generates
spiral wave dynamics that the biophysical model also produces with
the same parameters. More precisely, we found that the error was
minimal with matching parameters for only 21 of the 5 × 5 = 25
parameter combinations. In the other four cases, it was a nearby
combination and the difference in the error was very small. The
four ambiguous cases occurred in the central lower left area of the
5 × 5 parameter grid with medium to thin waves. The ambiguity
could result from the waves being more similar to each other or,
vice versa, harder to distinguish when comparing the divergence of
the wave patterns in our measurements. Correspondingly, we believe
the issue will resolve when including longer trajectories or integra-
tion times in our measurements. The plots shown in Fig. 3(e) were
derived from averaging over 100 simulations initialized with the first
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FIG. 3. Scheme to verify whether the diffusion-generated spiral wave patterns shown in Fig. 2 are parameter-specific: (a) The first state (u, r) at t1 of the diffusion-generated
multi-time-step sample generated with parameters (ε∗0 , D∗) was loaded into the corresponding biophysical model with either identical or mismatching parameters (ε0, D).
The biophysical model was then integrated for ts time steps, and the solutions were then compared to the last state of the diffusion-generated sample at tn. This was
repeated for all parameter combinations (ε0, D); see Sec. III A for details. (b) Trajectories in phase space starting from state t1, co-evolving with matching parameters and
diverging with mismatching parameters. (c) Error between diffusion-generated and simulated states over time (tn = 5 corresponds to ts = 150) with matching (low error:
black/purple) and mismatching (high error: orange/yellow) parameters for one diffusion-generated sample. (d) Examples of diffusion-generated and simulated states at
tn = ts with matching parameters ((ε∗0 , D∗) = (ε0, D)) and mismatching parameters [5 × 5 grid with the same parameter combinations as shown in Figs. 2(a) and 2(b)].
The diffusion-generated sample was generated with the parameter combination indicated by the green square. The matching biophysical simulation was performed with the
same parameters, while the mismatching simulation was performed with the combination indicated by the red square. The simulations deviate from the diffusion-generated
samples when the parameters do not match, which causes an error (pixel-wise absolute difference). (e) Confirmation that generations are parameter-specific: the average
pixel-wise error (MAE) between simulated and diffusion-generated patterns at tn (averaged over 100 samples/simulations) is the lowest (black/purple: small, orange/yellow:
large) for matching parameter combinations (ε0, D) = (ε∗0 , D∗).◻ parameter combination (ε∗0 , D∗) used to generate diffusion-generated sample; ∗ parameter combination
of simulation (ε0, D) with the lowest error; ◻ and ∗ match in 21 of 25 cases; in the other cases, the minimum is nearby with marginal difference in the error. 5 × 5 grid
corresponds to same parameter combinations as shown in Fig. 2(a).

frames of 100 different diffusion-generated samples per parameter
combination. It should be noted that the diffusion model was not
trained on all parameter combinations. The findings suggest that dif-
fusion models do not need to be trained meticulously on all possible
parameter combinations, can interpolate in parameter space, and
generate wave dynamics for many more parameter combinations
than just the ones they were trained on.

B. Generation of re-entrant scroll waves
in heart-shaped geometries

We trained a diffusion model to generate scroll waves in
bi-ventricular-shaped geometries (Task 2), as shown in Fig. 4.
Panel D shows the denoising diffusion process used to generate

bi-ventricular-shaped point clouds with corresponding excitation
values per point, where both the shape and the electrical wave pat-
tern are generated simultaneously by using the diffusion model
(two representative examples). Figure 4(f) shows further examples
of diffusion-generated scroll waves, which are visually indistinguish-
able from the scroll wave patterns shown in panel E, which were
simulated using the biophysical model in Eqs. (1) and (2). The
generative process was completely unconstrained and not explic-
itly conditioned. Correspondingly, the model generates any scroll
wave pattern in any bi-ventricular shape that it can come up with
given what it has learned from the training data. The scroll wave pat-
terns are anisotropic because the training data were simulated with
anisotropic ventricular fiber architecture. The training data, there-
fore, implicitly warrant anisotropy during the generations. Even
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FIG. 4. Diffusion-based modeling of re-entrant electrical waves in heart-shaped bi-ventricular geometries (Task 2); see also the supplementary material, Video 6. (a) Template
geometry used in simulations to generate training data. (b) 1000 randomized, unique variations of template geometry to create unique training samples, as described in
Ref. 30. (c) Geometry-dependent bi-ventricular muscle fiber architecture initiated in each simulation. (d) Denoising process during diffusion-based generation of electrical
scroll wave pattern in bi-ventricular heart shapes. Both the tissue geometry and wave pattern are generated simultaneously. (e) Training data used to train diffusion model
consisting of 5000 training samples showing electrical scroll wave patterns. Each simulation consists of 32 000 particles, subsampled to 16 000 particles for training, here
voxelized and volume-rendered for visualization. The training data were simulated using a biophysical model (Aliev–Panfilov), see Eqs. (1) and (2), and integrated using
the SPH-method,32,33 see Sec. II A. (f) Additional examples of diffusion-generated electrical scroll waves in bi-ventricular heart shapes. The diffusion model generates a
bi-ventricular shape (each shape different) as well as a full dynamical state with both dynamic variables (u, r)(x⃗). The scroll wave patterns are anisotropic due to the specific
ventricular muscle fiber organization in the training data.

though the diffusion model generates only a single scroll wave pat-
tern u(x⃗, t), and only the excitatory variable u, it is easy to imagine
how this pattern could also be evolved over time u(x⃗, t1, t2, . . .) as
described in the next Sec. III C and shown in Fig. 5.

