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The ubiquitous presence of enzymes required for repair of DNA double strand breaks

renders patients with defects in these pathways susceptible to immunodeficiency,

an increased risk of infection, autoimmunity, bone marrow failure and malignancies,

which are commonly associated with Epstein Barr virus (EBV) infection. Treatment of

malignancies is particularly difficult, as the nature of the systemic defect means that

patients are sensitive to chemotherapy and radiotherapy. Increasing numbers of patients

with Nijmegen Breakage syndrome, Ligase 4 deficiency and Cernunnos-XLF deficiency

have been successfully transplanted. Best results are obtained with the use of reduced

intensity conditioning. Patients with ataxia-telangiectasia have particularly poor outcomes

and the best treatment approach for these patients is still to be determined.

Keywords: artemis deficiency, ataxia-telangiectasia, cernunnos-XLF deficiency, ligase 4 deficiency, Nijmegen

breakage syndrome, radiosensitivity

INTRODUCTION

Several DNA repair pathways, which recognize and re-establish non-programmed DNA
double-strand breaks (DNA-DSBs) caused by damage from replication errors, ionizing radiation,
and/or alkylating agents, have evolved. Ataxia-telangiectasia mutated (ATM) protein and other
proteins are activated by DNA-DSBs, leading to phosphorylation of more than 700 proteins which
initiate DNA damage signal transduction, cell cycle arrest, and subsequent DNA repair, or activate
apoptosis in cells which are catastrophically damaged (1, 2).

As DNA-DSBs directly threaten genomic integrity, the repair processes to correct this damage
are indispensable for maintaining genomic structure and reducing the risk of mutagenesis and
oncogenesis. Aberrant DNA-DSB repair may lead to localized sequence deviations and genomic
information loss. Joining the incorrect pair of DNA ends, which can lead to base deletions,
translocations, or inversions, causes more serious damage. Two pathways have evolved to repair
DNA-DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ) (3).
HR operates predominantly in cells that are dividing and during the S phase and necessitates a
homologous template in order to maintain replication accuracy.

NHEJ operates in dividing or non-dividing cells, irrespective of the cell-cycle phase, but is
particularly active during stages of the cell cycle when a homologous template is not available.
Unlike HR, which accurately repairs DNA-DSB damage, NHEJ is an error-prone process often
leading to some loss of DNA information at the site of the DSB.
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FIGURE 1 | DNA-DSB repair proteins and V(D)J Recombination. (A) Lymphoid cell-specific RAG1/2 proteins identify and join to the recombination signal sequences

(RSS) that flank V(D)J gene segments. Site-specific DNA-DSB are introduced by the RAG proteins. (B) The covalently sealed coding sequence hairpin intermediates

are bound together by the RAG complex. (C) The MRN complex binds the damaged DNA ends. ATM is activated and commences cell-cycle arrest and recruitment of

the repair proteins. (D) (i) The Ku70/Ku80 heterodimer binds the coding ends and recruits DNA-PKcs to form the holoenzyme, which recruits Artemis to open the

coding end hairpin intermediates by randomly nicking to generate a single-strand break with 3′ or 5′ overhangs. (ii) XRCC4, LIG4, and cernunnos-XLF co-assemble

and locate to the DNA ends. The opened coding end hairpin intermediate is modified by nucleotide loss and addition of palindromic and non-templated nucleotides.

(iii) Final repair and ligation by the XRCC4/DNA-LIG4/cernunnos-XLF complex. Adapted from Cowan et al. (4).

