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Abstract

Pancreatic cancer is an aggressive, solid tumor, with a grave prognosis. Despite surgical

treatment in patients with pancreatic cancer, the rate of recurrence is high. In addition,

although tumor biomarkers are frequently used to confirm advanced pancreatic cancer, this

is not accurate and the biomarkers currently used cannot indicate prognosis. This study

sought to evaluate circulating tumor DNA as a tumor biomarker to prognosticate pancreatic

cancer. Patients with advanced pancreatic cancer and liver metastasis (N = 104) were

included, and blood samples were collected from all patients. The mutant allele frequency

was measured using amplicon-based deep sequencing on a cell-free DNA panel covering

14 genes with > 240 hot spots. In patients with advanced pancreatic cancer, 50% (N = 52)

had detectable ctDNA levels, with TP53 (45%, N = 47) and KRAS (42.3%, N = 44) mutations

the most common. Patients with detectable circulating tumor DNA levels also had signifi-

cantly worse overall survival and progression free survival than ctDNA negative patients

(8.4 vs 16 months, P<0.0001 for overall survival; 3.2 vs 7.9 months, P<0.0001 for progres-

sion-free survival). In a multivariate analysis, ctDNA status was independently associated

with overall survival and progression-free survival (HR = 3.1, 95%CI = 1.9–5.0, P<0.0001;

HR 2.6, 95%CI = 1.7–4.0, P<0.0001, respectively). Moreover, circulating tumor DNA signifi-

cantly correlated with a higher number of liver metastases, the presence of lung and/or peri-

toneal metastases, tumor burden, and higher carbohydrate antigen 19–9 levels. This study

supports the use of circulating tumor DNA as an independent prognostic marker for

advanced pancreatic cancer.
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Introduction

Pancreatic cancer is one of the deadliest diseases, with a very poor prognosis. Patients with

metastatic pancreatic cancer have a 5-year overall survival (OS) rate of only 2% [1], and fewer

than 5% of patients with advanced pancreatic cancer who receive chemotherapy are expected

to survive 5 years [2–5]. The prognosis remains poor despite improvements in treatment, par-

ticularly the introduction of new chemotherapies and surgical techniques, especially as cancer

is usually detected in advanced stages. Patients with advanced pancreatic cancer must be moni-

tored often to evaluate tumor burden and response to treatment. Serum protein biomarkers,

such as carcinoembryonic antigen (CEA) and carbohydrate antigen 19–9 (CA19-9), are fre-

quently measured, but these biomarkers do not accurately predict prognosis [6]. As such, a

stringent yet minimally invasive biomarker that measures patient status with high sensitivity

and specificity is urgently needed.

Recently, circulating tumor DNA (ctDNA), which is cell-free DNA (cfDNA) derived from

a malignant tumor, has been suggested as a biomarker in various cancers. cfDNA increases

during various physiological changes caused by factors including inflammation, smoking, and

infection, but also increases in cancer patients [7, 8]. cfDNA is mainly caused by apoptosis and

necrosis, and apoptosis is greatly increased in tumor masses due to the overgrowth of cancer

cells and rapid cell turnover. Thus, cell debris normally phagocytosed by macrophages cannot

be completely removed, and instead accumulates and is released into the blood circulation [9–

11]. ctDNA has been recently confirmed as an early marker for treatment response and disease

progression in patients with metastatic colorectal cancer and breast cancer [12, 13]. In pancre-

atic cancer, ctDNA is considered to be a useful biomarker for the risk of postoperative recur-

rence and for evaluating patient responses to chemotherapy [14, 15]. ctDNA levels may also be

clinically useful for the detection of pancreatic cancer recurrence during postoperative follow-

up [16–18]. Although several studies have investigated the utility of ctDNA as a biomarker in

patients with pancreatic cancer [16, 19], its ability to predict prognosis is still unclear. Here, we

sought to examine the utility of ctDNA as a biomarker in patients with advanced pancreatic

cancer and liver metastasis.