The simulations were performed as described by Lebert et al.30

Accordingly, the simulated training data consist of point clouds of
i ∼ 32 000 vertices, p(x⃗)i representing bi-ventricular heart shapes.
The simulations were performed with 1000 unique bi-ventricular
shapes created from a template geometry; see Figs. 4(a) and 4(b).
Accordingly, the diffusion model comes up with similar shapes dur-
ing the generative process. The excitatory variable ui is defined per
vertex i. We down-sampled the data to 16 000 points and used Point-
Voxel Diffusion29 trained on 5000 training samples obtained from
the simulations where each training sample consists of a single point
cloud of excitation values u( ⃗x, t) at a particular time t. We trained
the model to output 16 384 points (with a latent dimension of 512)
for 400 epochs.

C. Generative diffusion-based simulation of electrical
wave dynamics

Electrical impulse propagation in the heart is usually simulated
by integrating partial differential equations in space and over time
by using, for example, the finite difference or finite element methods.
We trained a diffusion model to calculate an immediate future time
step of a given spatio-temporal excitation wave pattern (Task 3),

(u, r)(x⃗, t)→ (ũ, r̃)(x⃗, t + τ), (8)

where (u, r) are the dynamic variables from Eqs. (1) and (2) and
τ is an infinitesimal temporal increment or the integration time step.
In other words, we employed diffusion-based data-driven model-
ing to evolve electrical wave dynamics over time rather than using
a biophysical model to simulate the dynamics. More precisely, we
trained a diffusion model to predict the next five time steps from
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FIG. 5. Data-driven modeling of spiral wave dynamics using diffusion models. (a)
Spatio-temporal prediction (Task 3) of five frames from previous five frames; see
Sec. III C. Panels (b) and (c): comparison of ground-truth data (GT) simulated with
the biophysical model (finite differences) and data-driven methods (Diffusion vs
U-Net) to evolve the wave pattern. With a single spiral wave, the output of the dif-
fusion model is visually indistinguishable from the ground-truth for many rotations,
while U-Net quickly fails to sustain the wave pattern. With more complicated wave
patterns, the diffusion models begins to deviate from the biophysical model after
2–3 spiral rotations (80 time steps).

the previous five time steps of the dynamics, resulting in an integra-
tion scheme that updates a brief spatio-temporal pattern instead of a
static spatial pattern,

(u, r)(x⃗, t−4, . . . , t0)→ (ũ, r̃)(x⃗, t1, . . . , t5). (9)

Here, {t−4, t−3, t−2, t−1, t0} are the four previous time steps, and the
current time step t0 and {t1, . . . , t5} are the next five time steps pre-
dicted by the model, as shown in Fig. 5(a). We found this multi-time-
step prediction scheme more stable than updating the dynamics one
time step at a time or predicting the next time step from the previ-
ous n time steps in an auto-regressive manner. We found empirically
that using five time steps to predict the next five time steps was
a good compromise between performance and training time. We
tested using ten time steps to predict the next ten time steps, which
worked as well (and presumably better), but the model was conse-
quently bigger and the training time much larger. In all cases, we
used no temporal subsampling. We conditioned the diffusion model

by concatenating (u, r)(x⃗, t−4, . . . , t0) to the initial noisy distribu-
tion ξ(x, y), adding five channels to the input of the underlying
U-Net (10 × 128 × 128 pixel3). We trained and evaluated the model
with 15 000 and 5000 samples, respectively. The training samples
show either simple or complex two-dimensional spiral wave dynam-
ics simulated with two parameter sets; see Table I (Task 3a/b) and
Figs. 5(b) and 5(c). The same parameters were also used in Task 5
and shown in Fig. 8. For each of the two parameter sets, we ran 100
simulations and sampled the training samples from 75 simulations
and the evaluation samples from 25 simulations, respectively.

Figures 5(b) and 5(c) show the ground-truth (PDE) spiral wave
patterns for up to 80 simulation time steps and the correspond-
ing evolved spiral wave patterns predicted either with our diffusion
model or a correspondingly trained U-Net model. While the dynam-
ics quickly degenerate with U-Net, the diffusion model successfully
sustains and evolves the dynamics over a very long time. The abil-
ity to sustain the wave pattern is likely related to diffusion models
being able to learn and mimic shapes. The diffusion model produces
spiral waves with either stable or meandering cores, which exhibit
breakup and (self-) interactions. With the single spiral wave shown
in Fig. 5(b), the diffusion model’s output matches the biophysical
model’s output for many rotations; see the supplementary material,
Video 7. Eventually, the original (ground-truth) dynamics diverge
from the diffusion-generated dynamics, which, to some extent, is to
be expected as the dynamics would also diverge with, for instance,
two different classical integration methods. With the more com-
plex spiral wave dynamics shown in Fig. 5(c), the diffusion output
diverges rapidly within less than two rotations of the spiral wave
pattern; see the supplementary material, Video 8. Interestingly, the
diffusion model appears to favor more stable wave dynamics (less
wave break); see the right panel in Fig. 5(c). We can only speculate
that this could be related to a bias in the training data, e.g., an under-
representation of finer spatial scales; also see Sec. III G for further
details regarding the ensemble behavior of the dynamics.