DNA double-strand break damage initiates sensing of the
break, signal transduction and effector function, to commence
cell cycle-checkpoint arrest with, or without apoptosis. Repair
proteins recruited to damaged DNA sites include those which
bind to the DNA break, and occurs in a highly ordered sequence.
The MRE11–RAD50–nibrin (MRN) complex initially detects
DNA-DSB damage. The broken DNA ends are secured by the
MRN complex, which promotes the localized activation of ATM
protein. Following ATM activation, several DNA-repair and
cell-cycle-checkpoint proteins, including nibrin, are activated,
facilitating cell cycle arrest, and DNA repair. More than seven
mammalian factors have now been identified as essential NHEJ
components. The DNA-binding subunits known as Ku70 and
Ku80, with the DNA-dependent protein kinase catalytic subunit
(DNA-PKcs or PRKDC), construct the DNA-PK holoenzyme, the
role of which is early recognition of DNA-DSBs. The activated

DNA-PK holoenzyme recruits other NHEJ proteins including
Artemis (DCLRE1C), XRCC4, and DNA ligase 4 (LIG4) to the
site of DNA damage (Figure 1). Artemis is phosphorylated by
DNA-PKcs, and resolves complex DNA ends. LIG4, XRCC4, and
cernunnos-XRCC4-like factor (XLF or NHEJ1) are required for
the ligation reaction that rejoins the DNA-DSBs (5).

NHEJ also functions to repair DNA that has been damaged
after physiological DNA-DSBs, which are indispensable for
development of B- and T-lymphocyte receptor diversity
accompanying V(D)J recombination (6). During B- and T-
lymphocyte development, DNA-DSBs are introduced during
lymphocyte antigen receptor development, immunoglobulin
class-switch recombination, and somatic hypermutation.
V(D)J recombination is commenced by enzymes coded by
recombination-activating gene (RAG)1 and RAG2, defects which
cause failure of the V(D)J recombination initiation process, and
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consequent failure of T- and B-lymphocyte generation leading to
T-B- natural killer (NK)+ severe combined immunodeficiency
(SCID), or combined immunodeficiency (CID).

There are five other genes in the NHEJ repair pathway that are
involved in V(D)J recombination, and in which mutations can
cause T-B-NK+ SCID or CID:

• DCLRE1C, which codes for an endonuclease (Artemis)
• LIG4, which codes for DNA ligase 4
• PRKDC, which codes for a phosphokinase [DNA-dependent

protein kinase catalytic subunit (DNA-PKcs)]
• NHEJ1, which codes for Cernunnos-XLF
• NBN, which codes for nibrin, mutated in Nijmegen breakage

syndrome, and has a role in the end processing step in NHEJ
with Artemis and several other proteins (7–10).

The major distinction between RAG1/2-defective SCID/CID
and SCID/CID associated with other deficiencies in the NHEJ
pathway is that the NHEJ enzymes are ubiquitously found in
all nucleated cells. Therefore, fibroblasts and induced pluripotent
stem cells generated from patients harboring these defects display
general susceptibility to alkylating agents and ionizing radiation
commonly used in conditioning regimens used in allogeneic
hematopoietic stem cell transplantation (HSCT). However,
defects in RAG1/2 do not display increased susceptibility to these
treatments (11–13).

In the non-Artemis defects, development of malignancy is a
particularly high risk, with patients predisposed to developing
leukemia or lymphoma, often associated with EBV.

DNA DOUBLE STRAND BREAKAGE
REPAIR DISORDERS

Artemis-Deficiency
Bi-allelic mutations in DCLRE1C, located at 10p13 and
which encode for Artemis, lead to a wide spectrum of
immunodeficiency, accompanied by systemic radiosensitivity,
ranging from T-B-NK+ SCID (13) [including Omenn syndrome
(14)], through to CID (that may be linked with a predisposition
to autoimmunity) (13). Hypomorphic mutations in DCLRE1C
have been associated with combined immunodeficiency, in which
EBV-associated lymphomas have been described (15). Patients
with antibody deficiency only are also reported (16). Artemis
deficiency is described across the world, but is prevalent in
certain populations, particularly Athabascan-speaking native
Americans (17), due to a founder mutation. Artemis acts as an
endonuclease, activated by the Ku-DNA-PKcs holo-enzyme to
process coding sequence hairpin intermediates formed during
V(D)J recombination, and is particularly important to resolve
complex DNA structures like the heterologous-loop and stem-
loop DNA constructions, which contain single-stranded DNA
adjacent to double-stranded DNA. Patients with null-mutations
present with SCID—the clinical presentation is no different to
patients presenting with SCID due to other genetic defects.
Unlike other DNA-DSB repair disorders, microcephaly is not
a feature. Rare patients are described who have both Artemis
deficiency and complete DiGeorge syndrome due to athymic

