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Abstract: Oleandrin, the main component of Nerium oleander L. extracts, is a cardiotoxic glycoside with
multiple pharmacological implications, having potential anti-tumoral and antiviral characteristics.
Although it is accepted that the main mechanism of oleandrin action is the inhibition of
Na+/K+-ATPases and subsequent increase in cell calcium, many aspects which determine oleandrin
cytotoxicity remain elusive. In this study, we used the model Saccharomyces cerevisiae to unravel new
elements accounting for oleandrin toxicity. Using cells expressing the Ca2+-sensitive photoprotein
aequorin, we found that oleandrin exposure resulted in Ca2+ influx into the cytosol and that failing to
pump Ca2+ from the cytosol to the vacuole increased oleandrin toxicity. We also found that oleandrin
exposure induced Mn2+ accumulation by yeast cells via the plasma membrane Smf1 and that mutants
with defects in Mn2+ homeostasis are oleandrin-hypersensitive. Our data suggest that combining
oleandrin with agents which alter Ca2+ or Mn2+ uptake may be a way of controlling oleandrin toxicity.
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1. Introduction

Nerium oleander L., commonly known as oleander, is an ornamental shrub with both
pharmacological and toxicological properties, whose parts have been used in ethnomedicine since
ancient times as natural remedies against cardiac illnesses, cancer, diabetes, asthma, skin diseases,
inflammation, etc. [1]. Oleander extracts need to be regarded with caution as they are poisonous in high
doses, having important cardiotoxic effects [2–4]. Nevertheless, many of the individual components
of oleander extracts have been found to have anti-tumor, anti-proliferative, anti-inflammatory and
even antiviral properties [5–8]. One of the emblematic components of oleander extracts is oleandrin
(PubChem CID 11541511), a cardiotonic glycoside similar in toxicity and structure to digitoxin from
Digitalis purpurea L. [7]. Oleandrin (Figure 1a) is a lipid-soluble glycoside comprised of oleandrigenin
(the steroid aglycone) and D-diginosyl (a sugar-like moiety) which slightly increases oleandrin’s water
solubility, which otherwise is very low [9]. Oleandrin is mainly responsible for the toxicity of oleander
sap and, just as with digitoxin, it is thought to act as a cardiotonic by inhibiting the sodium and
potassium ATPases (Na+/K+-ATPase) and subsequently increasing Ca2+ concentration, resulting in
activation of various cell survival and death pathways [10,11]. In spite of its toxicity, oleandrin has
been increasingly investigated as several studies indicated its potential as an anticancer [12–16] as
well as antiviral drug [8,17–19]. The therapeutic potential of oleandrin is hampered by its cytotoxicity
and by the fact that although several signaling cascades targeted by oleandrin through inhibition of
Na+/K+-ATPase have been identified [20], and that it is considered that oleandrin may cause destruction
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of tumor cells by inducing oxidative stress through generation or reactive oxygen species (ROS) [21],
many aspects which mediate oleandrin toxicity still remain obscure.
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Figure 1. Effect of oleandrin on yeast growth. (a) Oleandrin structure. (b) Effect of oleandrin
concentration on growth of wild type cells. BY4741 cells were inoculated (OD600 = 0.05) and grown
in SD (synthetic dextrose) liquid medium in the presence of various concentrations of oleandrin.
Cell density was determined spectrophotometrically at 600 nm (OD600) as described in the Materials
and Methods section. One-way ANOVA, * p < 0.05; ** p < 0.01; *** p < 0.005. (c) Growth on
oleandrin-supplemented solid medium. Wild type (WT) or knockout mutant cells cch1∆, mid1∆, pmc1∆,
smf1∆, pmr1∆ and ahp1∆ with oleandrin sensitivity different from WT (see Table S1) were serially
diluted and stamped on SD/agar containing or not 100 ng/mL oleandrin. Plates were photographed
after 3 days’ incubation at 30 ◦C.

In this study, we made use of the model microorganism Saccharomyces cerevisiae to investigate
oleandrin toxicity on yeast cells. S. cerevisiae is a simplified model of the eukaryotic cell used to elucidate
many of the molecular mechanisms conserved in higher eukaryotes due to the ease of manipulation,
tractable genetics, exhaustive genome annotation and less restrictive ethical constraints [22–24]. So far,
no study concerning the effect of oleander extracts or oleandrin has been reported in S. cerevisiae.
As oleandrin was shown to alter the fluidity of the human cell membrane [25], we hypothesized that the
primary interaction between oleandrin and the yeast cells would occur at the plasma membrane level.
We therefore tested the oleandrin toxicity on S. cerevisiae mutants with defects in the cell membrane
transport of monovalent ions (Na+ and K+), Ca2+ or essential metal ions.