The diffusion-based time stepping appears to only work well
with spatio-temporal data, which suggests that spatio-temporal data
are unique enough so that the model is sufficiently constrained
(or conditioned), which, in turn, enables it to predict the next spatio-
temporal segment reasonably well. However, how these findings
generalize to various dynamical regimes with different Lyapunov
times warrants further research.

Updating the dynamics in a 128 × 128 pixel2 simulation
domain takes 1.1 ms on a NVIDIA A5000 GPU per multi-frame
prediction. Together with the results in Sec. III B, our findings
suggest that diffusion-based modeling could be used to simulate
spatio-temporal dynamics in the heart.

D. Reconstruction of three-dimensional scroll wave
dynamics from surface observations

Measuring electrophysiological wave phenomena beneath the
heart surface is a long-standing challenge in cardiovascular research
and diagnostics. Catheter electrodes or optical mapping provide
only superficial data from the heart surface, and intramural mea-
surements from within the heart muscle with electrodes are sparse.
To address this challenge, various numerical methods were intro-
duced, which aim at reconstructing transmural wave patterns from
observations of the dynamics on the tissue’s surface.30,44–46 The
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numerical reconstructions are particularly relevant in the con-
text of tachyarrhythmias, such as ventricular or atrial fibrilla-
tion, as they may provide a better understanding of the underly-
ing three-dimensional spatio-temporal organization of the electri-
cal waves within the heart muscle. Recently, Lebert et al.30 and
Stenger et al.44 demonstrated that convolutional encoding–decoding
neural networks (different U-Net-types) can be used to recon-
struct three-dimensional scroll wave dynamics inside a thick bulk-
shaped excitable medium from two-dimensional observations of the
dynamics on the top and/or bottom surfaces (representing the epi-
and endocardium). At the same time, Stenger et al. also demon-
strated this briefly with a diffusion model.44 However, several aspects
of the deep learning-based reconstructions remain underexplored,
in particular with the diffusion-based approach.

We trained a diffusion model to predict three-dimensional
scroll wave dynamics inside a bulk from two-dimensional
observations of the dynamics on the surface of the bulk (Task 4),
as described by Lebert et al.30 and shown in Fig. 6. More specifically,
the model was trained to predict a single three-dimensional snap-
shot of the excitatory variable ut(x, y, z) at a given time t at every
voxel in a bulk with 128 × 128 × 40 voxels from the five previous
two-dimensional snapshots of the dynamics on the bulk’s surface,

(u1(x, y), . . . , u5(x, y))→ ũ5(x, y, z), (10)

where ũ is a prediction of the true dynamics u. The snapshots
were measured either (i) on the top surface only (single-surface
mode), resulting in a spatio-temporal measurement consisting of
five snapshots [u1(x, y, 1), . . . , u5(x, y, 1)] or (ii) on the top and
bottom surface (dual-surface mode), resulting in 2 ⋅ 5 snapshots
[u1(x, y, 1), u1(x, y, 40), u2(x, y, 1), . . . , u5(x, y, 40)], as described by
Lebert et al.30 The five snapshots were sampled at equidistant times
at t−4τ , t−3τ , t−2τ , t−τ , t0 with ui = u(ti) over about one rotational
period T of the scroll wave dynamics (τ ≈ T/5), which we found
to provide sufficient information to reconstruct the dynamics, as
described in Refs. 30, 47, and 48. Accordingly, we conditioned
the diffusion model by concatenating these sequences as additional
channels in the U-Net inputs (interleaved in the dual-surface mode,
odd indices for the top layer and even indices for the bottom layer).

To explore an alternative extension of our reconstruction
approach, we conditioned the diffusion model using the output of
a generic U-Net model, which was trained and applied as described
in Refs. 30, to create a combined model that can potentially take
advantage of the strengths of both the U-Net and diffusion models;
also see Fig. 7. Accordingly, we conditioned the combined model

