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The human NAD+-dependent protein deacetylase SIRT2 resides predominantly in the cytoplasm where it functions as a tubulin
deacetylase. Here we report that SIRT2 maintains a largely cytoplasmic localization during interphase by active nuclear export
in a Crm1-dependent manner. We identified a functional, leptomycin B-sensitive, nuclear export signal sequence within SIRT2.
During the cell cycle, SIRT2 becomes enriched in the nucleus and is associated with mitotic structures, beginning with the
centrosome during prophase, the mitotic spindle during metaphase, and the midbody during cytokinesis. Cells overexpressing
wild-type or a catalytically inactive SIRT2 exhibit an increase in multinucleated cells. The findings suggest a novel mechanism
of regulating SIRT2 function by nucleo-cytoplasmic shuttling, as well as a role for SIRT2 in the nucleus during interphase and
throughout mitosis.
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INTRODUCTION
The seven human class III histone deacetylases (HDACs) are

homologs of the yeast Sir2 protein and are termed sirtuins or

SIRT proteins (SIRT1-7) [1–3]. Class III HDACs are different

from class I and II HDACs in many respects, such as the structure

of their catalytic domains [3,4] and the nature of their small-

molecule inhibitors [5,6]. Furthermore, deacetylation by class III

HDACs depends on the co-factor NAD+, which is cleaved during

the deacetylation reaction. SIRT1, 2, 3 and 5 function as

deacetylases on a histone peptide substrate, but no deacetylation

activity has been observed for SIRT4, 6, or 7 [7]. Sirtuins also

possess an ADP-ribosyltransferase activity, that is unique to the

class III HDACs [1,8–11].

Human sirtuins exhibit distinctive subcellular localizations.

SIRT1 and SIRT6 are localized in the nucleus, and SIRT7 is

found exclusively in nucleoli [12]. However, in pancreatic ß cells,

SIRT1 is localized in the cytoplasm and excluded from the nucleus

[13]. The mechanism that regulates the subcellular distribution of

SIRT1 in this context remains elusive. SIRT2 often appears

distinctly localized in the cytoplasm [7,12,14,15]. SIRT3, SIRT4

and SIRT5 are all localized in the mitochondria; however, only

SIRT3 and SIRT4 have been demonstrated to be imported into

the mitochondrial matrix [12,16,17].

A complex sorting network recognizes specific peptide signal

sequences in proteins and controls the proper targeting of various

proteins to the cell membrane and organelles such as the

mitochondria, endoplasmic reticulum and Golgi. Additionally,

many proteins have distinct functions in the nucleus or in the

cytoplasm, and specific signals exist for localization to these

compartments as well. A network of importin and exportin

proteins regulates protein trafficking between the nucleus and

cytoplasm. The nuclear import machinery recognizes peptide

sequences made up primarily of basic amino acids termed nuclear

localization signal (NLS) sequences [18]. Likewise, nuclear export

machinery is required to maintain proteins containing nuclear

export signal (NES) sequences in the cytoplasm [18,19]. The

nuclear import and export machinery is coupled to the regulation

of RAN-GTP hydrolysis. A concentration gradient of RAN-GTP

and RAN-GDP between the nucleus and cytoplasm is established

through the localization of the RAN-GEF RCC1 tethered to

chromatin in the nucleus and Ran-GAP in the cytoplasm

(reviewed in [20]).

SIRT2 is predominantly cytoplasmic, but has also been

observed in the nucleus [7,21]. Furthermore, its role in controlling

cell-cycle progression during mitosis suggests that SIRT2 may be

localized to mitotic structures [22,23]. In this study, we analyzed

interphase nuclear-cytoplasmic shuttling of SIRT2 and character-

ized its localization throughout the mitosis.

MATERIALS AND METHODS

Tissue Culture
293T and HeLa cells were from American Type Culture

Collection (ATCC) and grown in Dulbecco’s modified Eagle’s

medium (DMEM, Mediatech, Herndon, VA) supplemented with

10% fetal bovine serum (Gemini Bio-products, Woodland, CA) in

the presence of penicillin, streptomycin and 2 mM L-glutamine

(Gibco Invitrogen Corp., Carlsbad, CA).