Materials and methods

Patients

Blood samples were collected from 106 patients with advanced pancreatic cancer and liver

metastasis who were undergoing follow-up at the Cancer Institute Hospital, Japanese Founda-

tion for Cancer Research from February 2017 to August 2018. Two patients were excluded

because of the presence of cancer in other organs, leaving a final cohort of 104 patients with

advanced pancreatic cancer and liver metastasis. A power calculation was not conducted in

this study because the study was designed with a relatively large sample size in previous

reports. A specific course of treatment was not a requirement for enrollment in the study

(Table 1). Computed tomography (CT) imaging was performed for all included patients to

examine the degrees of pancreatic cancer progression, the number of liver metastases, and

other metastases. The study was approved by the Institutional Review Board of the Japanese

Foundation for Cancer Research (Tokyo, Japan), and written informed consent was obtained

from all patients.

Blood sampling and ctDNA isolation

Blood was collected into EDTA tubes following the manufacturer’s instructions. To obtain

plasma for analysis, blood samples were centrifuged for 10 min at 2,000×g at 4˚C, then the
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supernatant was centrifuged a second time for 10 min at 16,000×g at 4˚C to remove cellular

debris. cfDNA was extracted from the plasma samples using the MagMax Cell-Free DNA Iso-

lation Kit (Life Technologies; Thermo Fisher Scientific, Inc.) according to the manufacturer’s

instructions. The cfDNA fraction was obtained from plasma samples using magnetic beads

with three washing and rebinding cycles. cfDNA concentrations were determined using a

Qubit dsDNA HS Assay kit (Life Technologies; Thermo Fisher Scientific, Inc.). cfDNA size

distributions were analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.).

Table 1. Patient demographics and clinical characteristics.

Characteristics Total (N = 104) No. of patients (%)

Age at enrollment, y

Median [range] 64 [34–90]

Gender

Male 67 (64.4)

Female 37 (35.6)

Treatment line at sampling

None 1 (0.96)

1st line 38 (36.5)

2nd line 37 (35.6)

3rd line 22 (21.2)

4th line 6 (5.8)

Chemotherapy regimen at sampling

GnP 61 (58.7)

mFFX 34 (32.7)

S-1 3 (2.9)

GEM 3 (2.9)

GE 2 (1.9)

None 1 (0.96)

Pancreatic location of tumor

Head 56 (53.8)

Body or tail 48 (46.2)

Surgery at time of blood sample

Yes 23 (22.1)

No 81 (77.9)

Metastatic site

Liver 104 (100)

Lymph node 75 (72.1)

Lung 19 (18.2)

Peritoneum 11 (10.6)

Others 7 (6.7)

Tumor marker

CEA, ng/ml median [range] 6.55 [1–610.8]

CA19-9, U/mL median [range] 1280 [2–�50000]

CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19–9; GnP, a combination of gemcitabine and nab-

paclitaxel; mFFX, FOLFIRINOX modified regimen; FOLFIRINOX, a combination of folinic acid and fluorouracil

and irinotecan with oxaliplatin; S-1, a combination of tegafur, gimeracil and oteracil potassium; GEM, gemcitabine;

GE, a combination of gemcitabine and erlotinib.

https://doi.org/10.1371/journal.pone.0235623.t001
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Sequencing

An Oncomine Colon cfDNA Assay (Thermo Fisher Scientific) was used to generate libraries from

the cfDNA, following the manufacturer’s instructions. The purity and concentration of the library

were assessed using the Qubit dsDNA HS Assay kit and the Agilent 2100 Bioanalyzer, respectively.

Unique index tags were added to each DNA fragment during library preparation. The Ion Chef

System and the Ion 530 Kit-Chef were used for template preparation, followed by sequencing on

the Ion S5 system using Ion 530 chips. A six-plex library pool was applied to the Ion 530 chip. We

used a cfDNA panel covering 14 genes and 48 amplicons, including 240 hot spots (SNVs and short

indels). The genes included in the panel were KRAS, TP53, APC, FBXW7, GNAS, MAP2K1,

CTNNB1, ERBB2, PIK3CA, BRAF, EGFR, SMAD4, NRAS, and AKT1. Clean reads were mapped to

the human reference genome (hg19). A variant caller was used to filter and call mutations in tar-

geted regions of each gene [20, 21]. The limit of detection for each variant (mutant allele frequency

[MAF]) was 0.15%. The average coverage ranged from 20,000x to 50,000x.

