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Abstract
The inference of multicellular self-assembly is
the central quest of understanding morphogene-
sis, including embryos, organoids, tumors, and
many others. However, it has been tremendously
difficult to identify structural features that can in-
dicate multicellular dynamics. Here we propose
to harness the predictive power of graph-based
deep neural networks (GNN) to discover impor-
tant graph features that can predict dynamics.
To demonstrate, we apply a physically informed
GNN (piGNN) to predict the motility of multi-
cellular collectives from a snapshot of their po-
sitions both in experiments and simulations. We
demonstrate that piGNN is capable of navigat-
ing through complex graph features of multicel-
lular living systems, which otherwise can not be
achieved by classical mechanistic models. With
increasing amounts of multicellular data, we pro-
pose that collaborative efforts can be made to cre-
ate a multicellular data bank (MDB) from which
it is possible to construct a large multicellular
graph model (LMGM) for general-purposed pre-
dictions of multicellular organization.

1. Introduction
The inference of multicellular positioning is critical for our
fundamental understanding of morphogenesis during many
biological and pathological processes (Fig. 1A), including
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embryogenesis, vascularization, metastasis, healing, and
biofilm formation (Keller, 2013; Xiong et al., 2014; Mc-
Dole et al., 2018; Kasza et al., 2019; Wang et al., 2020;
Atia et al., 2018; Tang et al., 2022; Park et al., 2015; Trepat
et al., 2009; Han et al., 2020; Kang et al., 2021; Fuhs et al.,
2022; Huang et al., 2022; Jeon et al., 2015; Zervantonakis
et al., 2012; Xu et al., 2023; Skinner et al., 2021; Zhang
et al., 2021). It has a broad impact on medical and engi-
neering fields such as histology, organoid-on-chip, and 3D
bio-printing for drug screening and disease models (Kamm
et al., 2018). Despite that modern fluorescent optical mi-
croscopy has enabled visualization of the evolution of liv-
ing multicellular structures in real-time, the principles they
follow to self-organize into a complex living structure re-
main unclear (Keller, 2013; Kamm et al., 2018; Trepat &
Sahai, 2018; Karsenti, 2008). While classical mechanis-
tic active-matter models severely rely on the assumptions
of symmetries and constitutive relations, data-driven in-
ference methods can potentially bypass some of these bi-
ases (Cichos et al., 2020; Brückner & Broedersz, 2023;
Brückner et al., 2019; Romeo et al., 2021; Brückner et al.,
2021; LaChance et al., 2022; Supekar et al., 2023; Bhaskar
et al., 2021; Frishman & Ronceray, 2020).

At the mesoscale, under a microscope, many multicellular
living systems, such as embryos, organoids, tumors, and
epithelia, are composed of closely packed cells forming
cell-cell contact; in systems where cells such as fibroblasts
and endothelial cells are embedded inside the extracellular
matrices (ECM), they interact through the ECM via bio-
physical, biomechanical and biochemical cues; among neu-
ron cells, they establish long-ranged information exchange
through bioelectrical signals. All these systems can be ab-
stracted as ‘graphs’ consisting of nodes (cells) with multi-
modal node embedding (cell identities) and edges (cell-
cell interactions) with multi-modal edge attributes (phys-
ical, mechanical, chemical, and electrical signals). It was
not until recent years that the graph features of multicellu-
lar living systems were utilized to predict multicellular dy-
namics. Similar to glassy colloidal systems where tremen-
dous efforts have also been made to predict dynamics from
a snapshot of the system (Bapst et al., 2020; Biroli & Gar-
rahan, 2013), it only becomes more difficult to identify
metrics from snapshots that can predict multicellular po-
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Figure 1. Schematics. (A) Multicellular positioning is the key to morphogenesis, for example (from left to right) embryo, brain, lung,
liver and intestinal organoids, pathological processes such as tumors and cancers, as well as wound healing. (B) Multicellular positioning
can be abstracted as mapping between current and future multicellular graphs. (C) A qualitative relation between multicellular graphs and
dynamics is well known, that more ordered graphs are more static while more disordered graphs are more motile, a glassy behavior that
cell monolayers are known to exhibit (Angelini et al., 2011; Bi et al., 2016). (D) piGNN (physically informed graph neural networks).
From the input cell coordinates, Voronoi and Delaunay tesselations are performed. The area and perimeter of the Voronoi graphs are
taken to be the node embedding, the Delaunay graphs are taken to be the edges for information passaging, and the length of edges are
taken to be the edge attribute. (A and C) are created with biorender.com.

sitioning, given the open and active nature of living cells.
Remarkably, research in the past decade has revealed that
there indeed exist relations between multicellular graphs
and multicellular dynamics, for example, cell shape index,
aspect ratio, from the Voronoi graphs (Bi et al., 2016; Atia
et al., 2018), and cell alignment, volume and shear order
from the Delaunay graphs (Wang et al., 2020; Yang et al.,
2021). Recently, it has also been proposed that topological
features of Delaunay graphs contain important information
that can distinguish living and nonliving materials (Skinner
et al., 2022).