Plasmids and Mutagenesis
Human SIRT2 full-length and deletion constructs were cloned

into pEGFP-C1 vector (Clontech) and into a derivative of the

pcDNA3.1(+) backbone (HA vector) by standard PCR-based

strategies. Site-directed mutagenesis for SIRT2 constructs was

performed with the QuikChange Site-Directed Mutagenesis Kit

(Stratagene, La Jolla, CA) as recommended. FLAG-tagged SIRT2

was previously described [7], fibrillarin-GFP was a kind gift from

Dr. Tom Mistelli [24,25], and Myc-epitope-tagged Aurora A and

Auroa B were a kind gift from Dr. Hongtao Yu [26].
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Transient Transfections and Immunoprecipitations
293T cells were transfected by the calcium phosphate DNA

precipitation method and lysed 48 h after transfection in low-

stringency lysis buffer (50 mM Tris-HCl, pH 7.5, 0.5 mM EDTA,

0.5% NP-40, 150 mM NaCl) in the presence of protease inhibitor

cocktail (Complete, Roche Molecular Biochemicals, Indianapolis,

IN). FLAG-tagged proteins were immunoprecipitated with anti-

FLAG M2 agarose affinity gel (Sigma, St. Louis, MO), for 2 h at

4uC from 1 mg of total cell lysate measured by the Dc Protein

Assay Kit (Bio-Rad, Hercules, California). Immunoprecipitated

material was washed 3 times for 15 min each in low-stringency

lysis buffer.

Western Blotting
Samples were separated on 10% SDS-polyacrylamide gels and

transferred to Hybond ECL nitrocellulose membrane (Amersham

Pharmacia Biotech). Membranes were blocked with 5% blocking

reagent (Bio-Rad) in TBS-Tween (10 mM Tris, pH 7.5, 150 mM

NaCl, and 0.1% Tween-20), and incubated with mouse mono-

clonal anti-GFP (Clontech) diluted 1:2000, rabbit polyclonal anti-

FLAG (Sigma) and anti-Myc (Santa Cruz Biotechnology) were

both diluted 1:5000. Secondary detection was performed using

horseradish peroxidase-coupled sheep anti-mouse IgG or anti-

rabbit IgG (both from Pierce) and ECL western blotting detection

system (Amersham Pharmacia Biotech).

Immunofluorescence Microscopy
HeLa or U2OS cells grown on coverslips were transfected with

Lipofectamine (Gibco InVitrogen) according to the manufacturer’s

protocol. Cells on coverslips were washed twice in PBS for 10 min,

fixed in 4% paraformaldehyde (EMS, Ft. Washington, PA) for

10 min, and permeabilized in 0.5% Triton-X-100 in PBS for

10 min. After 3 washes for 10 min each in PBS, cells were

incubated in 10% BSA for 10 min and then incubated for 1 h with

anti-FLAG diluted 1:5000 in PBS+0.1% Tween-20 or Anti-c-

tubulin-Cy3 (Sigma). Cells were washed three times for 10 min in

PBS+0.1% Tween-20, followed by incubation with goat anti-

mouse IgG (Fc specific) TRITC-conjugated secondary antibody

(Sigma) diluted 1:100 in PBS+0.1% Tween-20. Cells were then

incubated in 20 mg/ml DAPI for 5 min, washed 3 times for

10 min each in PBS and once briefly in ddH2O, and mounted on

slides with Gel Mount (Biomeda,Foster City, CA). Confocal

images were acquired by laser-scanning confocal microscopy with

an Olympus BX60 microscope equipped with a Radiance 2000

confocal setup (Bio-Rad). For cell count experiments, six random

fields were visualized, from which at least 200 cells were counted.

For leptomycin B and cytokinesis experiments, cells were

transfected with GFP-SIRT2, and 24 h later treated with and

without LMB (Sigma) and incubated for the times indicated or for

16 h. Cells were washed and fixed as described above, and images

acquired by confocal microscopy. Cell counts were performed on

greater than 200 transfected cells, and results shown are

a representative of three independent experiments.