In S. cerevisiae, the movement of Na+ and K+ across the plasma membrane is ensured by
Ena1 P-type Na+/H+ ATPase, Nha1 Na+/H+ antiporter, outward-rectifier K+ channel Tok1 and the
Trk1p–Trk2p potassium transport system [26]. Regulation of these transporters has been extensively
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reviewed [26] and it was shown that salt stress and alkaline stress induce calcium-mediated responses
by generating Ca2+ flux into the cytosol [27,28]. Abrupt increases in the cytosolic Ca2+ ([Ca2+]cyt)
represent a universal mechanism to trigger signaling cascades involved in cell adaptation, survival or
death [29]. In S. cerevisiae, the increase in [Ca2+]cyt occurs through Ca2+ entry into the cytosol via the
Cch1/Mid1 channel situated at the plasma membrane [27,30] or via the vacuolar transient receptor
potential channel TRPY1 (formerly known as Yvc1) [31–33]. Cch1 is similar to the pore-forming subunit
(α1) of the plasma membrane, and voltage-gated Ca2+ channels (VGCC) from higher eukaryotes,
including humans [34]. Cch1 interacts and partially co-localizes with Mid1p, a stretch-activated cation
channel which resembles the VGCC α2/δ regulatory subunits and Na+ leak channel non-selective
(NALCN)-associated proteins [35]. Prolonged high [Ca2+]cyt is detrimental to cells, therefore the
normal very low [Ca2+]cyt must be restored through the action of Ca2+ pumps and exchangers [33].
In S. cerevisiae, this is done by the concerted actions of the vacuolar Ca2+-ATPase Pmc1 (similar to
mammalian PMCA1a) [36] and of the vacuolar Ca2+/H+ exchanger Vcx1 [37,38] (which independently
transport [Ca2+]cyt into the vacuole) and by the secretory Ca2+-ATPase Pmr1, which pumps [Ca2+]cyt into
the endoplasmic reticulum (ER) and Golgi [39,40]. Pmr1p is the prototype of a family of transporters
known as SPCA (Secretory Pathway Ca2+-ATPases) with members found also in mammals [41].
Defects in the human ortholog of PMR1, ATP2C1, are associated with Hailey-Hailey disease [42].

As oleandrin was shown to sensitize human osteosarcoma cells to cisplatin by preventing
degradation of the copper transporter CTR1 [15], we also studied the cytotoxicity of oleandrin against
S. cerevisiae mutants with defects in the transport of essential metal ions across the plasma membrane.
In S. cerevisiae, there is an intricate system of transporters involved in the high- or low-affinity
transport of essential metals, with both high and low specificity [43], e.g., Ctr1 (Cu+ transporter [44]),
Fet3/Ftr1 (complex involved in the transport of Fe3+ and Cu2+, [45]), Fet4 (low-affinity transporter
for Fe2+/3+ and other transition metal ions [46]), Pho84 (phosphate transporter and a low-affinity
divalent metal transporter [47]), Smf1 (divalent metal ion transporter with broad specificity and with
high affinity for Mn2+ [48,49]), Zrt1 (high-affinity Zn2+ transporter [50]) and Zrt2 (low-affinity Zn2+

transprter [51]). The data obtained in this study indicated that oleandrin exposure induced transient
elevations in [Ca2+]cyt, but also an unexpected increase in Smf1-dependent Mn2+ accumulation which
was accountable for the increased sensitivity to oleandrin of mutants with defects in Mn2+ homeostasis.

2. Results

2.1. Toxicity of Oleandrin towards Saccharomyces cerevsiae Cells

The investigation of the potential action of oleandrin upon S. cerevisiae cells is problematic due
to the low solubility of oleandrin in aqueous environments, which does not surpass 1.5 mg/L [9].
We firstly prepared a saturated aqueous solution of oleandrin which was added to yeast culture media
at various sub-saturation ratios. It was noted that media containing 500 ng/mL (approximately 1/3
saturation) completely killed the yeast cells, meaning that the toxicity studies would not be hampered
by the uneven distribution of oleandrin within the yeast growth media. We further checked the growth
of S. cerevisiae cells in liquid media supplemented with various concentrations of oleandrin (Figure 1b).
It was noted that the presence of oleandrin in the incubation medium affected cell proliferation; the half
minimal inhibition concentration calculated after 16 h of incubation was IC50 = (99.57 ± 1.25) ng/mL
which corresponds to a molar concentration of approximately 0.16 µM.