Nevertheless, the shortcomings of analytical graph features
are still evident. Firstly, these analytical graph features sig-
nificantly prune the information from the original degree of
freedom, while more critical features can exist, and are not
necessarily analytical. Secondly, statistics such as average
and median are the most popular choices, while they are not
necessarily adequate to fully characterize the probability
distribution. Thirdly, analytical metrics are often ‘local’, in
the sense that longer-ranged higher-order interactions are
entirely ignored. Lastly, in more physiologically relevant
multicellular systems consisting of cells with multi-modal
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identities, it will be almost impossible to expand the ana-
lytical criteria for cell dynamics from both configurational
parameters and multi-modal biological identities. To ulti-
mately make predictions for multicellular organization, it
is critical to identify tools that are capable of capturing the
comprehensive nonlinear interactions and spatial arrange-
ment, and flexible of concatenating input and output chan-
nels for multi-modal biological information.

Recent developments in the graph-based deep neural net-
works (GNN) (Corso et al., 2020; Kipf & Welling, 2016)
provide an opportunity to develop data-driven models of
complex systems, especially focused on models that take
advantage of known structural features. For instance, some
studies have used graph-based modeling to capture com-
plex multiscale materials phenomena in diverse materi-
als ranging from proteins, crystalline materials, to spider
webs (Yang & Buehler, 2022; Guo & Buehler, 2022; Lu
et al., 2023), including dynamical properties. Other work
has focused on dynamical materials phenomena (Buehler,
2022) using attention-based graph models in conjunction
with denoising algorithms applied to model dynamic frac-
ture. The key objective of this paper is to explore if and
how we can develop a framework for general predictions
of the dynamical behavior of multicellular living systems,
here focused on graph-based methods that learn the rela-
tionship between geometry and movements.

We propose to harness the predictive power of GNN to
discover from data the important graph features relating
to multicellular dynamics. Graph-based neural networks
are excellent options, especially for multicellular systems
accounting for information passaging among node embed-
dings (cell identities) through edge embeddings (cell-cell
interactions). Further, we also propose a physically in-
formed GNN for multicellular systems (piGNN) to demon-
strate how existing physical knowledge can be used to in-
form the graph deep neural network to improve its perfor-
mance (Fig. 1). We demonstrate that a graph is a power-
ful way to represent multicellular data, and with the help
of deep neural networks, it is possible to construct a large
multicellular graph model (LMGM) for general predictions
of morphogenesis.

2. Results
Here we apply the proposed graph neural network piGNN
(Fig. 1D, see Materials and Methods for details) to predict
the multicellular motility in both experiments and simula-
tion, both with changing cell number densities and with
constant cell number densities with perturbations on cell-
cell interaction and self-propelling velocity. With a series
ablation of input information, we show that the relative po-
sitioning among the cells is critical for predicting collective
cell dynamics, and informing GNN with prior physical in-

formation can enhance its performance.

2.1. Learning multicellular dynamics from a graph
snapshot

Figure 2. piGNN learns the implicit relation between graph and
motility from partial information from simulated cell monolay-
ers. (A) Representative input graphs. The color on the Voronoi
polygons indicates the area. (B) Prediction vs. ground truth.
The color map indicates probability density. (C) mobility land-
scape. Red markers, a small portion of the macroscopic state
points (Ns = 13) are provided for training. (D) Predicted mo-
bility landscape.

