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Abstract: Genome-wide association studies (GWAS) have identified tens of genetic variants associated
with Parkinson’s disease (PD). Nevertheless, the genes or DNA elements that affect traits through
these genetic variations are usually undiscovered. This study was the first to combine meta-analysis
GWAS data and expression data to identify PD risk genes. Four known genes, CRHR1, KANSL1,
NSF and LRRC37A, and two new risk genes, STX4 and BST1, were identified. Among them, CRHR1 is
a known drug target, indicating that hydrocortisone may become a potential drug for the treatment of
PD. Furthermore, the potential pathogenesis of CRHR1 and LRRC37A was explored by applying DNA
methylation (DNAm) data, indicating a pathogenesis whereby the effect of a genetic variant on PD is
mediated by genetic regulation of transcription through DNAm. Overall, this research identified the
risk genes and pathogenesis that affect PD through genetic variants, which has significance for the
diagnosis and treatment of PD.
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1. Introduction

Parkinson’s disease (PD) is called the “undead cancer” and is the second most common progressive
neurodegenerative disease affecting the elderly population [1]. The global prevalence of PD is expected
to double from 6.2 million cases in 2015 to 12.9 million in 2040 [2]. The complexity of PD leads to
severe challenges, such as the ambiguity of early diagnosis and later symptoms that are difficult to
control [3]. Therefore, finding effective genetic markers and analyzing their pathogenesis have become
the focus of future clinical research on PD.

Genome-wide association studies (GWAS) identified tens of genetic variants associated with PD,
most of which are from patients of European ancestry, and there is relatively little knowledge about PD
in other populations [3]. We have a limited understanding of the biological functions of the risk alleles
that have been identified, although PD risk variants seem to be in close proximity to known PD genes
and lysosomal-related genes. Recently, Nalls et al. examined the risk relationships between PD and
other phenotypes based on these genetic variants [4]. However, the pathogenic mechanisms of these
genetic variations remain obscure, especially how the variants influence the gene expression through
methylation [5]. In fact, the determination of genotype–phenotype causality based on GWAS still
faces many difficulties: (i) most of the mutation sites are located in noncoding regions of the genome
and are not protein-coding sequences [5]; (ii) the linkage disequilibrium (LD) effect of adjacent single
nucleotide polymorphisms (SNPs) will produce a noncausality between genotype and phenotype [6];
and (iii) the limitation of sample size reduces the statistical effect of GWAS. Rare and low frequency
variations may not reach the statistical threshold [7,8].

In the past decade, researchers have made many efforts to study the genetic structure of human traits
or diseases. The development of emerging technologies such as single-cell sequencing, high-throughput
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screening, and machine learning algorithms will enhance our understanding of genetic risks. Recently,
Zhu et al. developed the summary data-based Mendelian randomization (SMR) and heterogeneity in
dependent instruments (HEIDI) methods [9], which provide a way forward for identifying functional
genes and potential functional elements of genetic variation. The fundamental idea is that GWAS
identifies SNPs related to phenotypes, and expression quantitative trait locus (eQTL) analysis obtains
SNPs related to gene expression and then obtains risk genes that affect phenotypes by SNPs [10].
SMR allows for the use of GWAS, eQTL and methylation quantitative trait locus (mQTL) from
independent studies to aggregate data, so it can expand a sufficient sample size to enhance statistical
capabilities [11].

In this study, by integrating GWAS, eQTL and mQTL, the risk genes of PD were identified,
and their potential pathogenesis was analyzed. First, we integrated two sets of GWAS data based
on meta-analysis and found that the data can reflect the pathological features of PD by using Gene
Ontology (GO) enrichment. Second, SMR and HEIDI were used to combine the meta-analysis GWAS
result with eQTL data to identify risk genes that affect PD through genetic variation. Last, this study
combined GWAS, eQTL and mQTL data to analyze the pathogenesis of risk genes. To determine the
functional elements that regulate gene expression, this paper used epigenetic annotation data from the
Roadmap Epigenomics Mapping Consortium (REMC) to locate the function of DNAm sites [12,13].
In summary, this research identified the risk genes and potential pathogenesis that affect PD, which has
significance for the diagnosis and treatment of PD.