As the presence of oleandrin in the incubation media affected yeast cell growth, we sought to
identify molecular targets of oleandrin toxicity. Considering the oleandrin structure (a glycoside
containing a steroid aglycone, Figure 1a), it is highly probable that it primarily interacts with components
of the plasma membrane.

Starting from the known facts that in mammalian cells oleandrin: (1) interacts with Na+/K+-ATPase;
(2) induces cell Ca2+ elevations; (3) inhibits Cu+ transporter Ctr1; and (4) mediates oxidative stress by
generation of reactive oxygen species (ROS), we tested the toxicity of oleandrin against yeast mutants
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hosting individual knockout deletions in genes related to: (1) Na+ or K+ transport across the plasma
membrane; (2) Ca2+ transport and homeostasis; (3) heavy metal transporters; and (4) response to
oxidative stress. The knockout genes were selected based on a search in the Saccharomyces Genome
Database (SGD, [52]) and are presented in Table S1. The screening of oleandrin toxicity against the yeast
knockout strains was done by exposing cells to an oleandrin concentration which caused approximately
half inhibition of wild type growth (i.e., 100 ng/mL). The strains which significantly grew better or
worse than the wild type in the presence of oleandrin were selected for further investigation. As shown
in Table S1, no mutant with defects in Na+ or K+ transport showed a different phenotype from the
wild type. From the group of mutants with defects in calcium transport, cch1∆ and mid1∆ grew better,
while mutants pmc1∆ and pmr1∆ were more sensitive to oleandrin than the wild type cells (Table S1,
Figure 1c).

From the group of mutants with defects in essential metal transport, only smf1∆ cells grew
considerably better in the presence of oleandrin (Table S1, Figure 1c). In the case of the mutants
defective in the response to oxidative stress, solely ahp1∆ grew differently in the presence of oleandrin,
being more sensitive than the wild type cells (Table S1, Figure 1c, bottom).

2.2. Oleandrin Induces Calcium Influx via Cch1/Mid1

The observation that both cch1∆ and mid1∆ were more tolerant to oleandrin than the wild
type cells suggested the idea that oleandrin cytotoxicity is mediated by calcium influx, which in
S. cerevisiae occurs primarily via the Cch1/Mid1 channel. To test this possibility, we used transgenic
yeast cells expressing aequorin, a photoprotein whose luminescence varies as a function of calcium
fluctuations; the aequorin-based system used is suitable for detecting transient modifications in
[Ca2+]cyt [53]. For this purpose, wild type cells, as well as cells with defects in calcium transporters
(cch1∆, mid1∆, pmc1∆, vcx1∆, pmr1∆ and trpy1∆) were transformed with a plasmid harboring the cDNA
of apo-aequorin under the control of a constitutive promoter which afforded an abundant expression
of aeqorin in the cytosol [54]. Before oleandrin exposure, the cells expressing apo-aequorin were
pre-treated with its cofactor coelenterazine to reconstitute the functional aequorin. The cells expressing
functional aequorin were stimulated with oleandrin directly in the luminometer tube. It was noted
that the luminescence of wild type cells expressing functional aequorin significantly increased when
cells were exposed to half-inhibitory concentrations of oleandrin (100 ng/mL), an indication of the
[Ca2+]cyt elevation induced by oleandrin shock (Figure 2a).

The onset of [Ca2+]cyt elevation coincided with oleandrin addition and it took 30–40 s before
luminescence started to decrease, to reach the basal low level after approximately 300 s (Figure 2a,
black dashed line). [Ca2+]cyt elevation occurs when Ca2+ enters the cell from outside via the
Cch1/Mid1 channel or is released from the vacuole via the TRPY1 channel (or both). Apparently,
the oleandrin-dependent rise in [Ca2+]cyt was predominantly of external origin, since cch1∆ or mid1∆
cells expressing functional aequorin exhibited significantly lower oleandrin-dependent [Ca2+]cyt

elevation (Figure 2a, brown and purple line, respectively), while trpy1∆ cells expressing aequorin
showed high oleandrin-induced luminescence (Figure 2a, blue line).