We first demonstrate the power of deep neural networks in
predicting multicellular dynamics with a systematical vari-
ation of cell-cell interaction and self-propelling strength at
a constant cell number density. We seek to learn and pre-
dict cell mobility M from static graphs consisting of nodes
(cell positions) and edges (cell-cell contact). To do so, we
use a dataset of simulated epithelial monolayers, containing
steady-state 2D cell positions (Bi et al., 2016; Yang et al.,
2021). Each simulation in the dataset is performed with
different target shape index p0 and self-propelling velocity
v0, and the dataset consists of 462 distinct sets of configura-
tions with different (p0, v0) (Fig. 2C). piGNN is trained on
a small number of state points, and is used to make predic-
tions for the whole dataset. Here, the graph neural network
functions as a universal function approximator to interpo-
late from the graphs to the mobility. With 4 state points
provided, the graph model achieves a correlation of 0.5,
while 9 state points for training can increase the correla-
tion to 0.9, and 25 state points is sufficient to increase the
correlation to 0.96 (Fig. S1). Surprisingly, the graph neu-
ral network is capable of learning the relation from only 13
randomly selected state points (Fig. 2C). It achieves a high
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accuracy and recovers the mobility landscape (Fig. 2B&D).

Figure 3. Predicting cell motility in experimental dataset. (Left) A
representative snapshot of the dataset. Nuclei were stained (blue).
(Middle) A representative input graph. The color of the Voronoi
polygons indicates the area. The dashed lines indicate the edges
generated from Delaunay triangulation. (Right) mobility predic-
tion MNN vs ground truth M in the validation set. The color map
indicates probability density.

To test the same framework in experiments, we create
the experimental dataset by culturing MCF-10A cells on
collagen-coated substrate and imaging cell positions over
time (the dataset consists of 797 train graphs and 352 val-
idation graphs, see Materials and Methods for details re-
garding preparing the graph from raw videos). The piGNN
is trained on the dataset (See Materials and Methods for
details regarding the neural network architecture and the
training procedure), and a reasonable prediction can be
achieved (Fig. 3, bottom). Note that the train and valida-
tion sets are from entirely different locations, and none of
the frames in the validation set come from the same videos
as the train set.

To summarize, the predictions achieved by piGNN indi-
cate that static multicellular configurations contain critical
features that can be utilized to predict multicellular dynam-
ics. While it has been an extremely difficult task for clas-
sical mechanistic models to regress from static graphs to-
ward dynamics, graph-based deep neural networks provide
a model-free solution.

2.2. What information is important?

Intuitively, piGNN achieves good performance with a min-
imal amount of data because it is capable of considering
relative positional information in a nonlinear way, as well
as because it is physically informed with geometrical quan-
tities that are known to be important in predicting multicel-
lular dynamics. To understand what information is indeed
important for its excellent performance, we perform a se-
ries of training tasks with the ablation of input information
with the simulation dataset (Table 1, Fig. 4).

We first ablate the physical information by providing only
constant node embedding into the GNN (GNN, Table 1).
While the piGNN achieves a mean squared error (MSE)
∼ 0.01 of and corr ∼ 0.96, this ablation impairs its per-
formance, raising MSE to ∼ 0.05, and decreasing corr

Type of information

Model nonlinear
relation

relative
positions

physical
info.

piGNN ! ! !

GNN ! !

MLP ! !

AS !

Table 1. Four typical models are compared, with different com-
binations of information provided. piGNN, physically informed
graph neural nets. GNN, graph neural nets provided with con-
stant node embedding. MLP, fully connected multi-layer percep-
tion with shape index input. AS, analytical statistics. Here we use
the median of the cell shape index.

to ∼ 0.77 (Fig. 4B&C). On the other hand, we ablate the
information of relative position by using fully connected
multi-layer perception (MLP, Table 1). Similarly, this ab-
lation increases MSE to ∼ 0.05 and decreases corr to
∼ 0.77 (Fig. 4B&C). The impaired performance of both
the regular GNN and the MLP models are comparable to a
linear regression model using the analytical feature (AS,
Table 1), i.e. the median of the SI (shape index, cal-
culated as perimeter/

√
area for each Voronoi polygon)

(Fig. 4B&C). Remarkably, while either relative position or
physical information is not adequate, providing both types
of information into piGNN can achieve an excellent perfor-
mance (Fig. 4).

This ablation experiment suggests that cell locations and
their spatial interactions are critical to predicting multicel-
lular dynamics. Beyond single-cell morphology, it proves
that there exist complex features of the multicellular graphs
that are useful for predicting multicellular dynamics. While
classical mechanistic models heavily rely on intuitions and
assumptions to distill a handful of structural metrics, graph-
based deep neural networks are capable of bypassing these
assumptions and discovering hidden relations from infor-
mation of the whole graph.