2. Materials and Methods

2.1. GWAS Analysis of Whole-Genome Data from PPMI

The whole-genome sequencing (WGS) data used in this study were derived from 606 individuals
(412 PD patients and 194 controls) in the Parkinson’s Progression Marker Initiative (PPMI) database [14].
We used PLINK v1.07 toolset [15] for a standard case–control association analysis with age and gender
as covariates. In the quality control phase, we selected SNPs with detection rates greater than
95%, sample detection rates greater than 95%, minimum allele frequencies greater than 5 × 10−2,
and Hardy–Weinberg equilibrium less than 1 × 10−4.

2.2. Meta-Analysis Based on Effect Size

Meta-analysis was used to integrate two sets of GWAS data, including the above-mentioned
summary-GWAS results from PPMI and GWAS summary data from another group of 4238 PD patients
and 4239 controls, respectively, and meta-analysis was used in METAL tool [16] using an effect-based
approach. A total of more than 6 million SNPs were obtained by meta-analysis GWAS, of which
1678 significant SNPs (Bonferroni-corrected p-value < 7.83 × 10−9) were associated with PD.

2.3. Summary Data-Based Mendelian Randomization Analysis

For the identification of PD risk genes based on GWAS and eQTL using SMR analysis, y was the
phenotype, x was the gene expression, z was the genetic variation, and bxy (bxy = bzy/bzx) represent a
non-confounding effect of gene expression on PD. The effect of SNPs on gene expression (bzx, with a
positive or negative sign) was the effect value of eQTL, and the effect of SNPs on PD (bzy) was the
effect value of meta-analysis GWAS. FDR adjustment at p-value < 5 × 10−2 was the threshold of SMR.
Simultaneously, this study also infers the positive or negative effect of genes on PD (bxy < 0 means
negative effect, otherwise the opposite).

The HEIDI test can exclude causality caused by LD in SMR analysis and obtain pleiotropic
mutation sites (i.e., causality between two genomes is caused by the same genetic mutation) [17].
This study used the Bonferroni correction p-value as the threshold for HEIDI. Therefore, for each
significant eQTL probe detected by SMR, we detected the bxy of multiple SNPs in the eQTL region to
exclude false-positive genes.
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In addition, the QTL data used are the aggregate data compiled by Zhu et al. [9,10]. The original
eQTL summary data from the Westra et al. study included an eQTL meta-analysis of 5311 samples
from peripheral blood [18] and a summary of the meta-analysis of Europeans from the Brisbane
System Genetics Study (n = 614) and the Losian Birth Cohorts of 1921 and 193,631 (n = 1366) [19,20].
After exclusion of probes in the MHC areas and threshold screening (p-value < 5 × 10−8), a total of
5967 eQTL probes and 73,973 DNAm probes were obtained.

2.4. Enrichment Test of Functional Categories

In the public data of the REMC database at http://compbio.mit.edu/roadmap/, we downloaded the
epigenetic annotation files of 25 chromatin states of 23 blood cells in 127 epigenomics studies [12,13].
The 14 main functional categories were obtained by merging 25 chromatin states with functionally
related annotation categories into a single functional category. These annotation files were used to
locate the 14 main functional regions of each methylation probe. After functional location of the
DNAm probe, we quantified the ratio of transcript-associated DNAm significant probes to all probes
in 14 major functional categories. Finally, the chi-square test was used to test the significance and
positive or negative effects of enrichment with these significant methylation probes in each domain.

3. Results

3.1. Screening SNPs of PD Based on Meta-Analysis GWAS Data

We performed a GWAS using WGS data from the PPMI database including 412 PD patients and
194 controls [14]. Age and gender were used as covariates to obtain GWAS summary data through
PLINK [15]. There were 48 SNPs significantly related to PD (p-value range was from 1.25 × 10−7 to
9.21 × 10−7).

The effect-based meta-analysis was then used to integrate GWAS data from PPMI with other
aggregated GWAS data, which included 4238 PD patients and 4239 controls [21]. The results of the
meta-analysis for GWAS obtained more than 6 million SNPs, where 1678 SNPs (Bonferroni-corrected
p-value < 0.05/6,385,696 = 7.83 × 10−9) were significantly associated with PD (Figure 1).