Since cch1∆ and mid1∆ were more tolerant to oleandrin than the wild type, it can be speculated
that [Ca2+]cyt elevations mediate oleandrin toxicity. In this line of evidence, the luminescence traces
shown by the oleandrin-hypersensitive pmc1∆ had a broader pattern compared to wild type, and with
no sign of restoring the basal [Ca2+]cyt within the 300 s interval characteristic to the wild type (Figure 2b,
orange line). This observation suggested that Pmc1 (and not Vcx1, Figure 2b, green line) is crucial for
restoring the low levels of [Ca2+]cyt following an oleandrin-induced calcium wave by transporting
Ca2+ to the vacuole and that high Ca2+ lingering in the cytosol of pmc1∆ cells is responsible for
their hypersensitivity to oleandrin. Neither vcx1∆ (lacking the vacuolar Ca2+/H+ exchanger which
transports [Ca2+]cyt back to the vacuole) nor trpy1∆ (lacking the channel which releases Ca2+ from the
vacuole into the cytosol) showed higher sensitivity to oleandrin than the wild type (Table S1, Figure 1c).
Although the luminescence traces of aequorin-expressing trpy1∆ and vcx1∆ were slightly different, in
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both cases, [Ca2+]cyt decreased significantly after 300 s from oleandrin exposure (Figure 2a, blue line
and Figure 2b, green line, respectively). Surprisingly, although pmr1∆ expressing functional aequorin
showed luminescence traces similar to trpy1∆ (Figure 2b, red line, compared to Figure 2a, blue line),
pmr1∆ cells were hypersensitive to oleandrin (Table S1, Figure 1c).
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Figure 2. Increase in [Ca2+]cyt under oleandrin exposure. Wild type cells or cells defective in calcium 

transport expressing reconstituted aequorin were pre-grown in SD-Ura and subjected to oleandrin 

stress (100 ng/mL) as described in Materials and Methods. [Ca2+]cyt-dependent aequorin luminescence 

was recorded on samples of approximately 107 cells (OD600 = 1). The arrow indicates the time when 

the oleandrin was added. (a) Calcium-dependent luminescence of wild type, and of mutants with 
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of type, and of mutants with defects in Ca2+ removal from cytosol pmc1Δ, vcx1Δ and pmr1Δ. The 

Figure 2. Increase in [Ca2+]cyt under oleandrin exposure. Wild type cells or cells defective in calcium
transport expressing reconstituted aequorin were pre-grown in SD-Ura and subjected to oleandrin
stress (100 ng/mL) as described in Materials and Methods. [Ca2+]cyt-dependent aequorin luminescence
was recorded on samples of approximately 107 cells (OD600 = 1). The arrow indicates the time when the
oleandrin was added. (a) Calcium-dependent luminescence of wild type, and of mutants with defects
in Ca2+ release to the cytosol cch1∆, mid1∆ and trpy1∆. (b) Calcium-dependent luminescence of type,
and of mutants with defects in Ca2+ removal from cytosol pmc1∆, vcx1∆ and pmr1∆. The luminescence
traces represent the mean ± SEM from 3 independent transformants. SEM are illustrated as bars of a
lighter nuance. RLU, relative luminescence units.

2.3. Oleandrin Exposure Induces Manganese Accumulation

Among the yeast mutants with deletions in the genes encoding essential metal transporters,
smf1∆ cells manifested increased tolerance to oleandrin. Smf1 is a divalent metal ion transporter with
broad metal specificity for divalent and trivalent metals, and with high affinity for manganese [47],
therefore we wondered if oleandrin exposure may be accompanied by accumulation of trace metals,
eventually Smf1-dependent. To test this possibility, we performed multi-elemental analysis of yeast
cells exposed to oleandrin (Table 1). To avoid inherent variation in trace metal composition of the
standard media, we grew the cells in a synthetic medium (MMe) with controlled metal concentrations,
containing Co2+, Cu2+, Fe3+, Mn2+, Ni2+ and Zn2+ (1 µM each). In this synthetic medium, Li+ was
also added (final concentration 1 µM) as a replacement for Na+. The metal concentrations used
were completely non-toxic to cells, even if they were slightly higher than in the standard media
(which contain only 0.1 µM Cu2+, ultra-traces of Co2+ and Ni2+ and no Li+). It was noticed that, of all
the metal ions present in the growth media, only manganese accumulation seemed to be stimulated by
oleandrin (Table 1).