FIG. 6. Diffusion-based reconstruction of scroll wave dynamics inside a three-dimensional bulk from two-dimensional observations of the dynamics on the bulk’s top and
bottom surface (Task 4); also see the supplementary material, Video 9. The bulk is fully opaque and measurements can only be obtained from its surface. (a) Illustration of the
diffusion process over denoising iterations. (b) Scroll wave dynamics (left: ground-truth) and reconstructed scroll waves with diffusion (center left), U-Net (right), and U-Net
refined with diffusion (center right); also see Refs. 30 and 44. The U-Net is from our previous study.30 The top row shows the full bulk, while the bottom row shows the lower
half of the bulk to highlight the central midwall layer of the bulk, which exhibits the highest reconstruction error. While diffusion produces smoother wave patterns than U-Net,
particularly at deeper layers, the overall reconstruction accuracies are not significantly different across the three approaches; also see Fig. 7. The white squares highlight
slight differences between reconstructions and ground-truth. The bulk is 128 × 128 × 40 voxels (aspect ratio was altered to emphasize transmural wave morphology); also
see Ref. 30. The simulation parameters are presented in Table I (Task 4).
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with the sequences of 5 (or 2 ⋅ 5) two-dimensional snapshots and
1 three-dimensional prediction ũ(x, y, z) of the U-Net model, which,
in turn, also analyzed 5 snapshots as input. The two- and three-
dimensional inputs were concatenated to obtain (128 × 128 × 45)
or (128 × 128 × 50) samples in single- vs dual-surface mode as
conditions, respectively. This leads to a total of four conditioning
modes that we tested (single- vs dual-surface, diffusion vs combina-
tion of diffusion + U-Net). Generally, the different model versions
required three-dimensional input samples, e.g., (128 × 128 × 5) or
(128 × 128 × 45). To denoise a 128 × 128 × 40 volume image with
5 ⋅ 128 × 128 snapshots as conditioning, the model corresponds
to an R(128 × 128 × 45)→ R(128 × 128 × 40) function. However,
internally, because the denoising diffusion process works on the
intermediate noisy bulk data, the overall data consist of the condi-
tioning data concatenated to the noisy data, which then results in an
array size of, for example, 128 × 128 × 80.

Training was performed with 20 000 training samples, which
were generated in 100 simulations; also see Sec. II A, and the model
was evaluated on 5000 separate samples. The simulated bulk is
completely opaque (only surface voxels can be observed) and thick
enough to sustain three-dimensional scroll wave dynamics (128
× 128 × 40 voxels, 1–2 scroll wavelengths), as shown in Fig. 6. We
used the same simulation data and parameters as Lebert et al.;30 also
see also Table I (Task 4).

Figure 6(a) shows the denoising process during the scroll wave
prediction task in the bulk using the diffusion model. The scroll wave
pattern is reconstructed from the top and bottom surface layers.

FIG. 7. Transmural reconstruction error per layer number or depth with diffusion
(blue), U-Net (green, from the work of Lebert, Mittal, and Christoph30), or diffu-
sion + U-Net (orange); also see Fig. 6. The reconstruction error was quantified
using either the perceptual error40 (left) or absolute difference (RMSE, right). (a)
Dual-surface reconstruction analyzing the top and bottom layers: U-Net performs
worse at midwall, but slightly better closer to the surfaces than diffusion. Perceptual
error and RMSE produce very different error profiles. (b) Single-surface prediction:
the perceptual error increases more steeply with U-Net as with diffusion, while all
models perform similar to RMSE.

Interestingly, the rough shape of the scroll wave pattern is already
captured early in the denoising process, while later stages enhance
finer structures. Figure 6(b) shows a comparison of the predictions
obtained with diffusion vs U-Net vs the combination of the two
with diffusion refining the U-Net output; also see Fig. 7. All the
models are able to predict three-dimensional scroll waves from two-
dimensional observations using either only the top (single-surface
mode) or both the top and bottom surface layers (dual-surface
mode); also see Fig. 7. The diffusion model slightly outperforms
U-Net, but their combination does not significantly increase the
reconstruction accuracy beyond the accuracy of the diffusion model.
Stenger et al.44 found that diffusion performs substantially better
than U-Net with long observations (32 snapshots). Here, we used
fewer observations (only five snapshots), which likely causes this
discrepancy.

Most importantly, the diffusion-based reconstructions exhibit
one striking feature: while U-Net reconstructions become fuzzier
with increasing depth, diffusion maintains the shape, smoothness,
and overall look of the scroll waves much better throughout the bulk.
This is also reflected by the perceptual error, as shown in Fig. 7
and also Sec. III E. However, even though the visual impression
suggests otherwise, we find, on average, no dramatic improvement
of the overall reconstruction accuracy (RMSE) with diffusion over
U-Net; see Fig. 7. Upon closer inspection, one notices that diffusion
produces minor mismatches at deeper layers [white boxes shown in
Fig. 6(b)], suggesting that its output looks better than it is and is not
necessarily more accurate than with U-Net; also see Sec. III E. We
hoped that guiding the diffusion model with the output from the
U-Net model could mitigate these issues, but, on average, the error
remained the same, as shown in Fig. 7. Unlike in the work of Stenger
et al.,44 our model produces smooth scroll wave patterns without
residual noise. Our diffusion model predicts the bulk at once and
not layer by layer, which could cause the smoother appearance of
the waves.

It is important to highlight that our deep-learning-based
scroll wave reconstruction approach was only trained on the
Aliev–Panfilov scroll wave dynamics and, therefore, assumes scroll
waves inside the tissue. All three types of neural networks were
trained with thousands of corresponding pairs of three- and two-
dimensional data of scroll waves and observations thereof. There-
fore, the training data implicitly restrict the approach to a particular
distribution of data and its characteristics (specific electrophysiolog-
ical model that produces waves with a particular shape, isotropic
vs anisotropic wave patterns, wavelength relative to medium thick-
ness), and the approach is task-specific (single- vs dual-surface
observations). It would be interesting to test how the reconstruc-
tions perform and what type of waves they produce with significantly
different data.