Statistical analysis

Chi-squared tests were used for comparisons of categorical variables (such as gender) and

Mann–Whitney U tests were used for comparisons of continuous variables (such as age)

between the ctDNA-positive and -negative groups. In addition, we analyzed the relationships

between ctDNA and CT findings and relevant blood markers, including CA19-9 and CEA.

The response rate was evaluated using the criteria set out in the Response Evaluation Criteria

in Solid Tumors (RECIST) version 1.1. Survival was estimated using Kaplan–Meier curves [22,

23]. Correlations between clinical outcome and ctDNA markers were assessed using the log-

rank test. Overall survival (OS) was calculated from the date of blood sampling to the date of

death from any cause. Progression-free survival (PFS) was calculated from the date of blood

sampling to the date of disease recurrence or progression, or death from any cause. The Cox

hazard regression method was used to identify independent risk factors for OS and PFS. For

all statistical analyses, two-tailed P values of 0.05 or less were considered statistically signifi-

cant. All statistical analyses were performed using BellCurve for Excel version 3.10.

Results

Patient characteristics

Patient characteristics are presented in Table 1. The median age at the time of blood sampling

was 64 years (range, 34–90 years), and 67 patients were male (64%). First, second, or third line

chemotherapy was administered to 97 (93%) of the patients at the time of blood sampling.

Only one patient did not receive chemotherapy either before or after blood sampling. Most

(95/104; 91.4%) of the patients were treated with nab-paclitaxel added to gemcitabine (GnP)

or a modified combination of three chemotherapeutic agents: fluorouracil, oxaliplatin, and iri-

notecan (mFFX). Surgery was performed before blood sampling for 21 patients and after

blood sampling in two patients because of the disappearance of liver metastases following che-

motherapy. Aside from the liver, the lymph node was the most frequent site of metastasis

(72.1%), followed by the lung (18.2%) and peritoneum (10.6%). Median levels of CEA and

CA19-9 at the time of sampling were 6.55 ng/ml and 1280 U/mL, respectively.

Somatic mutations and frequency

Of the 104 patients enrolled in this study, half (52/104; 50%) had somatic mutations in one or

more of 13 of the 14 genes in the panel (TP53, KRAS, APC, FBXW7, GNAS, ERBB2, CTNNB1,

MAP2K1, EGFR, SMAD4, PIK3CA, BRAF, and NRAS); only one gene (AKT1) had no instances
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of mutation in this cohort (S1 Table). The frequency of mutations is shown in Fig 1. Mutations

in TP53 and KRAS were the most frequently detected (45% [47/104] and 42.3% [44/104]

patients, respectively). KRAS p.G12D, p.G12V, p.12R, and other gene mutations were detected

in 23, 15, 3, and 3 cases, respectively. APC and FBXW7 were also frequently mutated (13.5%

[14/104] and 11.5% [12/104] patients, respectively). Mutations in GNAS (6.7%), ERBB2
(6.7%), CTNNB1 (5.8%), MAP2K1 (5.8%), EGFR (4.8%), SMAD4 (3.8%), BRAF (2.9%), NRAS
(2.9%), and PIK3CA (1.9%) were less common (< 10% of patients).

Association between ctDNA and clinical factors

To estimate the clinical utility of ctDNA for patients with advanced pancreatic cancer, we

sought to identify any associations between ctDNA and clinical factors. Because ctDNA was

detected in 50% (52/104) of the cohort, we divided the patients into ctDNA-positive and -neg-

ative groups. With respect to age, gender, treatment at the time of sampling, primary site, with

or without surgery, existence of lymph node metastasis, and CEA level, there were no signifi-

cant differences between the two groups (Table 2). However, a higher number of liver metasta-

ses, the existence of lung and peritoneal metastases, a tumor diameter sum� 100 mm, and a

higher CA19-9 level were significantly associated with the detection of ctDNA (Table 2).

ctDNA as a prognostic marker in advanced pancreatic cancer with liver

metastasis

We performed Kaplan–Meier analyses to assess the prognostic value of ctDNA in the plasma

of patients with advanced pancreatic cancer. Using the log-rank test, we found a significant