To check Smf1 involvement, we monitored Mn2+ accumulation by wild type and smf1∆ cells
exposed to 100 ng/mL oleandrin. It was noted that in wild type cells, Mn2+ accumulation was
induced by oleandrin and increased progressively in the first 5–15 min of exposure; after that,
Mn2+ accumulation reached a stationary phase (Figure 3a, blue line). No oleandrin-induced Mn2+

accumulation could be detected in smf1∆ cells, indicating that oleandrin stimulated Mn2+ accumulation
via the Smf1 transporter (Figure 3a,b purple lines). The Mn2+ accumulation was dose-dependent,
as Mn2+ accumulation increased with oleandrin concentration, to reach a plateau when cells were
exposed to oleandrin concentrations higher than 200 ng/mL (Figure 3b, blue line).
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Table 1. Effect of oleandrin on metal content of yeast cells. Exponentially growing wild type cells were
shifted to MMe (OD600 = 0.5) in the presence of oleandrin (100 ng/mL). Cells were grown with agitation
for 16 h before being harvested for multi-elemental analysis, as described in the Materials and Methods
section. Each determination was done in triplicate on approximately 108 cells from three biological
replicates. Results are given as mean ± standard deviation.

Metal Detected

Cellular Metal Content
(nmoles/mg Total Cell Protein)

No Oleandrin Oleandrin

Co2+ 1.32 ± 0.24 1.44 ± 0.31
Cu2+ 5.84 ± 0.42 5.52 ± 0.82
Fe3+ 52.82 ± 3.24 54.33 ± 3.84
Mn2+ 4.25 ± 0.62 9.92 ± 1.82 *
Ni2+ 0.24 ± 0.12 0.22 ± 0.21
Zn2+ 12.42 ± 1.14 11.88 ± 1.43
Li+ 1.14 ± 0.32 1.21 ± 0.22

* Significantly different from control (no oleandrin) as of the one-sample t test, p < 0.05.
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Figure 3. Oleandrin induces Smf1-dependent Mn2+ accumulation in yeast cells. (a) Time course of
Mn2+ accumulation following oleandrin exposure. Exponentially growing wild type and smf1∆ cells
were treated with oleandrin (100 ng/mL) and samples were collected every 5 min for Mn2+ assay.
(b) Effect of oleandrin concentrations on Mn2+ accumulation. Exponentially growing wild type and
smf1∆ cells were treated with increasing oleandrin concentrations and samples were collected after
20 min for Mn2+ assay. Cells were incubated (30 ◦C, 200 rpm) in liquid MMe containing 1 µM MnCl2.
*** p < 0.005, Student’s t test.

2.4. Oleandrin Hypersensitivity of Mutants pmr1∆ and ahp1∆ Is Caused by Mn2+ Accumulation

The oleandrin hypersensitivity of pmr1∆ (Figure 1c, Table S1) could not be explained by the calcium
cytosolic wave that followed the oleandrin shock on aequorin expressing pmr1∆ (Figure 2b, red line)
and had a similar pattern with that of trpy1∆ (Figure 2a, blue line), whose oleandrin sensitivity was
similar to that of wild type cells (Figure 1c, Table S1). Pmr1 is a high-affinity Ca2+/Mn2+ P-type ATPase
involved in Ca2+ and Mn2+ transport into Golgi; further, via the secretory pathway, excess Mn2+ is
extruded from the cell, which is a major route for yeast cells of Mn2+ detoxification [40,55]. We therefore
wondered if pmr1∆ hypersensitivity to oleandrin is related to cells’ incapacity to excrete the excess
Mn2+ which occurs during oleandrin exposure, rather than to a defect in Ca2+ homeostasis. Indeed,
it was noted that pmr1∆ accumulated significantly more Mn2+ than the wild type cells (Figure 4a).
Instead, pmc1∆ cells which exhibited oleandrin hypersensitivity similarly to pmr1∆ displayed Mn2+

accumulation which was not significantly different from the wild type (Figure 4a), supporting the idea
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that pmc1∆ oleandrin hypersensitivity is caused by the incapacity of pmc1∆ cells to reduce the high
[Ca2+]cyt levels in due time (Figure 2b).
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Figure 4. (a) Mn2+ accumulation by mutants hypersensitive to oleandrin. Exponentially growing yeast
cells were treated with oleandrin (100 ng/mL) in MMe containing 1 µM MnCl2 and samples were
collected after 20 min for Mn2+ assay. (b) Effect of Mn2+ depletion on oleandrin toxicity. Cells were
incubated (30 ◦C, 200 rpm) in liquid MMe containing 1 µM MnCl2 (Mn) or Mn2+-depleted (No Mn) in
the presence of 100 ng/mL oleandrin. Cell growth was measured spectrophotometrically (OD600) and
expressed relatively to growth under the same conditions, but in the absence of oleandrin.