E. Hallucination during inpainting of 2D spiral wave
dynamics

Generative models are known to hallucinate, which means that
they may generate output that looks, sounds, or reads convincing but
is inaccurate.49,50 For example, recent large language models (LLMs)
are known to confidently present made-up knowledge as if it was
factual. In computer vision, diffusion models may generate unex-
pected scenes, which are abstract and not part of human day-to-day
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experience. While it is easy to identify hallucination in diffusion-
generated visual scenes, it is not necessarily obvious with spiral
or scroll wave patterns when they include hallucinations; also see
Sec. III F. In Fig. 6, the diffusion-generated reconstructed scroll wave
patterns at midwall look convincing and can be misinterpreted as
accurate solutions, but they are just as inaccurate as the output from
the U-Net model.

We further explored this hallucinating behavior in a two-
dimensional inpainting task of spiral wave dynamics (Task 5), as
shown in Fig. 8, and can confirm that hallucination occurs, par-
ticularly when the task is insufficiently constrained; also see the
supplementary material, Video 10. We varied the size of a square
region at the center of the medium, within which the diffusion model
was tasked to interpolate the missing spiral wave pattern from the
surrounding data. Hallucination is minimal with a small square,
which is reflected by the error (RMSE) on the left sides of the graphs
as shown in Fig. 8(e). However, we observed that the diffusion model
comes up with many different spiral wave patterns when the square
region is large or more data are missing; see Figs. 8(a) and 8(b) and
the supplementary material, Video 10. Figure 8(c) shows the varia-
tion of the diffusion model output when the same task is repeated
500 times with simple vs complex waves and 30% vs 70% missing

data, respectively. The variation in the output as quantified by the
error (MAE) between the ground-truth and the individual predicted
spiral wave pattern is particularly large, with 70% missing data. Hal-
lucination also becomes stronger when the wave dynamics are more
complicated (we tested two parameter sets; see Table I, Task 5a/b);
compare panels A and B and the upper and lower curves in panel
E (average error calculated over 500 unique samples per data
point) in Fig. 8. In Fig. 8(e), we compared the root mean squared
error (RMSE), which reflects the pixel-wise congruency of the
ground-truth and the predicted pattern, with a perceptual error
(MR), which reflects similarities or differences in the patterns
independently from spatial mismatches (as it is calculated on the
embedding of the pattern). The perceptual error indicates that with
simple waves, the variations in the output of the diffusion model
are small regardless of the size of the masked area. In other words,
differences in waves only correspond to slight spatial mismatches
(which cause high RMSE), while the wave shapes are very simi-
lar qualitatively. The spikes in panel C (with 70%), on the other
hand, correspond to large qualitative changes of the wave pattern,
which occur occasionally with both complex and simple waves. Our
data suggest that (i) the diffusion model hallucinates if it has the
freedom to generate many potential solutions to a problem; (ii)

FIG. 8. Hallucination of the diffusion model during inpainting of electrical spiral wave dynamics (Task 5). (a) The diffusion model predicts missing data inside a square region
(white) at the center of the medium. With most of the data missing (70%), the diffusion model dreams up wave patterns that look convincingly like spiral wave patterns but
deviate substantially from the ground-truth: four repetitive predictions for the same interpolation task. (b) The effect becomes more severe with more complex waves and
fewer data (80% missing); also see panel D and the supplementary material, Video 10. (c) The model generates significantly different output when the same prediction task
is performed repeatedly (500 times, black: simple waves with 30%, gray: simple waves with 30%, orange: complex waves with 70%, pink: complex waves with 70% missing
data, respectively). (d) Combinations of less vs more missing data (30% vs 70%) and simple and complex waves. (e) Average prediction error (RMSE vs perceptual MR) with
increasing percentage of missing data. Hallucination is minimal with simpler wave patterns and 10%–30% missing data and increases steeply with complex wave patterns.
The perceptual error indicates a higher qualitative agreement between inpainted and ground-truth patterns, which is not reflected by RMSE, as also shown in Fig. 7.
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hallucination can be associated with qualitative changes in the topol-
ogy of the wave pattern; and (iii) hallucination can be mitigated by
sufficiently constraining the task the diffusion model is supposed to
perform.

The inpainting diffusion model (Task 5) was trained as fol-
lows: we masked or left out data from a square region at the
center of the 128 × 128 pixel2 simulation domain and trained the
network with corresponding pairs of masked um(x, y) and ground-
truth data u(x, y) to reconstruct the missing parts of the spiral wave
pattern,

(um,1(x, y), . . . , um,5(x, y))→ ũ5(x, y), (11)

where ũ is a prediction of the ground-truth dynamics
u and the model reads a short spatio-temporal sequence of
five two-dimensional snapshots. Masked pixels were replaced
by zeros. We conditioned the diffusion model by concatenat-
ing (um,1(x, y), . . . , um,5(x, y)) to the initial noisy distribution
ξ(x, y), adding five channels to the input of the underlying U-Net
(6 × 128 × 128 pixel3). We simulated two spiral wave regimes and
trained two separate models: (i) one with largely only one spiral
wave (Task 5a) and (ii) one with multiple, more chaotic spiral waves
(Task 5b); see Table I for the corresponding simulation parameters.
Both the models were trained equally with a range of masks with
uniform distribution (of the percentage of masked area vs total
area). We varied mask sizes m ∈ [0.05, . . . , 0.8] (percentage masked
area vs total area from 5% to 80% in increments of 5%). Training
and evaluation was performed with 27 500 and 6000 samples,
respectively. The training samples were drawn randomly from
100 simulations performed with the biophysical model defined in
Eqs. (1) and (2) for each regime, and the evaluation samples were
drawn from 25 separate simulations for each regime.