Mapping the significant SNPs to the gene domain of the hg38 reference genome in a 10 kb
interval [22], the GO enrichment results showed that six biological functional regions were significantly
enriched (Bonferroni-corrected p-value < 8× 10−3, Supplementary Table S1). Four significantly enriched
biologically functional regions have been reported to be associated with PD, including the axon [23],
neuron-to-neuron synapse [24], asymmetric synapse [25] and gamma aminobutyric acid (GABA)-ergic
synapse [26] (Figure 2). Therefore, these results indicate that the meta-analysis of GWAS data reflects
the pathological features of PD.

3.2. Identifying PD Risk Genes Based on GWAS and eQTL Data

SMR was used to integrate more than 6 million SNPs of meta-analysis GWAS data and 5966
cis-eQTL probes. After false discovery rate (FDR) adjustment at p-value < 5 × 10−2, we found eight
genes (tagged by 11 probes) in the genome-wide region (Table 1). For each gene that passed the
SMR, the HEIDI test was used to exclude the genes with an LD effect, and six (Bonferroni-corrected
PHEIDI ≥ 0.006) pleiotropic causal genes were found. As shown in Table 1 and Figure 3, the six risk
genes were CRHR1, KANSL1, NSF, LRRC37A, STX4 and BST1. Importantly, there is evidence that
CRHR1 [27,28], KANSL1 [27], LRRC37A [29] and BST1 [30–32] are associated with PD. Notably, a recent
genetic analysis involving 8725 PD patients and 17,079 controls found that BST1 is a susceptibility
gene for PD [33], and previous experiments in BST1 knockout mice suggested that the gene might be
beneficial in promoting treatment for PD [34]; the top negatively related gene CRHR1, as a target for
a hydrocortisone drug for Cushing’s disease [35], is also known as the corticotropin releasing factor
(CRF) receptor 1, and there is evidence that CRF and its receptors protect neurons [36,37]. In addition,
animal experimental evidence shows that hydrocortisone can stimulate the expression of Parkin

http://compbio.mit.edu/roadmap/
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through the CREB pathway, and the induced expression of Parkin is the cause of its neuroprotective
effect [38].
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Figure 1. Meta-analysis Genome-wide association studies (GWAS) results show single nucleotide 
polymorphisms (SNPs) associated with Parkinson’s disease (PD). (a) The Manhattan plot presents the 
p-value distribution of SNPs. The red line represents the significance level (p-value = 7.83 × 10−9) across 
the genome. (b) Quantile–quantile plot tests of the effectiveness of SNPs. The x-axis and y-axis 
represent the −log10 (p-values) of the expected SNPs and true SNPs, respectively. 

Figure 1. Meta-analysis Genome-wide association studies (GWAS) results show single nucleotide
polymorphisms (SNPs) associated with Parkinson’s disease (PD). (a) The Manhattan plot presents
the p-value distribution of SNPs. The red line represents the significance level (p-value = 7.83 × 10−9)
across the genome. (b) Quantile–quantile plot tests of the effectiveness of SNPs. The x-axis and y-axis
represent the −log10 (p-values) of the expected SNPs and true SNPs, respectively.
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Table 1. Summary of risk genes identified by the summary data-based Mendelian randomization
(SMR) and heterogeneity in dependent instruments (HEIDI) methods for PD.

ProbeID Chr Gene topSNP A1 PGWAS FDR PSMR PHEIDI

ILMN_1784428 17 MGC57346
(CRHR1) rs4074462 T 4.2 × 10−10 3.91 × 10−6 0.605

ILMN_1743621 17 C17ORF69
(CRHR1) rs17426195 A 3.53 × 10−10 4.91 × 10−6 0.507

ILMN_1678235 17 KIAA1267
(KANSL1) rs4630591 T 5.59 × 10−10 6.43 × 10−5 0.989

ILMN_1680353 17 NSF rs183211 A 1.24 × 10−9 3 × 10−4 0.036
ILMN_1680313 16 STX4 rs8056842 C 1.39 × 10−5 2.14 × 10−4 0.732