It was noted that from the group of mutants with defects in the response to antioxidant stress,
only ahp1∆ exhibited altered oleandrin sensitivity compared to wild type cells. Ahp1 is a thiol-specific
peroxiredoxin that reduces hydroperoxides to protect against oxidative damage [56] and that also has
a minor role in Mn2+ intracellular trafficking [57]. We found that ahp1∆ also accumulated more Mn2+

than the wild type in the presence of oleandrin (Figure 4a), thus explaining the ahp1∆ hypersensitivity.
To check that the increased toxicity of oleandrin to pmr1∆ and ahp1∆ mutants is caused by the
increased influx of external Mn2+, we determined the relative growth of yeast cells in a Mn2+-depleted
medium. Indeed, we found that Mn2+ depletion improved the growth of pmr1∆ and ahp1∆ (Figure 4b),
indicating that increased Mn2+ influx is responsible for the oleandrin hypersensitivity of these mutants.
In this line of evidence, the oleandrin sensitivity of ahp1∆ was not alleviated by antioxidants known to
improve ahp1∆ growth, such as ascorbate or tocopherol (data not shown).

3. Discussion

Apart from being a cardiac glycoside, oleandrin has been gathering attention due to its
anti-tumoral [12–16] and antiviral potential [8,17–19], but its pharmacological use is held back
by its variable toxicity. In this study, using the model S. cerevisiae, we detected oleandrin-induced
fluctuations in cell Ca2+, which could be related to the Ca2+ entry via the Cch1/Mid1 plasma membrane
channel (Figure 5).

At this point, it is hard to determine whether the Ca2+ influx was the result of the oleandrin
interaction with the membrane transport of monovalent ions, since no yeast mutant with defective
Na+ or K+ transport showed any alteration in oleandrin-mediated toxicity. Although the direct action
of oleandrin on the Ena1 Na+/K+-ATPase cannot be ruled out since ENA1 is expressed only under
salt stress conditions [26], it is highly possible that calcium influx is also triggered by a non-specific
interaction of oleandrin with the yeast plasma membrane. In this line of evidence, cch1∆ cells, which still
have a functional Mid1, showed some calcium influx into the cytosol (Figure 2a). Since Mid1 is a
stretch-activated Ca2+-permeable cation channel [58], it is possible that oleandrin activates it by
mechanical intercalation in the membrane phospholipid layer.

What raised our interest was the unexpected role of oleandrin in stimulating Mn2+ accumulation
by yeast cells via the transporter Smf1. Mn2+ is an essential trace metal that serves as a cofactor for
several enzymes [59], which becomes toxic when its concentration surpasses the physiological limits.
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In yeast, it was shown that divalent metal transport and toxicity can be manipulated by addition of
natural compounds such as amino acids or polyphenols [60,61], therefore it would be interesting to
screen for synergies between oleandrin and other natural compounds.
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Figure 5. Model depicting the effect of oleandrin on S. cerevisiae cells. Oleandrin stimulates Ca2+

influx via the Cch1/Mid1 channel and Mn2+ uptake via the Smf11 transporter. Excess of [Ca2+]cyt is
transported into the vacuole via the Pmc1 ATPase pump and Vcx1 transporter. Cells lacking Pmc1
become oleandrin-hypersensitive due to a delay in restoring the low level of [Ca2+]cyt (Figure 3b,
orange line). The excess of Mn2+ taken up via Smf1 in response to oleandrin exposure is removed by
the Ca2+/Mn2+-ATPase pump Pmr1 which transports the excess Mn2+ to the Golgi apparatus to be
further secreted from the cell via secretory vesicles.

It has been suggested that the oleandrin toxicity against certain tumoral cell lines may be the result
of ROS generation, especially superoxide ion radicals [21]. Nevertheless, we found that yeast mutants
sod1∆ (lacking the cytosolic Cu/Zn-superoxide dismutase SOD1) or sod2∆ (lacking the mitochondrial
Mn-superoxide dismutase SOD2) showed no increased oleandrin sensitivity compared to the wild
type cells (Table S1). It is known that supplementary Mn2+ can suppress the oxidative damage
in yeast cells lacking superoxide dismutase due to the intrinsic superoxide scavenger activity [62],
therefore it is possible that in the yeast SOD mutants, the oleandrin-generated superoxide toxicity was
counterbalanced by the oleandrin-induced Mn2+ influx via Smf1. Either way, it became clear that the
effect of oleandrin on the eukaryotic cell may be a multi-facets process, with molecular aspects still
waiting to be unraveled.