To further understand how graph-based learning might
have gained additional insights into multicellular dynam-
ics, we can consider a multi-body system whose dynamic
equation is

dxi

dt
= µF({xi}) + v0ζ, (1)

where xi is the Cartesian coordinates, t is time, F is the
interaction force that could in principle depend on all the
degrees of freedom xi, ζ is a unit noise term, µ is a coef-
ficient and v0 is the self-propelling velocity, i = 1, 2, ...N
is the index of the ith cell. While this is still an oversimpli-
fication of multicellular living systems, we can gain some
insight into how learning might benefit from a graph-based
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Figure 4. Comparing the performance of different models. (A)
Different model architectures. piGNN, graph neural networks in-
formed with physical information. GNN, graph neural networks
with constant node embedding. MLP, fully connected multi-layer
perception. AS, analytical statistics (i.e. median of shape index).
We further compare the performance of different models with (B)
min MSE (C) max corr on the validation set, where min and
max are taken in one training across all epochs. The experiment
with each model is performed 3 times, initialized with different
random seed numbers. Training is performed on the simulation
dataset with Ns = 25 state points.

construction.

Here the multi-body force F({xi}) is the unknown, and
we are given a number of observations of {xi}. The task
of either mechanistic models or deep learning models can
be regarded as inferring either an analytical approximation
or a neural network approximation for F({xi}), which is
highly complex in a multicellular living system. A com-
mon choice might be first to expand F({xi}) as a sum
of multi-body interaction terms (Brückner & Broedersz,
2023):

F({xi}) ≃
∑
i

F(1)(xi)

+
∑
i

∑
j

F(2)(xi,xj)

+
∑
i

∑
j

∑
k

F(3)(xi,xj ,xk) + ...

(2)

In recent studies, several inference models have been
constructed for active matter under this decomposition
and a focus has been on estimating the two-body term∑

i

∑
j F

(2)(xi,xj). The underlining assumption is that
|F(n>2)| ≪ |F(2)|. This assumption is generally true
in classical systems, but in living systems, such interac-
tions are multi-body in nature, meaning that |F(n>2)| is
not necessarily negligible compared to |F(2)|, but rather
depends on the relative connections (edges) across many

cells. Graph-based learning provides an alternative option
through estimating F instead from graphs:

F({xi}) ≃ F(0)(g(0))

+
∑
n

F(n)(g(n)), (3)

where g are graphs. In piGNN, a specific graph is chosen
as the primary graph g(0), and learning is entirely based on
g(0) (See Materials and Methods), while other graph struc-
tures can be further explored. Notably, in more realistic
situations where F is not only a function of cell positions
{xi}, but also a function of other multi-omics {oi}, the
proposed framework is flexible enough to concatenate the
information together as input embedding.

3. Discussions
With the help of graph-based deep neural networks, we
propose that a collaborative effort can be made to create a
multicellular data bank (MDB) from which it will be possi-
ble to construct a large multicellular graph model (LMGM)
for general-purposed predictions of multicellular position-
ing (Fig. 5).

Efficient data representation and multicellular data
bank (MDB). This century witnessed the fast growth of
multicellular data for a variety of tissues and organs, yet it
has been difficult to identify a universal model (either theo-
retical or computational) that can be predictive of the orga-
nization and dynamics of multicellular systems. Remark-
ably, it is still unclear what is a standard representation of
multicellular data. Learning from data, the excellent per-
formance of graph-based deep neural networks proves that
multicellular graphs contain important hidden information
that determines multicellular dynamics. On the other hand,
from a technical aspect, the raw multicellular data are high-
dimensional, typically z-stacked (3D), time-lapse (dynam-
ical), and multi-channel (multi-omics). The data size for a
single biological sample at acceptable resolution can typi-
cally be on the order of 1-10 gigabytes. A large-scale deep
neural network based on video representation greatly ex-
ceeds the current data process, transfer, and storage capac-
ity. For the purpose of LMGM, it is required to have a
standard efficient data representation that can condense the
data while retaining the important information. The graph-
based representation proposed in this study provides a pos-
sible solution. We note that while the edge and edge at-
tributes in the current analysis are ‘artificial’ given the data
we have at hand, important biological edges such as cell
junctions and even long-ranged neurological connections
can be easily included in the framework. Nevertheless, the
positions of the cell nuclei can be used as the ‘backbone’
of multicellular data, to which multi-omics data can be at-
tached. While ideally dynamic multi-omic experiments can
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be performed in one round with multi-channel live staining,
practically multiple experiments performed on one biolog-
ical sample typically require multiple runs under multiple
microscopes. Coordinate alignment can be first achieved
using the coordinates of the cell nuclei (Fig. 5). With
the graph-based data representation and graph-based deep
neural network, the pipeline proposed in this work, along
with the accompanying implementations shared via open
source code, provide a paradigm for systematically orga-
nizing multicellular data into a multicellular data bank, and
further condensed into graph-based deep neural networks
for general predictions.