Fig 1. Frequencies of mutated genes in plasma. Distribution of somatic mutations in a panel of 14 genes in cfDNA from 104 pancreatic

cancer patient plasma samples. One or more mutations were detected in all genes on the panel except AKT1.

https://doi.org/10.1371/journal.pone.0235623.g001
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association between the presence (vs absence) of ctDNA and both OS and PFS (8.4 vs 16

months for OS and 3.2 vs 7.9 months for PFS for positive and negative, respectively, both

P< 0.0001; Fig 2). Moreover, we performed univariate and multivariate Cox proportional haz-

ard regression analyses, summarized in Table 3. In the univariate analysis, presence of ctDNA

was significantly associated with OS (HR = 2.7, 95%CI = 1.7–4.2 months, P< 0.0001) and PFS

(HR = 2.5, 95%CI = 1.7–3.8, P< 0.0001). Similarly, in the multivariate analysis, ctDNA was

the only independent factor for OS (HR = 3.1, 95%CI = 1.9–5.0 months, P< 0.0001) and PFS

(HR = 2.6, 95%CI = 1.7–4.0 months, P< 0.0001).

Table 2. Association of clinical factors with ctDNA in plasma.

Clinical characteristics ctDNA negative ctDNA positive P value

Age at enrollment, y 0.59

Median 64 62

Gender 0.41

Male 36 31

Female 16 21

Treatment line at sampling 0.61

None 0 1

1st line 20 18

2nd line 16 21

3rd line 11 11

4th line 5 1

Pancreatic location of tumor 0.84

Head 27 29

Body or tail 25 23

Surgery at time of blood sample 0.34

Yes 14 9

No 38 43

Number of liver metastasis <0.001

<10 37 19

�10 15 33

Lymph node metastasis 0.12

Positive 30 45

Negative 22 17

Lung metastasis <0.001

Positive 5 14

Negative 47 38

Peritoneal metastasis <0.001

Positive 1 10

Negative 48 45

Sum of the tumor diameter (mm) <0.001

<100 39 23

�100 13 29

Tumor marker

CEA median 5.8 8.8 0.081

CA19-9 median 368 4193 <0.001

ctDNA, circulating tumor DNA; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19–9. RECIST ver

1.0 criteria.

https://doi.org/10.1371/journal.pone.0235623.t002
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Fig 2. Kaplan–Meier estimates of overall survival and progression-free survival in pancreatic cancer patients with

respect to the presence or absence of ctDNA. Comparison of overall survival (A) and progression-free survival (B)

between ctDNA-positive and -negative groups. P values were calculated using the log-rank test.

https://doi.org/10.1371/journal.pone.0235623.g002
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Association between ctDNA level and therapy response

Finally, we analyzed the association between therapy response after blood sampling and the

presence or absence of ctDNA. The objective response rate (ORR) and disease control rate

(DCR) were 9.6% (10/104) and 22.1% (23/104) (10 partial response [PR] and 23 stable disease

[SD]), respectively. Patients with PR/SD after blood sampling showed better ORR than those

with progressive disease ([PD], P = 0.001; Table 4).

Discussion

Performing a comprehensive molecular analysis of tissue biopsy samples is generally one of

the first steps in obtaining a diagnosis for cancer. However, the clinical utility of such an analy-

sis is often diminished in patients with pancreatic cancer due to the difficulty in obtaining tis-

sue samples of adequate quality [24]. Furthermore, taking biopsies can lead to clinical

complications, which surgeons usually try to avoid if possible. As such, there has been consid-

erable focus on the design and implementation of highly accurate and minimally invasive

blood tests for cancer screening. Although several serological biomarkers, such as CEA and

CA 19–9, are used in the clinic, they tend not to be sensitive or specific enough for prognosti-

cation in patients with pancreatic cancer [25]. More recent studies have shown that ctDNA—

which can be obtained through liquid biopsies and is detectable by next-generation sequencing

or ddPCR with high sensitivity—is released from the primary tumor and/or its metastases

[26–29] and therefore could be used to detect cancer and/or its recurrence at very early stages.

Table 3. Cox proportional hazard analysis for overall survival and progression-free survival in pancreatic cancer patients with liver metastasis.