ILMN_2286783 17 LRRC37A4
(LRRC37A) rs1635298 T 1.56 × 10−8 2.14 × 10−4 0.225

ILMN_1770161 4 BST1 rs4698412 G 2.83 × 10−5 2.14 × 10−4 0.738

ILMN_1790114 17 LOC474170
(KANSL1) rs9915547 C 2.85 × 10−9 2.48 × 10−4 0.551

We also found two new genes (STX4 and BST1) in the above analysis, which are not the closest
annotated genes to GWAS-significant SNPs. The reliability of these two new risk genes was verified
from two aspects. On the one hand, we performed a protein–protein interaction (PPI) network analysis
using STRING v11.0 database [39] to explore the association of six risk genes with known PD genes.
The known functional genes were from the PD-Gene database (http://www.pdgene.org/). The results
showed that five of the six genes interacted with known genes, including the new STX4 gene (Figure 4b).
On the other hand, the independent GWAS summary data from the latest analyses of PD were analyzed,
and we found that STX4 and BST1 were significant (p-value = 3.18 × 10−9 and 1.22 × 10−19, respectively)
in this GWAS dataset [40]. As shown in Figure 4a and Supplementary Table S2, after SMR and
HEIDI analysis of the latest GWAS data, the STX4 and BST1 genes were still in the intersection range.
These results not only provide trustworthy evidence for the newly discovered STX4 and BST1 genes
but also demonstrate the reliability of the six PD risk genes found in this study.

http://www.pdgene.org/
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Figure 3. Prioritized risk genes and functional regions of PD with consistent association signals at
the multiomics layers. The outermost green represents the results of expression quantitative trait
locus (eQTL)-GWAS. Dots that exceed the gray line indicate that they have passed the SMR test.
Marked dots represent six pleiotropic genes that passed the HEIDI test (black indicates four known
genes; red indicates two new genes). The orange circle in the middle indicates the eQTL-methylation
quantitative trait locus (mQTL) results. The innermost blue circle indicates the mutation site of
mQTL-GWAS. In these two circles, the mutation sites that passed the SMR and HEIDI were marked,
and the red-marked sites were potential mechanism regulatory sites.Genes 2020, 11, x FOR PEER REVIEW 7 of 15 
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Figure 4. Independent dataset validation of six identified risk genes. (a) Significant genetic intersection
of independent GWAS data and meta-analysis GWAS data tested. The most significant genes of the
latest GWAS data and the significant genes after SMR and HEIDI include STX4 and BST1, respectively.
(b) Protein–protein interaction network of significant genes in the PD-Gene identified by SMR and
HEIDI. STX4 interacts with known PD risk genes.

As shown in Supplementary Table S3 and Supplementary Figures S1–S6, the effect size of the
six risk genes is summarized, indicating the effect and direction of the gene expression level on the
risk of PD. When the effect value bSMR > 0, it means that the gene expression is positively associated
with disease risk; bSMR < 0 means that the gene expression is negatively associated with disease risk;
bSMR = 0 means that the gene expression is irrelevant. For example, BST1 is a risk gene located on
Chr4 (FDR PSMR = 0.0214, PHEIDI = 0.738), and its corresponding eQTL probe has a significant p-value
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of 1.01 × 10−229 (Figure 5a). In addition, according to the effect value of eQTL (bzx = 0.58) and the effect
value of the SNP in the GWAS of the phenotype (bzy = −0.14), SMR estimates that bxy = −0.24 can
represent no confounding effect of gene expression on PD (Figure 5b). A negative estimate of the effect
of gene expression on PD (bSMR = −0.24) indicates the inhibitory effect of BST1 expression.
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In the top graph, the brown dots indicate the p-values of each SNP in the GWAS meta-analysis, and the
diamonds indicate the p-values of the probes in the SMR test. The figure below refers to the p-value
of the cis-eQTL-labeled BST1 probe in eQTL data. BST1 loci that passed the SMR and HEIDI tests
are highlighted with red dots. (b) The effect sizes of SNPs from GWAS and eQTL effects of SNPs.
The orange dotted line indicates the most significant cis-eQTL effect value bxy, and bxy < 0 indicates
that gene expression is negatively correlated with PD risk.
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3.3. Elucidating the Pathogenesis of Two Risk Genes