F. Visual similarity of diffusion-generated
vs PDE-generated spiral waves

Diffusion-generated “fake” spiral waves are visually indistin-
guishable from real spiral wave patterns simulated with a biophysical
model, as shown in Figs. 2(b), 2(c), 9(a), and 9(b). Each panel in
Figs. 2(b), 2(c), 9(a), and 9(b) shows randomly chosen, representa-
tive examples of spiral wave patterns simulated with a biophysical
model or generated with diffusion, respectively. The biophysical
model integrates partial differential equations (PDEs), whereas the
diffusion model mimics these solutions. We found it impossible
to distinguish diffusion-generated from PDE-simulated spiral wave
patterns visually (we tested this systematically with different lab
members). However, despite the visual similarity, a ResNet1851 clas-
sifier fine-tuned on the two classes of images shown in Figs. 9(a) and
9(b) is able to distinguish the two groups of spiral wave patterns with
an accuracy of 99.7% (separate training and validation/test datasets).
This may be due to the invisible artifacts from the denoising pro-
cess or the capability of CNNs to learn minute differences between
classes. This is well explored52,53 and was in part the motivation
behind the joint generator-discriminator training process of GANs.
An analysis of the fine-tuned ResNet18 classifier using Grad-CAM54

provides some insights into the classification mechanism but is dif-
ficult to interpret overall and remains inconclusive; see Fig. 9(c) and
supplementary material, Fig. 3.

FIG. 9. Comparison of (a) spiral wave patterns simulated in computer simulations
using a biophysical model (PDE, “ground-truth”) and (b) “fake” spiral wave patterns
generated with diffusion model from Eq. (12) (unconditional generation, Task 6).
The two datasets are visually indistinguishable from each other. (c) ResNet1851

classifier can distinguish real from ’fake’ spiral waves with 99% accuracy. Grad-
CAM54 highlights the features to which the classification is sensitive.

It is only possible to visually distinguish real from “fake” spi-
ral waves when the model was not trained for long enough. In that
case, the generations often include noisy spiral wave images; see
supplementary material, Fig. 1. The training dataset size does not
seem to impact the image quality: both models that trained with
small (100–1, 000 samples) and large training datasets (more than
10 000 samples) exhibit noisy images if they are not trained for long
enough. Otherwise, training our diffusion models with sufficiently
large training datasets is required to cover a wider range of the
many possible, highly chaotic, and diverse spiral wave patterns. We
found that diffusion models can generate plausible-looking spiral
wave patterns with as few as 100 training samples; see supplementary
material, Fig. 2. Interestingly, even the parameter-specific model
can generate spiral wave patterns when the training samples are
distributed over the 25 parameter pairs (4 samples/pair). Neverthe-
less, when calculating the “Fréchet inception distance” or the “FID

TABLE III. Training dataset size evaluated using “Fréchet inception distance” or the
“FID score.”55 The lower the score, the better the similarity between the real and
diffusion-generated images measured over the entire distribution of images. The
training dataset is from Fig. 9.

Training samples FID score

100 27.54
500 12.22
1 000 8.77
5 000 8.34
10 000 7.01
50 000 7.05
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Score,”55 which measures how visually similar the generated and real
images are and how well the generated images capture the entire
distribution of real images, we found that at least tens of thou-
sands of training samples are necessary for training, as presented in
Table III.

Furthermore, we found that the parameter-specific model with
which we generated the patterns shown in Fig. 2(c) required more
training samples and training iterations than the unconditional
model with which we generated the patterns shown in Fig. 9(b). Fur-
ther research is needed on the data-efficiency of diffusion models
in these different applications. Data-efficiency is an important con-
sideration when looking at the possibility of fine-tuning or training
diffusion models from scratch on experimental data. It is possible
that diffusion models require a large amount of data to perform well
in complex applications, which could be a major limitation.