For indirect immunofluorescence of HeLa cells for endogenous

proteins, cells were grown on coverslips for 16 h, followed by

processing for immunofluorescence as described above. Chicken

Anti-SIRT2 was diluted 1:10. rabbit anti-aurora A and aurora B

(Abcam) were diluted 1:1000, and anti-Ac-tubulin 6-11B-1

(Sigma) was diluted 1:500. Secondary detection was performed

with anti-mouse-TRITC (Sigma), anti-chicken-Cy2 (Jackson

Immuno) and anti-rabbit-Cy5 (Jackson Immuno), all diluted

1:500.

RESULTS

Nucleo-Cytoplasmic Shuttling of SIRT2
Observation of HeLa cells transfected with an expression vector

for SIRT2 tagged at the amino terminus with GFP revealed

a minor fraction of cells with GFP-SIRT2 in both the nucleus and

cytoplasm (Figure 1A); SIRT2 was exclusively cytoplasmic in

99.5% of cells and pancellular in 0.5% (Figure 1B). These data are

consistent with biochemical and immunolocalization data dem-

onstrating a minor fraction of endogenous SIRT2 localized in the

nucleus [7,21].

Since most of the GFP-SIRT2 was in the cytoplasm, we

hypothesized that SIRT2 is either actively transported into the

nucleus in a small fraction of cells or is actively exported from the

nucleus in a majority of cells. To distinguish between these two

models, we treated HeLa cells with leptomycin B (LMB), a specific

inhibitor of the Crm1-dependent nuclear export pathway [27–30].

A substantial fraction of LMB-treated cells showed GFP-SIRT2 in

the nucleus (Figure 1C): nuclear localization of SIRT2 was observed

in 92.1% of LMB-treated cells and 7.9% of cells treated with a vehicle

control (Figure 1D). These results indicate that SIRT2 is actively

exported from the nucleus in a Crm1-dependent manner.

SIRT2 accumulated rapidly in the nucleus beginning at 30 min

after the addition of LMB to cultures (Figure 1E). By 60 min, the

amount of SIRT2 in the nucleus had increased dramatically and

did not further increase with continued treatment for 240 min or

16 hrs. These import kinetics were observed in all cells in an

asynchronously dividing culture. These observations therefore

show that nuclear import and export do not depend on cells

transiting through mitosis; therefore SIRT2 continuously shuttles

between the nucleus and the cytoplasm.

Identification of a NES in SIRT2
We next sought to identify the region of SIRT2 responsible for

Crm1-dependent nuclear export with a series of SIRT2 deletion

mutants fused to the carboxyl terminus of GFP. Fusion of SIRT2

amino acids 18–74 to GFP showed nuclear export of the fusion

protein, while the fusion protein encompassing SIRT2 amino

acids 52–389 showed pancellular distribution (Figure 2A). Gener-

ation of proper fusion proteins was confirmed by SDS-PAGE and

western blot analysis (Figure 2B). These results demonstrate that

the NES sequence of SIRT2 is found between amino acids 18 and

74 (Figure 2C).

Analysis of this region revealed a canonical Crm1-dependent

NES sequence between amino acids 41–51 (Figure 2D). Compar-

ison of this region to NES sequences from proteins previously

known to shuttle in a Crm1-dependent manner [31–34], revealed

a high degree of sequence similarity (Figure 2D).

To identify the specific amino acids involved in the SIRT2

nuclear export activity, we generated several single and double

point mutants of the conserved residues within this region

(Figure 3A and B). Alanine substitution of any of the conserved

residues alone did not inhibit nuclear export. However, mutation

of multiple sites (e.q., L41 and L49) abolished the nuclear export of

the NES, with the exception of L44,51A, which remained

exclusively cytoplasmic. These results demonstrate that SIRT2

shuttles between the nuclear and cytoplasmic compartment via

a Crm1-dependent NES in its amino terminus.

Nuclear-targeted GFP-SIRT2 appeared to be excluded from

nucleoli, a phenomenon not observed with GFP alone (Figure 3D).