22q11 deletion (18)—these patients require both hematopoietic
stem cell and thymic transplantation. Patients with classic
SCID, who may be detected by newborn screening due to
absence of TRECs, or presenting with features of combined
immunodeficiency should be transplanted.

Historic data have shown that patients with T-B-NK+ SCID
have a worse survival outcome than other forms of SCID
(19). A landmark three center study examining differences in
outcome between Artemis- and RAG-SCID showed no early
survival difference between genotypes, but Artemis-deficient
patients receiving alkylating agents as part of the preparative
cyto-reductive regimen experienced significantly more long-
term sequalae including microdontia, growth failure, and
autoimmunity (20). However, conditioning without alkylating
agents did not permit donor stem cell engraftment, and resulted
in poor lymphoid immune reconstitution. More recently,
a retrospective study by the Primary Immune Deficiency
Treatment Consortium (PIDTC) of North America has reported
transplant outcomes in infants with SCID, analyzed by genotype
(21). In this analysis, patients with Artemis-deficient T-B-NK+
SCID had a worse survival outcome than those with RAG-
deficient T-B-NK+ SCID.

Nijmegen Breakage Syndrome
Nijmegen breakage syndrome (NBS) is an autosomal-recessive
disease caused by mutations of the NBN gene on chromosome
8q21. The disease occurs worldwide, but has a high prevalence
among Central and Eastern European Slavic populations due to a
foundermutation effect. The largest cohort has been diagnosed in
Poland (n= 118), where all patients carry the same homozygous
deletion of five nucleotides (657_661del5) (22).

The Slavic hypomorhic mutation in NBN encodes partially
functional, truncated p70-nibrin protein, which is a crucial
component of the MRN complex involved in DNA double
and single-strand breaks repair and in the activation of cell
cycle checkpoints.

Almost all patients demonstrate microcephaly at birth,
a distinct, dysmorphic facial appearance, becoming more
noticeable with age (a prominent midface emphasized by a
sloping forehead and receding mandible). Short stature, mild
mental retardation, congenital skeletal (clinodactyly, syndactyly),
renal, or other abnormalities are also found. In females,
premature ovarian insufficiency is observed.

All affected individuals demonstrate a combined
immunodeficiency, but of wide severity and clinical
manifestation: from “clinically-silent” abnormalities only
(disturbed lymphocyte subsets in peripheral blood) to clinically
relevant immunodeficiency with hypogammaglobulinaemia. The
humoral defect is associated with recurrent, chronic infections,
mainly of respiratory tract, leading in some patients to
bronchiectasis. About 68 %of patients require immunoglobulin
substitution therapy. Surprisingly, there is no correlation
between the degree of cellular deficiency (usually decreased
number of CD4, CD8 lymphocytes, thymic emigrants, low
percentage of naïve cells, increased memory cells, TCRγδ

lymphocytes), and severity of infections. Predisposition to
opportunistic infections is relatively low and patients do not
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use routinely antimicrobial prophylaxis. Some patients may
be detected on newborn screening for SCID with very low
TRECs (23).

The main cause of morbidity and mortality is malignancy,
which occurs very early in natural history of disease: most
tumors are of hematopoietic origin: lymphoma and leukemia.
By age 20 years, over 40% of patients have developed a
malignancy, at a median age of 10 years. Patients respond
poorly to treatment with a higher incidence of severe or fatal
infectious complications during chemotherapy than observed in
otherwise healthy children. The high rate of treatment failures
and secondary malignancies remain a challenge.