Figure 5. A blueprint for a unified large multicellular graph model
(LMGM).

Large multicellular graph model (LMGM). At a smaller
length scale, deep neural nets (e.g. AlphaFold) have suc-
cessfully uncovered the folded structure of ‘graphs’ of pro-
teins (Jumper et al., 2021).

Is it possible to train a large model for general predictions
of multicellular organization?

The graph-based deep neural networks provide an excel-
lent option that is capable of concatenating multi-omic bi-
ological inputs and outputs in an extremely flexible way.
It is therefore possible to further include genetics, pro-
teomics, and other in situ multi-omic data as node embed-
dings, while cell-cell junctions, mechanical interactions,
and other interactions can be treated as edge-embedding;
these multi-omics graphs can then be provided to a graph

neural network for prediction of missing/future features
on these multicellular graphs. Hence, we believe that
this framework holds great potential for organizing fast-
increasing multicellular data, and provides a possible so-
lution to construct LMGM.

4. Materials and Methods
4.1. Problem Setup

The overall pipeline is shown in Fig. 1, and some details
are discussed here.

Graph inputs.— While we focused on 2D systems in this
paper for easier demonstration, the framework can be eas-
ily extended to 3D. In both the experiment and simulation
datasets, the raw input data are multiple sets of cell coordi-
nates over time

(xi,t, yi,t), i = 1, 2, ..., N(t), and t = 1, 2, ..., T , (4)

where xi,t and yi,t are Cartesian coordinates of the ith cell
in the frame t, N(t) is the total number of cells at frame t,
and T is the total number of frames.

Each input graph g is defined through a set of nodes and a
set of edges, as

g = {N ; E} , (5)

where N is a set of nodes containing multi-modal node
embedding, and E is a set of edges containing multi-modal
edge attributes.

In each frame, Delaunay triangulation and Voronoi tessela-
tion are performed. Unless otherwise noted, the cell posi-
tions are used as nodes, the area a and perimeter p of the
Voronoi cells are used as node embeddings, the Delaunay
edges e are used as edges and the length of the edges are
used as the edge attribute l.

N = {(a, p)} ,
E = {l}.

(6)

In the case that multi-omics data are collected, more infor-
mation can be concatenated into N and E .

mobility outputs.—The cell mobility M can be calculated
by comparing the t frame with the t+lag frame in its future
time. The mobility is

M =
1

C

N(t)∑
i

[
(xi,t+lag − xi,t)

2 + (yi,t+lag − yi,t)
2
]1/2

(7)
where C is a constant for the whole dataset to normalize
such that M is distributed around 1.
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Neural network prediction.—The neural network G is a
function that maps g towards the prediction MNN , as

MNN = G(g). (8)

Loss function.—Mean squared error (MSE) is used
throughout the paper.

Evaluating performance by Pearson correlation.—
Throughout this study, the Pearson correlation factor corr
is used to evaluate and compare the performance of the
models. The Pearson correlation factor corr between the
truth and prediction vectors is calculated as

corr =

∑
(MNN − M̄NN )(M − M̄)√∑

(MNN − M̄NN )2
∑

(M − M̄)2
, (9)

where the summation is taken over the whole validation set.

4.2. Experiments

Datasets.—We used the non-tumorigenic human breast
epithelial cell line MCF-10A to create the experimental
dataset. The cells were stained (SPY650-DNA) for fluo-
rescent imaging of the cell nuclei. The cells were seeded at
10 different cell number densities (4 locations at each den-
sity, 3 for training and 1 for validation): 5,000 to 50,000
in steps of 5000 cells per well of 96-well plates. The sub-
strates are collagen-coated (Serva, cat. No. 47254.01). The
cells were allowed to rest overnight in the incubator to fully
attach to the substrate. A total of 40 videos were recorded
simultaneously every 3 minutes for 16 hours ( 300 frames).
Imaging was performed using a WiScan Hermes High Con-
tent Imaging System (Idea Biomedical). Cell tracking
was performed using TrackMate in ImageJ (Ershov et al.,
2022). Delaunay triangulation and Voronoi tesselation
were performed using scipy.spatial.delaunay
and scipy.spatial.voronoi. We calculated the cell
mobility M by comparing the t frame with the t + lag
frame in its future time with Eq. 7, with lag = 5. A to-
tal of 5 frames (frames 50, 100, 150, 200, 250) are selected
to construct the dataset. For each frame, we first selected
the middle region of the field of view (0.25-0.75 the range
of both axes), and picked 1 from every 50 cells as the cen-
ter node of the graph; Then we selected all the cells within
100 pixel distance to the center node to construct the input
graphs (Fig. 3, middle). In total, the train set consists of
797 graphs and the validation set consists of 352 graphs.