Oleandrin is of pharmacological interest due to its potential antiviral or anti-tumoral actions; it is
tempting to speculate that oleandrin toxicity could be tuned by changing the Mn2+ microenvironment of
the virus-infected cells or of the tumoral cells. In S. cerevisiae, oleandrin stimulated the Smf1-dependent
Mn2+ influx. Smf1 is a member of the natural resistance-associated macrophage protein (NRAMP) family
of transporters which includes the human counterparts DMT1 [63] and NRAMP1 [64] transporters.
As NRAMP1 polymorphism has been associated with some types of cancer [65,66], it would be
worthwhile studying the oleandrin action on these type of cancer in correlation with Mn2+ homeostasis,
considering that Mn2+ alone was found to inhibit the viability of cancer cells [67,68].
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4. Materials and Methods

4.1. Yeast Strains and Cultivation Media

The S. cerevisiae diploid strains used in this study were isogenic with the wild type (WT) parental
strain BY4741 (MATa his3∆1; leu2∆0; ura3∆0), a S288C-based yeast strain [69]. The knockout strains
used harbored individual deletions in YFG (Your Favourite Gene) and had the genotype (BY4741,
yfg::kanMX4/ORF), being denoted throughout the manuscript as yfg∆. The strains are presented in
Table S1 and they were obtained from EUROSCARF (European S. cerevisiae Archive for Functional
Analysis). Yeast strains were propagated, grown and maintained in YPD medium (1% w/v yeast
extract, 2% w/v polypeptone, 2% w/v glucose) or SD (synthetic dextrose, 0.17% w/v yeast nitrogen
base without amino acids, 0.5% w/v (NH4)2SO4, 2% w/v glucose, supplemented with the necessary
amino acids) [70]. The strains transformed with the plasmids harboring apoaequorin cDNA [53]
were selected and maintained on SD lacking uracil (SD-Ura). For luminescence detection, cells were
suspended in SD-Ura supplemented with 2 mM CaCl2. Minimal defined media containing known
concentrations of metal ions (MMe) were prepared adding individual components as described [70]
using ultrapure reagents and contained 1 µM of CoCl2; CuCl2; FeCl3; MnCl2; NiCl2; ZnCl2; and LiCl.
The concentrations of metals in MMe were confirmed by inductively coupled plasma mass spectrometry
(ICP-MS) (Perkin-Elmer ELAN DRC-e, Concord, ON, Canada). All synthetic media had their pH
adjusted to 6.5. For solid media, 2% agar was used. For growth improvement, all the synthetic media
were supplemented with an extra 20 mg/L leucine [71]. All chemicals, including media reagents,
were from Merck (Darmstadt, Germany). Oleandrin was from Sigma-Aldrich (St. Louis, MO, USA)
(Catalog O9640, discontinued) and was of ≥ 98% purity.

4.2. Plasmid and Yeast Transformation

For heterologous expression of apo-aequorin, yeast strains were transformed with the multicopy
URA3-based plasmid pYX212-cytAEQ harboring the apoaequorin cDNA under the control of the
strong TPI yeast promoter [54]. Plasmid pYX212-cytAEQ was a generous gift from E. Martegani
and R. Tisi (University of Milano-Bicocca, Milan, Italy). Yeast transformation [72] was performed
using S.c. EasyComp™ Transformation Kit (Invitrogen, Catalog number: K505001) following the
manufacturer’s indications.

4.3. Detection of Oleandrin Effect on Yeast Cell Growth

Wild type and yfg∆ cells were inoculated from YPD-exponentially growing cells to SD liquid
medium (at OD600 = 0.05) containing various concentrations of oleandrin added from a 10 mg/mL
ethanol stock. Strain growth was monitored in time by measuring the turbidity of cell cultures at 600 nm
(OD600) recorded in a plate reader equipped with a thermostat and shaker (Varioskan, Thermo Fisher
Scientific, Vantaa, Finland). For growth on solid medium, exponentially growing cells (OD600 = 0.5)
were decimally serially diluted in a multiwell plate and stamped on SD/agar plates containing oleandrin
(added after medium sterilization) using a pin replicator (approximately 4 µL/spot). Plates were
incubated at 30 ◦C for 3 days before being photographed.