The diffusion model used to generate the wave patterns
shown in Fig. 9(b) was trained to generate two-dimensional spiral
wave patterns, including both dynamic variables from noise in an
unconditional fashion (Task 6),

ξ(x, y)→ (ũ, r̃)(x, y). (12)

The model was trained on spiral wave patterns obtained with
the Aliev–Panfilov model with a fixed parameter set; see Table I
(Task 6), which we adapted from the work of Lilienkamp, Christoph,
and Parlitz.56 Consequently, the model is not conditioned with
input parameters, as in Sec. III A, but can dream up any spiral
wave pattern it can come up with given its training; see Fig. 9(b)
and also supplementary material, Videos 1 and 2. Moreover, the
model is completely unrestricted in that it is not trained to per-
form certain tasks, such as inpainting, nor constrained by certain
boundary conditions or parameters that guide the generative pro-
cess. The unconditional model was trained with 50 000 training
samples of spiral wave patterns (u, r)(x, y) simulated in an isotropic
excitable medium with size 128 × 128 pixel2, as shown in Fig. 9(a).
All the simulations ran for a fixed simulation time, until the end
of phase 1 shown in Fig. 10(b). They were initialized with a ran-
dom pulse protocol56 to cause wave break and induce spiral wave
dynamics, and they were stopped shortly after the spiral wave
dynamics had fully developed; next, also see Sec. III G. The training
samples (T.S.) were sampled from the last 300 time steps at the end
of phase 1 of each simulation from an ensemble of 5000 simula-
tions, as shown in Fig. 10(b). The images shown in Figs. 9(a) and
9(b) are a random selection from the simulated training samples and
diffusion-generated data, respectively (16 images from each class).

G. Self-termination behavior of diffusion-generated
spiral waves

Spiral wave dynamics eventually self-terminate if one waits long
enough. Figure 10(a) shows examples of short-, medium-, and long-
lived spiral wave dynamics, which were simulated with the same
parameters as in Sec. III F using the biophysical model from Eqs. (1)
and (2). Two of the three examples survive for only about 100–300
simulation time steps before self-termination, while one survives for
longer than 500 simulation time steps. When performing many sim-
ulations, most spiral wave dynamics self-terminate rather quickly,
while only few episodes survive for long times; also see Figs. 10(b)
and 10(c). The overall distribution of self-termination or survival

times of spiral wave dynamics was previously found to be exponen-
tial.56 Here, we found a similar behavior with diffusion-generated
spiral wave dynamics.

We performed the same simulations as in the previous
Sec. III F, but let the simulations run until they eventually self-
terminated; see phase 2 in Fig. 10(b). We also initiated simulations
using the unconditional diffusion model (Task 6) from Eq. (12)
from Sec. III F, since this model generates a full dynamical state
(u, r)(x, y) and also let those simulations run until they eventu-
ally self-terminated. Both types of simulations were evolved using
the biophysical model (PDE-evolved). The histogram in Fig. 10(c)

FIG. 10. Self-termination characteristics of real and “fake” spiral wave dynam-
ics. (a) Short-, medium-, and long-lived spiral wave dynamics simulated with the
biophysical model. (b) Trajectories of different spiral wave episodes. In phase 1,
the spiral waves are induced with a random pulse protocol using the biophysical
model. The training samples (T.S.) were sampled over a period of 300 frames
right after the spiral waves had formed; also see Fig. 9(b). In phase 2, the spiral
wave dynamics were further evolved using either the biophysical model or diffu-
sion model from Eq. (8). At the beginning of phase 2, the simulations were either
initialized or continued with the real dynamical states (u, r) from phase 1 or the
“fake” dynamical states (ũ, r̃) generated with the unconditional diffusion model
from Eq. (12). Self-termination times were measured for all 4 cases with respect
to the beginning of phase 2. Panels (c) and (d): distributions of self-termination (or
survival) times measured over an ensemble of 5000 spiral wave dynamics showing
an exponential decay. (c) The dynamics were evolved with the biophysical model
(PDE) and initialized with either the biophysical or diffusion model. (d) The dynam-
ics were evolved with the diffusion model and initialized with either the biophysical
or diffusion model.
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shows the distributions of self-termination times (or survival times)
for ensembles of 5000 simulations of diffusion-initialized spiral wave
dynamics (gray) vs conventional spiral wave dynamics (black). The
self-termination times were calculated with respect to the begin-
ning of phase 2. Both distributions match, demonstrating that the
diffusion-generated spiral wave patterns adhere to the same self-
termination statistics with a similar exponential decay rate as their
biophysical counterparts. In other words, it appears that the uncon-
ditional diffusion-generated spiral wave patterns shown in Fig. 9(b)
do not just look like the real spiral wave patterns shown in Fig. 9(a),
but correspond to real physical solutions.

In another experiment, we compared the self-termination
statistics when both spiral wave dynamics in phase 2 are evolved with
the time-stepping diffusion model from Eq. (8) in Sec. III C. The his-
togram in Fig. 10(d) shows that both distributions match (calculated
for ensembles of 5000 simulations each). However, both diffusion-
evolved dynamics self-terminate much sooner than their PDE-
evolved counterparts, highlighting that the time-stepping diffusion
model from Sec. III C behaves differently than the finite differences
time-stepping scheme of the biophysical model. This correlates with
the observation in Sec. III C that diffusion-evolved spiral wave
dynamics appear to exhibit less wave break than the correspond-
ing PDE-evolved dynamics. Less wave break could contribute to a
shortening of the survival times of the dynamics. In addition, while
measuring the self-termination times with the diffusion-evolved
dynamics, we encountered one curious phenomenon: shortly before
self-termination, the dynamics would be abruptly taken over by
severe noise. This issue could be solved by adding more training
data of self-termination events. Taken together, these findings sug-
gest that diffusion-generated spiral wave dynamics adhere to the
same laws as their biophysical counterparts, but there are some
reservations that require further exploration.