Overall survival Univariate analysis Multivariate analysis

HR Lower 95% CI Upper 95% CI P value HR Lower 95% CI Upper 95% CI P value

Variables

Age (<65 or�65) 1.5 0.93 2.3 0.095 0.92 0.58 1.5 0.71

Gender 1.5 0.96 2.5 0.072 1.4 0.88 2.3 0.16

ctDNA (negative or positive) 2.7 1.7 4.2 <0.001 3.1 1.9 5.0 <0.001

CEA (<5 ng/ml or�5 ng/ml) 1.3 0.85 2.1 0.21 1.0 0.63 1.6 0.98

CA19-9 (<37 U/mL or�37 U/mL 1.3 0.75 2.2 0.37 1.2 0.70 2.0 0.61

Progression-free survival Univariate analysis Multivariate analysis

HR Lower 95% CI Upper 95% CI P value HR Lower 95% CI Upper 95% CI P value

Variables

Age (<65 or�65) 1.2 0.77 1.7 0.49 1.2 0.79 1.8 0.40

Gender 1.2 0.78 1.8 0.43 1.2 0.79 1.8 0.93

ctDNA (negative or positive) 2.5 1.7 3.8 <0.001 2.6 1.7 4.0 <0.001

CEA (<5 ng/ml or�5 ng/ml) 1.2 0.78 1.8 0.44 1.1 0.74 1.7 0.59

CA19-9 (<37 U/mL or�37 U/mL 1.2 0.72 1.9 0.53 0.90 0.55 1.5 0.69

ctDNA, circulating tumor DNA; CEA, carcinoembryonic antigen; Ca19-9, carbohydrate antigen 19–9.

https://doi.org/10.1371/journal.pone.0235623.t003

Table 4. The association between ctDNA and objective response in patients with pancreatic cancer.

PD SD/PR P value

ctDNA positive 41 7 0.001

ctDNA negative 30 26

ctDNA: circulating tumor DNA. PD: progressive disease. SD: stable disease. PR: partial response.

https://doi.org/10.1371/journal.pone.0235623.t004
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However, while several studies have described the clinical utility of ctDNA for patients with

pancreatic cancer, few have used sufficiently large sample sizes for their analyses. In this study,

we investigated the clinical utility of ctDNA as a biomarker for the prognostication of patients

with advanced pancreatic cancer and liver metastasis.

Of the 104 patients enrolled in the present study, half had one or more detectable mutant

allele(s) (MAF� 0.15%) among 13 of 14 genes. This result is consistent with findings reported

by Pietrasz and colleagues [30] and Kinugasa and colleagues [31]. However, Bettegowda and

colleagues reported a much higher detection rate of ctDNA in patients with advanced pancre-

atic cancer [32]. These discordant results might be partially due to the differences in the num-

ber of genes included in the panel or the limit of detection, as follows. The molecular genetic

landscape of pancreatic cancer has been studied by whole-genome and exome sequencing, and

KRAS, CDKN2A, TP53, and SMAD4 are frequently reported as mutated in pancreatic cancer

[33–37]. In the current study, although TP53 and KRAS mutations were detected in 90.4% and

84.6% of ctDNA-positive patients, respectively, few patients showed SMAD4 mutations (3.8%

of whole cohort, N = 4). These inconsistencies might be due to an insufficient coverage of

mutations within the SMAD4 gene in the panel; further technical improvement of the gene

panel, which covers sufficient hot spot mutations of the SMAD4 gene, would increase the

detection accuracy in patients with pancreatic cancer. Another disadvantage of the cfDNA

panel used in this study was that it did not contain CDKN2A, a common mutant gene in pan-

creatic cancer. Therefore, this study may have underestimated the number of ctDNA-positive

samples. In the future, it would be better to measure ctDNA using a custom gene panel specific

to pancreatic cancer. It was not possible to compare ctDNA with mutant DNA from tumor tis-

sue in this study, as there were no sequence data on tumor tissue. Since ctDNA represents

real-time tumor heterogeneity, it would be very useful in future to perform ctDNA analysis at

the same time as mutant DNA analysis from biopsy tissues or surgical specimens.