We combined GWAS, eQTL and mQTL data to conduct a pairwise analysis to explore whether
there are consistent signals at multi-omics levels (Figure 3). In the first step, significant eQTL data
were used as an instrumental variable combined with GWAS data to identify a total of six risk genes
associated with PD. The second step was to calculate the causality between DNAm and its neighboring
genes (within 2 Mb of each DNAm probe). The third step was to perform pleiotropic association
analysis between the DNAm site and the meta-analysis GWAS data to prioritize the DNAm loci.

Using aggregated mQTL data compiled by Wu et al. [10], we screened for significant SNPs
(p-value < 5 × 10−5) within 2 Mb of each probe as instrumental variables with at least one cis-mQTL
at p-value < 5 × 10−8. As shown in Table 2 and Figure 3, after mQTL-eQTL analysis, a total of
51,940 DNAm probes were identified as being related to eQTL probes. In the DNAm-PD analysis,
24 PD-related DNAm probes were detected, of which 13 DNAm probes were not rejected by HEIDI
(Table 2 and Figure 3).

Table 2. Gene loci that pass SMR and HEIDI at the level of DNAm, transcript and trait.

Methylation (M)—Trait (T) Methylation—Expression (E) Expression—Trait

Mprobel_Region Mprobe M_SNP MT_bSMR Eprobe E_SNP ME_bSMR Gene ET_bSMR

Prom cg17117718 rs17426174 −0.17 ILMN_1743621 rs17426174 0.33 C17ORF69
(CRHR1) −0.51

ReprPC cg16228356 rs17689882 0.27 rs17689882 −0.54
TxWk cg21705961 rs17689882 0.34 rs17689882 −0.67
TssA cg07163735 rs538628 −0.97 rs17689882 2.25
Quies cg17736285 rs916888 0.88 rs1876831 −1.88

Prom cg08113562 rs11012 −0.22 ILMN_1678235 rs16940665 −0.26 KIAA1267
(KANSL1) 0.88

Prom cg17117718 rs17426174 −0.17 rs16940665 −0.18
ReprPC cg16228356 rs17689882 0.27 rs17689882 0.31
TxWk cg21705961 rs17689882 0.34 rs17689882 0.38
Quies cg17736285 rs916888 0.88 rs17575507 1.07

Prom cg08113562 rs11012 −0.22 ILMN_2286783 rs11012 −0.10 LRRC37A4
(LRRC37A)

Prom cg17117718 rs17426174 −0.17 rs17426174 −0.09 1.58
ReprPC cg16228356 rs17689882 0.27 rs17426174 0.15
TxWk cg21705961 rs17689882 0.34 rs17426174 0.19
TssA cg07163735 rs538628 −0.97 rs17426174 −0.63
Quies cg17736285 rs916888 0.88 rs17426174 0.54

Prom cg17117718 rs17426174 −0.17 ILMN_1784428 rs17426174 0.57 MGC57346
(CRHR1) −0.3

ReprPC cg16228356 rs17689882 0.27 rs17689882 −0.93
TxWk cg21705961 rs17689882 0.34 rs17689882 −1.16
TssA cg07163735 rs538628 −0.97 rs17689882 3.91
Quies cg17736285 rs916888 0.88 rs1876831 −3.27
Prom cg08113562 rs11012 −0.22 ILMN_1680353 rs199448 0.17 NSF −1.09
Prom cg17117718 rs17426174 −0.17 rs199448 0.12

ReprPC cg16228356 rs17689882 0.27 rs199448 −0.2
TxWk cg21705961 rs17689882 0.34 rs538628 −0.25
TssA cg07163735 rs538628 −0.97 rs538628 0.62
Quies cg17736285 rs916888 0.88 rs916888 −0.62

Tx cg01067137 rs7294 0.29 ILMN_1680313 rs7294 −0.57 STX4 −0.45

Mprobel_region = physical positions of methylation probes; Mprobe = ID of methylation probes; M_SNP = top
significant SNP of methylation probes; MT_bSMR = SMR-estimated effect of DNA methylation on phenotype;
ME_bSMR = SMR-estimated effect of DNA methylation on gene expression; ET_bSMR = SMR-estimated effect of
gene expression on PD.