To confirm this observation, we transfected HeLa cells with the

nucleolus-localized protein fibrillarin [24,25], tagged at its

carboxyl terminus with GFP, and FLAG-tagged SIRT2 (SIRT2-

FLAG). Like GFP-SIRT2, SIRT2-FLAG was predominantly

Nucleo-Cytoplasmic SIRT2
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cytoplasmic, and fibrillarin-GFP was localized as expected to

nucleoli (Figure 3D) [24,25]. Upon LMB treatment, SIRT2-

FLAG was sequestered in the nucleus but was excluded from the

nucleoli, which were defined by the localization of fibrillarin-GFP

(Figure 3D).

Localization of SIRT2 During Mitosis
We observed in a fraction of cells in interphase had GFP-SIRT2

localized to a region similar to the centrosome. To confirm that

SIRT2 was found localized to the centrosome in these cells, we

transfected cells with SIRT2-HA and co-stained cells with antisera

to HA and c-tubulin, a marker of the centrosome (Figure 4A).

During early prophase, endogenous SIRT2 became enriched at

the centrosome demonstrated by its colocalization with Aurora A,

a mitotic regulatory kinase also found on the centrosomes

(Figure 4B and C) [35]. Utilizying coimmunoprecipitation

experiments with FLAG-tagged SIRT2 and Myc-tagged Aurora

A indicate that these two proteins interact in a mutliprotein

complex (Figure 4D). At metaphase, SIRT2 remained concen-

trated in the centrioles and spread along the spindle fibers,

consistent with Aurora A localization (Figure 5B). However,

during cytokinesis, SIRT2 associated with the midbody, a structure

formed by the bundled microtubules originating from polar

microtubules after metaphase. We observed that SIRT2 coloca-

lized with Aurora B, a midbody-localized protein [36] (Figure 5A).

Figure 1. Cytoplasmic localization of SIRT2 is dependent on constitutive nuclear export. (A) HeLa cells were transfected with GFP-SIRT2 and
analyzed by immunofluorescence for SIRT2 localization. (B) Cells from (A) were scored for their distribution as cytoplasmic or pancellular. (C) HeLa
cells were transfected with GFP-SIRT2 and incubated with or without leptomycin B (LMB). (D) Cells from (C) were scored for localization of GFP-SIRT2
in the nucleus. (E) HeLa cells were transfected with GFP-SIRT2 followed by treatment with LMB. At indicated times, cells were fixed and visualized for
nuclear localization.
doi:10.1371/journal.pone.0000784.g001
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Colocalization of SIRT2 and Aurora B was further confirmed by

the oberservation that both proteins interacted in co-immunopre-

cipitation experiments (Figure 5B).

Overexpression of SIRT2 Increases Multinucleation
Based on the selective enrichment of SIRT2 with mitotic struc-

tures, we hypothesized that overexpression of SIRT2 might affect

the cell division. Introduction of mutations in proteins that are

localized to the midbody often have subtle defects in cytokinesis, as

was recently observed for CD2AP [37]. To determine if SIRT2

expression had adverse effects on cell division, we transfected cells

with GFP or GFP-SIRT2 wild-type or a catalytically inactive

GFP-SIRT2 mutant (H187Y). Two days after transfection, we

scored cells containing two or more distinct nuclei indicating

defective mitosis (Figure 6). Overexpression of wild-type GFP-

SIRT2 increased by 3-fold, while overexpression of catalytically

inactive GFP-SIRT2 resulted in a 5.5-fold in the number of cells

containing 2 or more nuclei, suggesting that SIRT2 contributes to

the proper progression through mitosis.

DISCUSSION
In this manuscript, we report that SIRT2 actively shuttles between

the nucleus and cytoplasm and is excluded from the nucleus by

a Crm1-dependent NES located in the amino terminus of SIRT2.

Furthermore, the rate of nuclear export exceeds the rate of nuclear

import, giving the appearance of constitutive localization of

SIRT2 in the cytoplasm.

Identification of a NES Sequence in SIRT2
A low percentage of cells transfected with an expression vector for

SIRT2 showed both nuclear and cytoplasmic distribution.