We found a significant association of ctDNA with the number of liver, lung and peritoneal

metastases, as well as with the sum of the tumor diameter, and the level of CA19-9, as previ-

ously reported [32, 38]. These factors may reflect the tumor burden better than other clinical

factors. Since ctDNA has a short half-life, it can indicate the patient’s status including distant

metastasis and tumor burden, in real time. Therefore, in the future, it may be possible to rec-

ommend a less invasive ctDNA test rather than an expensive CT test that increases risk of

exposure, as has also been suggested by others [39, 40]. Lymph node metastasis was not signifi-

cantly associated with the detection of ctDNA, suggesting that tumor burden in the lymph

nodes might be relatively small compared with metastases in other organs. Clinical evidence

suggests that metastasis to nearby lymph nodes occurs earlier in patients with pancreatic can-

cer than in those with other types of cancer, including liver, lung, and peritoneum. It is there-

fore not surprising that in the present study, almost all cases with liver metastasis also showed

evidence of lymph node metastasis, and might explain why lymph node metastasis itself was

not significantly associated with the presence of ctDNA.

We further showed that ctDNA was a prognostic marker of OS and PFS (OS: 8.4 vs 16

months with and without ctDNA, respectively; PFS: 3.2 vs 7.9 months with and without

ctDNA, respectively; Fig 2; P< 0.0001). Our results agree with those of Pietrasz and colleagues,

who previously reported the prognostic value of ctDNA as a biomarker in advanced pancreatic

cancer [30]. In their study, the presence of ctDNA in the plasma correlated with poor PFS (9.9

months vs. median not reached; log-rank P = 0.02). Chen and colleagues also described an

association between KRAS mutations detectable in the plasma and poor OS (3.9 vs. 10.2

months; P< 0.0001) [19]. Moreover, a meta-analysis of the association between cfDNA and

the prognosis of pancreatic cancer patients concluded that certain mutations (KRAS, ERB-

B2-exon17, and KRASG12V), ctDNA presence, hypermethylation and higher concentration
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of cfDNA were associated with worse survival in patients with pancreatic cancer [10]. Reviews

of the association between ctDNA and the prognosis of patients with pancreatic cancer suggest

that high ctDNA levels have a poor prognosis, and that ctDNA is a more sensitive prognostic

predictor than other tumor markers including CA19-9 [41, 42]. In our multivariate analysis,

ctDNA was an independent predictor of OS (HR, 3.1; 95%CI, 1.9–5.0; P< 0.0001) and PFS

(HR, 2.6, 95%CI, 1.7–4.0, P< 0.0001), further supporting the use of ctDNA as a reliable pre-

dictive biomarker in advanced pancreatic cancer. We also found a significant association

between ctDNA and therapy response, which suggests that ctDNA could act as a biomarker to

predict response to chemotherapy in patients with advanced pancreatic cancer. Periodic

ctDNA analysis after the start of treatment may help determine whether to change treatment.

There were several limitations in our study. First, our study design was retrospective, and

blood was collected at a single time-point which varied between patients. These variables

might make it difficult to accurately analyze the association between ctDNA and various prog-

nostic factors. In the future, a prospective follow-up and sequential blood sampling might be

required to prove the utility of ctDNA as a biomarker. Second, of the genes which have a high

mutation frequency in pancreatic cancer, KRAS, TP53, SMAD4, and CDKN2A, the frequency

of mutations in SMAD4 were low and CDKN2A was not measured in this study. This may

have led to underestimation of the number of ctDNA positives. In the future, a custom gene

panel specific for pancreatic cancer should be used to accurately perform ctDNA measurement

and further to compare mutated genes in paired tumor tissue and plasma samples.

In conclusion, we found that detection of plasma ctDNA can be used for prognostication in

patients with advanced pancreatic cancer with liver metastasis. Future prospective studies

could be undertaken to validate the clinical impact of ctDNA among this cohort and to con-

firm its clinical utility as a biomarker.

Supporting information

S1 Table. Somatic mutations detected by targeted sequencing of plasma cfDNA. Gene

mutations in 14 genes from samples retrieved from 104 patients with advanced pancreatic can-

cer. White, no mutation detected; Gray, Mutant Allele Frequency < 0.15%; Yellow, 0.15%�

Mutant Allele Frequency < 1%; Blue, 1%�Mutant Allele Frequency < 10%; Red, 10%�

Mutant Allele Frequency.

(XLSX)
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