To explore whether the DNAm locus is in the regulatory region of genes, we used 14 major
functional annotation categories from the REMC to functionally locate DNAm probes [41]
(Supplementary Figure S7). Apparent functional annotation was performed on all 73,973 DNAm
probes, and the enrichment of expression-related DNAm probes was analyzed using the chi-square test,
including promoter (fold-change = 1.27, p-value = 1.01 × 10−54), strong transcription (Tx, fold-change
= 1.32, p-value = 2.44 × 10−27), strong transcription and Enhancer (TxEn, fold-change = 1.31,
p-value = 3.88 × 10−28) and other functions that promote expression. In addition, there was significant
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non-enrichment of these 51,940 DNAm probes in the transcriptional repression region, such as repressed
polycomb (ReprPC, fold-change = 0.79, p-value = 1.32 × 10−27) and quites (fold-change = 0.70, p-value
= 1.03 × 10−98) (Supplementary Table S4).

As shown in Figure 3, by combining the results of SMR analysis in paired omics, five genes
(corresponding to eight DNAm probes and seven eQTL probes) with pleiotropic causality were found to
produce strong signals of multiomics, including C17ORF69 (CRHR1), KIAA1267 (KANSL1), LRRC37A4
(LRRC37A), MGC57346 (CRHR1), NSF and STX4. Figure 6 shows the p-values of these genes in three
omics analyses, and we can observe that the C17ORF69 (CRHR1), KIAA1267 (KANSL1), LRRC37A4
(LRRC37A), MGC57346 (CRHR1) and NSF genes on Chr17 are important. Supplementary Figure S8
shows a summary of the cross-omics correlation of STX4 on Chr16.
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We found that the two risk genes (CRHR1 and LRRC37A4) in the analysis of mQTL-GWAS and
mQTL-eQTL were significant and consistent in SNP-associated signals. Its corresponding DNAm
locus belongs to the promoter functional region, which suggests a possible biological pathway for
regulating disease risk (Table 2): (i) As shown in Figure 7a, the rs17426174 mutation changes the level
of DNAm, and when the DNAm level (cg17117718) of the CRHR1 promoter is low, the repressor binds
to the promoter, thereby inhibiting the transcription of CRHR1 (DNAm–gene effect value bSMR = 0.33)
and increasing the risk of PD (gene–PD effect value bSMR = −0.51); (ii) as shown in Figure 7b, genetic
mutations (rs11012 or rs17426174, respectively) regulate methylation probes (cg08113562 or cg17117718,
respectively) to change the degree of DNAm. When the DNAm level of the LRRC37A4 promoter is low,
the transcription factor and promoter are combined, thereby promoting the expression of LRRC37A4
(DNAm–gene effect value bSMR = −0.1 and −0.09, respectively) and increasing the risk of PD (gene–PD
effect value bSMR = 1.58).Genes 2020, 11, x FOR PEER REVIEW 11 of 15 
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Figure 7. Potential regulatory mechanisms. (a) When the DNAm site in the promoter is high, the binding
of the inhibitor and the promoter is prevented; the transcription factor normally binds to the promoter,
and the expression of CRHR1 increases; when the DNAm site is low, the inhibitor binds to the promoter,
and CRHR1 transcription is suppressed. (b) When DNAm in the promoter is high, the binding of
transcription factors is disrupted, thereby suppressing the expression of LRRC37A4. When DNAm is
low, transcription factors usually bind to the promoter, and the expression level of LRRC37A4 increases.

4. Discussion

This study explored the risk genes and pathogenesis of PD by integrating a meta-analysis of
GWAS, eQTL and mQTL data. Four known genes, CRHR1, KANSL1, NSF and LRRC37A, and two new
risk genes, STX4 and BST1, were identified. Combined with the three omics datasets and the functional
annotation of the DNAm locus, the underlying mechanism of two risk genes affecting PD risk was
preliminarily clarified. Overall, this research identified the risk genes and potential pathogenesis that
affect PD, which has significance for the diagnosis and treatment of PD.