Treatment of asynchronously growing cells with the nuclear

export inhibitor LMB resulted in accumulation of SIRT2 within

the nucleus. LMB binds to the exportin Crm1 and inhibits it from

recognizing NES sequences within cargo proteins. Under these

conditions, SIRT2 entering into the nucleus is inhibited from

binding to Crm1 and blocked from being exported leading to the

nuclear sequestration of SIRT2. These results indicate that SIRT2

is actively exported from the nucleus and that its localization in the

cytoplasm is mediated by a Crm1-dependent nuclear export

signal. We were unable to identify a functional nuclear localization

signal (NLS) within SIRT2, suggesting that SIRT2 is either

imported by an undefined or multiple NLS sequences or piggy-

backs onto another protein to mediate its import. The rapid

kinetics of SIRT2 nuclear accumulation in response to LMB

(within 60 min of treatment) indicates that SIRT2 constantly

shuttles between the nucleus and cytoplasm during interphase.

The canonical NES recognized by Crm1 consist of a leucine-

rich motif, similar to that initially characterized within the HIV-1

Rev protein. Deletion analysis of the GFP-tagged SIRT2 localized

the NES of SIRT2 to amino acids 18–74. This SIRT2 domain

contains a sequence that conforms to the Crm1-dependent NES

consensus sequence, and mutagenesis studies confirmed its role in

the nuclear export of SIRT2. Interestingly, neither LMB treat-

ment nor mutation of the NES resulted in complete localization of

SIRT2 in the nucleus, and a significant amount of the protein was

maintained in the cytoplasm. These results indicate the potential

of a second, LMB-insensitive export pathway in SIRT2 or the

existence of a fraction of cytoplasmic SIRT2 that does not cycle

between cytoplasm and nucleus, possibly via the binding of SIRT2

to a cytoplasmic structure.

Enrichment of SIRT2 on Microtubule Structures

During Mitosis
In addition to its controlled cytoplasmic localization during

interphase, SIRT2 adopts a distinct localization pattern during

mitosis. SIRT2 is phosphorylated in a mitosis-specific manner,

indicating its potential role during this stage of the cell cycle [23].

We found that SIRT2 is enriched at the centrosome in prophase

and on the growing spindle fibers throughout metaphase

(colocalizing with both c-tubulin and Aurora A). Colocalization

of SIRT2 and c-tubulin was not observed in every cell, suggesting

Figure 2. A Crm1-dependent NES is located in the amino-terminus of SIRT2. (A) HeLa cells were transfected with GFP or full-length and deletion
mutants of GFP-SIRT2 and visualized for subcellular distribution. (B) 293T cells were transfected with cDNAs used in (A) and lysates were separated by
SDS-PAGE and visualized by western blotting with an antiserum specific for GFP. (C) Schematic diagram of deletion analysis GFP-SIRT2 subcellular
distribution. The region required for cytoplasmic localization is indicated. (D) Schematic of consensus Rev-like NES and proposed SIRT2 NES. Nuclear
export signal sequences from proteins exported from the nucleus in a Crm1-dependent manner.
doi:10.1371/journal.pone.0000784.g002
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that it might associate with the centrosome following centrosome

maturation and as cells begin to transition from G2 into mitosis. As

cells progress through telophase and into cytokinesis, SIRT2 is

found on the midbody, where it colocalizes with Aurora B. These

structures are primarily composed of microtubules, a bona fide

substrate for SIRT2 [7,38]. Unexpectedly, these microtubules

appear to be hyperacetylated relative to cytoplasmic microtubules.

This observation suggests that SIRT2 enzymatic activity may be

regulated during mitosis, and that, although SIRT2 is found on

these structures, it might be maintained in an enzymatically

inactive state. Consistent with this hypothesis, overexpression of

either wild-type or catalytically inactive SIRT2 results in defects in

cytokinesis. These results suggest that SIRT2 activity is required

for mitotic progression and may be temporally and spatially

controlled to aid in the faithful completion of mitosis. However, at

this time, our data demonstrating that overexpression of SIRT2

leading to an increase in multinucleated cells does not indicate

where in the cell cycle SIRT2 could be regulating cell division that

would lead to such a phenotype. Multinucleation can result from

defects at a number of points in the cell cycle. For instance, cells

which contain two perpendicular metaphase plates may attempt to

divide into three cells in late anaphase followed by two of the three

fusing in telophase, or cells may undergo failure to complete

cytokinesis [39]. Based on our data, we are unable to determine if

a function of SIRT2 at the centrosome, or the midbody, is

responsible for regulating faithful completion of cell division.