4.4. Detection of [Ca2+]cyt by Recording Aequorin Luminescence

Cells transformed with pYX212-cytAEQ [54] were maintained on SD-Ura selective medium and
prepared for Ca2+-dependent luminescence detection as described [73], with slight modifications.
Exponentially growing yeast cells expressing apo-aequorin were diluted (OD600 = 0.5) in SD-Ura and
then incubated to OD600 = 1. Cells were concentrated by centrifugation to OD600 = 10. To reconstitute
functional aequorin, native coelenterazine was added to the cell suspension (from a methanol stock,
20 µM final concentration) and the cells were incubated for 2 h at 30 ◦C in the dark. Cells were
washed to remove the excess coelenterazine and re-suspended in SD-Ura supplemented with 2 mM
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CaCl2. The cells were transferred (approximately 107 cells/determination) to the luminometer tube
and a cellular luminescence baseline was determined for each strain by approximately one minute
of recordings at 1/s intervals. After ensuring a stable signal, oleandrin was injected (v/v) from a
sterile 200 ng/mL solution in SD-Ura medium, to give the final oleandrin concentration 100 ng/mL
(approximately corresponding to half minimal inhibitory concentration, IC50). The Ca2+-dependent
light emission was monitored in a single-tube luminometer (Turner Biosystems, 20n/20, Sunnyvale,
CA, USA). The light emission was measured at 1 s intervals and expressed as relative luminescence
units (RLU). To ensure that the total reconstituted aequorin was not limiting in our assay, at the end of
each experiment, aequorin activity was checked by lysing cells with 1% Triton X-100 with 5 mM CaCl2
and only the cells with considerable residual luminescence were considered. Relative luminescence
emission was normalized to an aequorin content giving a total light emission of 106 RLUs in 10 min
after lysing cells with 1% Triton X-100.

4.5. Multielemental Analysis of Yeast Cells

Metal accumulation by cells was done as described [74], with slight modifications. Exponentially
YPD-growing cells were washed and suspended in MMe liquid medium to OD600 = 0.5 in the absence
or presence of oleandrin (100 ng/mL). The cells were incubated with shaking (200 rpm) for 16 h at 30 ◦C
before they were harvested and washed three times with 10 mM 2-(N-morpholino)ethanesulfonic
acid (MES)-Tris buffer, pH 6.0. Cells were finally suspended in deionized water (108 cells/mL) and
used for both metal and cell protein assays. Metal detection was done using an instrument with
a single collector, quadrupole inductively coupled plasma with mass spectrometry (ICP-MS) with
axial field technology for trace elements, rare earth elements and isotopic analyses. Metal analyses
were performed after digestion of cells with 65% ultrapure HNO3 (Merck). Standard solutions were
prepared by diluting a 10 µg/mL multielement solution (Multielement ICP Calibration Standard 3,
matrix 5%HNO3, Perkin Elmer Pure Plus, Shelton, CT, USA). The metal cellular content was normalized
to total cellular proteins, which were assayed spectrophotometrically [75].

4.6. Statistics

All experiments were repeated, independently, in three biological replicates at least. For each
individual experiment, values were expressed as the mean ± standard error of the mean (SEM).
For aequorin luminescence determinations, traces represent the mean (±SEM) from three independent
transformants. The numerical data were examined by Student t test or by analysis of variance
with multiple comparisons (ANOVA) using the statistical software Prism version 6.05 for Windows
(GraphPad Software, La Jolla, CA, USA). The differences were considered to be significant when
p < 0.05. One sample t test was used for the statistical analysis of each strain/condition compared
with a strain/condition considered as reference. Asterisks indicate the level of significance: * p < 0.05,
** p < 0.01 and *** p < 0.001.

5. Conclusions

Oleandrin toxicity against eukaryotic cells was investigated using the model microorganism
S. cerevisiae. We found that exposing yeast cells to oleandrin resulted in Ca2+ influx into the cytosol and
that defects in restoring the normal level of cytosolic Ca2+ (e.g., by pumping excess cytosolic Ca2+ to
the vacuole) augmented the oleandrin toxicity. We also found that oleandrin exposure induced Mn2+

accumulation by the yeast cells via the plasma membrane Smf1 and that mutants with defects in Mn2+

homeostasis may become oleandrin-hypersensitive. Our data suggest that combining oleandrin with
agents which alter Ca2+ or Mn2+ homeostasis may be a way of scope-tuning oleandrin toxicity.
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