The GWAS result was analyzed after the meta-analysis was used, which is a crucial step for
subsequent SMR analysis. As shown in Figure 1a, we found that more than 1600 mutation sites in
approximately 6 million genetic mutation sites were significantly related to PD, which improved
the statistical power of this study. As shown in the quantile–quantile plot (Figure 1b), when the
p-value < 1× 10−3, the GWAS result of the meta-analysis is clearly deviated from the uniform distribution,
which indicates that the genotype may be affected by natural selection [42]. GO enrichment revealed
that four out of six significantly enriched biologically functional regions have been reported to be
associated with PD (Figure 2).

Relevant cellular or animal experiments have provided reliable evidence for the identification
of risk genes. Of the eight genes analyzed by SMR, SNCA [43,44], CRHR1 [27,28], KANSL1 [27],
LRRC37A [29], BST1 [30–33] and DGKQ [32] have been shown in previous studies to be related to PD
at the genome-wide level (Table 1). Related reports have indicated that CRHR1 has a neuroprotective
effect [36]; a recent genetic analysis found that BST1 is a susceptibility gene for PD [33], and previous
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experiments in BST1 knockout mice suggested that the gene might be beneficial in promoting treatment
for PD [34].

Identifying new drug targets through risk genes is a highly effective drug discovery strategy,
which is conducive to drug repositioning research for PD [45]. To assess the potential value
of risk genes in drug discovery, this paper obtained all drug target genes from the major drug
database DrugBank, which includes drugs approved in clinical trials or experimental drugs [46].
CRHR1 was found to overlap with the DrugBank drug target, which corresponds to hydrocortisone
for Cushing’s disease [35]. The CRHR1 receptor can be combined with CRF, the main point regulator
of the hypothalamic–pituitary–adrenal axis, to regulate a large amount of hormone cortisol released
downstream, indicating that CRHR1 has a neuroprotective effect [36,37]. There is also evidence from
animal experiments that hydrocortisone can stimulate the expression of Parkin through the CREB
pathway, and the induced expression of Parkin is the cause of its neuroprotective effect [38]. Therefore,
hydrocortisone, as a CRHR1 repositioning drug, may become a potential drug in the treatment of PD.

There are also some limitations to this study. First, this study did not perform tissue-specific
identification. The expression data we used were derived from blood [18]; it will be better to analyze
the expression data from brain tissue. However, some studies have shown that genetic influences
on eQTL or mQTL data are highly correlated between independent brain and blood samples [47,48].
Zhu et al. found that expression data from brain tissue or blood did not significantly affect the gene
recognition of schizophrenia [10]. Second, the HEIDI test is too conservative [9]. Therefore, we adopted
a multiple test method to reduce the threshold of the HEIDI test to reduce the effect of possible false
negative genes (Table 1).

5. Conclusions

In summary, the results suggest that CRHR1, KANSL1, NSF, LRRC37A and two new genes STX4
and BST1 are related to the risk of PD. In particular, the discovery of the CRHR1 target indicates that
hydrocortisone may become a potential drug for the treatment of PD. In addition, the expression
mechanism of CRHR1 and LRRC37A also illustrates the important role of DNAm in gene expression
and disease occurrence. This study provides a process for analyzing disease genes and pathogenesis,
which is of great significance in clinical treatment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/9/1100/s1,
Table S1: Summary of biological function items by GO enrichment, Table S2: Summary of risk genes for independent
GWAS datasets screened by SMR, Table S3: Summary of effect value information of PD risk genes, Table S4:
Summary of transcription-related DNAm probe enrichment in 14 functional regions, Figure S1: Causal effect map
of KIAA1267, Figure S2: Causal effect map of NSF gene, Figure S3: Causal effect map of LRRC37A4, Figure S4:
Causal effect map of MGC57346, Figure S5: Causal effect map of C17ORF69, Figure S6: Causal effect map of STX4,
Figure S7: Enrichment analysis of DNAm probes in 14 main functional annotation categories, Figure S8: Summary
of SMR correlation analysis across mQTL, eQTL and GWAS on Chr16.
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