However, utilizing video microscopy, we have observed cell

populations overexpressing GFP-SIRT2 containing a fraction of

cells with two perpendicular metaphase plates. Cells with this

chromosome arrangement during anaphase attempted to divide

into three cells, but two of the three fuse in telophase, resulting in

one cell with the appearance of one nuclei and the other appearing

to have two nuclei (data not shown). Similar mitotic defects have

reported in cells injected with anti-Aurora A antibodies [39].

Further studies addressing a role for SIRT2 in regulation of mitosis

by Aurora A or B mitosis might uncover a mechanism for the

observed multinucleation.

Sir2 proteins are involved in regulation of longevity in a wide

variety of organisms [40]. Hst2p, a yeast homologue of Sir2p, can

regulate yeast longevity in the absence of Sir2p by regulating rDNA

stability [41]. Like SIRT2, Hst2p is predominantly localized in the

cytoplasm, indicating that it likely shuttles into the nucleus to

Figure 3. Mutational analysis of SIRT2 NES sequence. (A) HeLa cells were transfected with GFP-SIRT2 wild-type or single and double point mutants
of the proposed NES sequence. (B) Subcellular distribution results of all single and double mutants of SIRT2 NES analyzed in (A). (C) 293T cells were
transfected with GFP-SIRT2 single and double point mutants and lysates were separated by SDS–PAGE and visualized by western blotting with an
antiserum specific for GFP. (D) HeLa cells were transfected with SIRT2-FLAG and fibrillarin-GFP, treated with or without LMB for 2 hrs and
subsequently stained for FLAG and visualize by confocal microscopy.
doi:10.1371/journal.pone.0000784.g003

Nucleo-Cytoplasmic SIRT2
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Figure 4. Colocalization of SIRT2 with the centrosome. (A) U2OS cells expressing SIRT2-HA were stained for HA (green) and for c-tubulin (red) and
analyzed by confocal microscopy. (B) HeLa cells were stained with antisera for endogenous SIRT2 (green) and Aurora A (red) and analyzed by confocal
microscopy. (C) HeLa cells were stained with antisera for SIRT2 (green), acetylated tubulin (red), and Aurora A (blue) and analyzed by confocal
microscopy. (D) 293T cells were transfected with Myc-Aurora A with or without SIRT2-FLAG. Cellular lysates were immunoprecipitated with anti-FLAG
and probed by western blotting with antisera specific for FLAG and Myc. 10% of protein input was analyzed by western blotting with antisera for
FLAG or Myc.
doi:10.1371/journal.pone.0000784.g004

Figure 5. Enrichment of the three proteins on the midbody is shown in the merge images. (A) HeLa cells were stained with antisera for SIRT2
(green) and Aurora B (blue) and acetylated tubulin (red), and analyzed by confocal microscopy. Enrichment of the three proteins on the midbody is
shown in the merged images. (B) 293T cells were transfected with Myc-Aurora A with or without SIRT2-FLAG. Cellular lysates were
immunoprecipitated with anti-FLAG and probed by western blotting with antisera specific for FLAG and Myc. 10% of protein input was analyzed
by western blotting with antisera for FLAG or Myc.
doi:10.1371/journal.pone.0000784.g005
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regulate nucleolar processes [15]. Consistant with this hypothesis,

Hst2p was recently shown to contain a Crm1-dependent nuclear

export signal [42]. Understanding the role of nuclear SIRT2

during interphase could potentially connect SIRT2 to the role of

Sir2 proteins in aging.

The observation that SIRT2 is found on unique mitotic

structures could indicate that it regulates the acetylation level of

a cellular protein involved in the cell cycle, including tubulin.

While tubulin is a recognized target of SIRT2 [7,38], it is possible

that SIRT2 deacetylates other proteins during the cell cycle.

Finally, it is not clear what role SIRT2 plays in the nucleoplasm

during interphase. Future studies will test the possibility that

interphase nuclear SIRT2 might regulate the expression of a subset

of genes or the acetylation level of other nuclear proteins.
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