IV. DISCUSSION
Generative AI provides the potential for many promising appli-

cations in the biological and biomedical sciences. Here, we demon-
strated that denoising diffusion probabilistic models (DDPMs) can
be used to model waves of electrical excitation in cardiac tissue.
Diffusion models can be used to reconstruct or create parameter-
specific wave patterns and, most importantly, simulate electrical
wave propagation in a data-driven manner. In other words, diffusion
models can learn to evolve cardiac wave dynamics from previ-
ously seen data without knowledge about the underlying physics.
Therefore, they could potentially be used to create a data-driven
model of the heart’s electrophysiological system from measurement
data. We found that diffusion models not only generate electri-
cal wave dynamics that look like and are visually indistinguishable
from simulated wave dynamics, but the diffusion-generated dynam-
ics also preserve some of the inherent characteristics of the original
dynamics. For instance, we found that diffusion-generated spiral
wave dynamics exhibit similar self-termination statistics as their
counterparts in excitable media; see Sec. III G.

While we have some confidence that the diffusion-generated
waves are indeed legitimate solutions, we also remain cautious and
further research is needed to confirm whether diffusion models
provide a valid alternative to conventional biophysical modeling.
At this point, we cannot rule out that diffusion models merely

emulate rather than simulate spiral wave dynamics. This concern
is particularly critical when the dynamics are chaotic and sensi-
tive to slight physical perturbations or differences in the numerical
integration. We evolved both simpler and more complicated spiral
wave dynamics, and while the diffusion model generated plausible-
looking simpler wave dynamics for very long times (in contrast to
U-Net), which co-evolved over a reasonable period of time with the
ground-truth dynamics (keep in mind that even different solvers
would lead to diverging results), the more complicated spiral wave
dynamics diverged very quickly from their ground-truth counter-
part and exhibited less wavebreak. The latter observation could be
an indication that bias in the training data influences the behavior
of the dynamics in yet inexplicable ways. In addition, we observed
unfamiliar artifacts, such as a sudden onset of noise shortly before
the self-termination of the spiral wave dynamics. This particular
artifact could be mitigated by including more training data of self-
termination events, which hints at fundamental issues with selective
and insufficient training data.

A major concern with diffusion models is their ability to hallu-
cinate. Hallucination is an inherent property of generative modeling
and a feature and bug at the same time. Diffusion models can gen-
erate a continuum of outputs, of which some are made up and false.
The main issue is that the false output is hard to identify as diffu-
sion models excel at learning the data distribution and generating
realistically looking data points from this distribution. This raises
concerns over the applicability of diffusion models in healthcare,
where they could produce misleading output, which could lead to
an incorrect diagnosis or treatment. Here, we found that the extent
to which diffusion models hallucinate is related to how much the
task that the network is supposed to perform is constrained. If the
problem is more constrained, then the space of possible solutions
becomes smaller and there is less potential for hallucination (e.g.,
when evolving dynamics). Therefore, sufficiently constraining diffu-
sion models is essential as well as developing methods to quantify
and mitigate hallucination. Nevertheless, the perceived weaknesses
with regard to hallucination can also be a major advantage in other
situations: diffusion models excel when tasked to generate a starting
point in underconstrained tasks, and therefore, they could serve as a
powerful prior for difficult cardiac modeling or reconstruction tasks.

Overall, despite the potential drawbacks, diffusion models
are a promising tool with many potential applications in cardiac
research and diagnostics. Diffusion models can, in principle, gen-
erate parameter- or even model-specific (scroll) wave dynamics in
three-dimensional heart-shaped geometries, suggesting that they
could be used to simulate atrial or ventricular fibrillation in an
individualized segmentation of a patient’s heart while also inte-
grating patient- or disease-specific information (e.g., ion channel
abnormalities) and/or measurement data (e.g., catheter mapping or
electrocardiographic data). In particular, diffusion models offer the
possibility to learn different integration time scales, perform simu-
lations at arbitrary resolutions, and skip the tedious part of finding
the right initial conditions for simulating such dynamics as they can
readily generate spiral and scroll wave patterns instantaneously.

V. CONCLUSIONS
We demonstrated that denoising diffusion probabilistic mod-

els (DDPMs) can be used for generating electrophysiological wave
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patterns in cardiac tissue. They can be used for recovering miss-
ing data, evolving spatio-temporal dynamics, generating electro-
physiological wave patterns in arbitrary geometries, or generating
parameter-specific dynamics, among other tasks. The diffusion-
generated waves are visually indistinguishable from and behave very
similar to waves simulated with biophysical models. However, dif-
fusion models tend to hallucinate with insufficient constraining,
produce artifacts in situations in which training data are lacking, and
produce high computational upfront costs for training. In the future,
diffusion models could be used for data-driven modeling of various
physiological phenomena in the heart.

SUPPLEMENTARY MATERIAL

The supplementary material provides additional figures
(Supplementary Figs. 1–4) and descriptions of the supplementary
videos, which can also be found at https://cardiacvision.ucsf.edu/
videos/diffusion/ and https://www.youtube.com/@cardiacvision.
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