The simulation dataset was created with Self-Propelled
Voronoi simulations (Bi et al., 2016; Yang et al., 2021).
The simulation contains two important parameters, the tar-
get shape index p0 which quantifies the relative strength
of cell-cell interaction, and the self-propelling velocity
v0. The simulation was performed with N = 400
cells. For each state point defined by (p0, v0), 4000

frames of steady state cell coordinates were generated.
In total, the dataset consists of 462 distinct state points,
from which we subsampled 4 frames per state point
for our task, resulting in a dataset consisting of 4*462
graphs. Delaunay triangulation and Voronoi tesselation
were performed using scipy.spatial.delaunay
and scipy.spatial.voronoi. To de-drift the raw
data, instead of comparing cell positions at two frames,
we took the variance of its position within a time win-
dow (assigned to be 10 frames here), thus M =

1
C

(∑N
i=1

∑
t

[
(xi,t − x̄i)

2 + (yi,t − ȳi)
2
])1/2

, where x̄i

and ȳi are the mean coordinates of cell i within the frame
window.

Training GNN.—The graph neural net was implemented
with PyTorch Geometric (Fey & Lenssen, 2019). In
a few closely related fields, it has been shown that
GNN models are capable of uncovering these hidden
relations in glassy systems (Bapst et al., 2020), as
well as making predictions for graphs such as atomic
structures, proteins, and spider-web structures (Yang
& Buehler, 2022; Guo & Buehler, 2022; Lu et al.,
2023). Here, the Permutation-equivariant Node Aggre-
gation (PNA) layer was employed (Corso et al., 2020).
We use [sum, mean, std, max, mean] aggre-
gators, along with [identity, amplification,
attenuation] scalers. Unless otherwise specified, the
network consists of 5 layers with 15 channels and 3 towers;
ReLU activation function was used and batch norm layers
were applied after each PNA layer; global mean pooling
and another linear layer were applied at the end of all the
PNA layers to transform to the output dimension. In train-
ing the GNN with constant node embedding in Fig. 4, we
replace the node embedding with 1. AdamW with learning
rate 5e-4 and weight decay 1e-8 is used. The model was
trained for 1000 epochs. All the machine learning experi-
ments were performed on Google Colab with an NVIDIA
T4 GPU.
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P. Principal neighbourhood aggregation for graph nets.
Advances in Neural Information Processing Systems, 33:
13260–13271, 2020.

Ershov, D., Phan, M.-S., Pylvänäinen, J. W., Rigaud, S. U.,
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Supplemental Materials

Figure S1. Dependency on the number of states of the train set (with piGNN). Red markers, state points provided for training.

layers channels max corr
3 9 0.95
4 9 0.96
5 15 0.96
9 15 0.95
9 36 0.94

20 36 0.81

Table S1. Predicting performance of piGNN with different numbers of layers and channels on the whole simulation dataset, with 25 state
points for training. 5 layers and 15 channels are used throughout the paper unless otherwise noted.

Ng max corr
4 0.956
8 0.957

20 0.966
40 0.962

Table S2. Performance of piGNN with different numbers of graphs per state point Ng in the simulation dataset, with 25 state points for
training. We use Ng = 4 throughout the paper.
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layers channels max corr
3 9 0.763
4 9 0.778
5 15 0.775
7 15 0.795
7 36 0.778
8 36 0.773
9 36 0.774

Table S3. Predicting performance of GNN with constant node embedding with different numbers of layers and channels on the whole
simulation dataset, with 25 state points for training. 5 layers and 15 channels are used in the main text.

layers channels max corr
8 32 0.774
9 32 0.777

10 32 0.774
16 128 0.778
16 400 0.776

Table S4. Predicting performance of MLP with different numbers of layers and channels on the whole simulation dataset, with 25 state
points for training. 16 layers and 128 channels are used in the main text.
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