For many years, concerns about the high risk of
chemotherapy-induced toxicity and GvHD effectively inhibited
attempts to transplant NBS patients. Recently, according
to guidelines from the Inborn Errors Working Party of the
European Blood and Marrow Transplant society, transplantation
is recommended for all NBS patients in first complete remission
of lymphoma or leukemia (24). Pre-emptive transplant should
be considered before malignancy develops, in patients with
clinically relevant immunodeficiency, particularly recurrent or
chronic infection despite immunoglobulin therapy or latent viral
infections (CMV, EBV). HSCT seems to be the only curative
method in patients with immune dysregulation leading to
granulomas of the skin and/or other organs (lungs, bones). With
increasing numbers of transplanted NBS patients and longer
follow up we may be able to answer the most important question:
whether the incidence of secondary cancer would be lower than
in non-transplanted individuals. There are still not enough
data to recommend HSCT in all NBS, even with significant
cellular immunodeficiency, but without clinical symptoms of
immune deficiency.

DNA Ligase 4 Deficiency
DNA ligase 4 deficiency, a rare autosomal recessive disorder, is
characterized by microcephaly, abnormal dysmorphic (beak-like
nose, prominent mid-face, receding forehead, and micrognathia)
facial features, combined immunodeficiency, and sensitivity to
ionizing radiation. Most patients demonstrate developmental
delay. Other described features include bony anomalies and skin
conditions. The systemic radiosensitivity confers a susceptibility
to malignancy. DNA ligase 4 deficiency is caused by mutations in
LIG4, which is located on chromosome 13q33–q34. Murine non-
sense mutations are embryologic lethal—mutations described in
humans are hypomorphic, resulting in significantly impaired, but
still functioning NHEJ activity (25).

Little is known of the prevalence of DNA ligase 4 deficiency.
Globally <50 cases have been described.

Disrupted V(D)J recombination in DNA ligase 4 deficiency
causes severe combined immunodeficiency, Omenn syndrome,
and combined immunodeficiency (26–29). Laboratory findings
include profound T- and B-lymphocytopenia with varying
degrees of hypogammaglobulinaemia, frequently associated
with a raised IgM concentration due to defective isotype
class switching. Some patients may be detected on newborn
screening for SCID with very low TRECs (30). There is
increased susceptibility to bacterial, viral, and fungal infection

requiring serial hospital admission with an accompanying
failure to thrive. Autoimmunity has been described. The
risk of development of malignancy is high in patients with
DNA Ligase 4 deficiency—to date predominantly tumors
of the lympho-reticular system have been described and
include T-lymphocyte lymphoblastic leukemia/lymphoma and
B-lymphocyte lymphomas (EBV positive or negative)—one case
of squamous cell carcinoma has been described (25). The role of
HSCT in these patients has yet to be clearly ascertained. For those
with low TRECs or features of SCID or CID, HSCT would seem
reasonable. Those that develop malignancies are poorly tolerant
of chemotherapy and radiotherapy treatment—however the role
of pre-emptive HSCT to prevent the development of malignancy
has not been established.

Cernunnos-XLF Deficiency
Autosomal recessive cernunnos-XLF deficiency, due to
hypomorphic mutations in NHEJ1, located on chromosome
2q35, is extremely rare with <50 reported individuals world-
wide. Affected patients share morphological, clinical and
immunological features with patients who have DNA Ligase
4 deficiency. Specifically, patients demonstrate microcephaly
with distinctive facial dysmorphism (prominent midface
emphasized by a sloping forehead and receding mandible)
and small stature and developmental delay;—other features
described in some patients include boney anomalies (10).
Clinical manifestations predominantly include infection due
to combined immunodeficiency—autoimmunity and bone
marrow failure have also been described. Immunological
features that are reported include T- and B-lymphocytopenia
and low IgA and IgG in the presence of raised IgM. Recurrent
bacterial and opportunistic infections are reported. Lympho-
reticular malignancy has rarely been reported in these patients
(31, 32). The role of HSCT in these patients has yet to be
clearly ascertained.

Other DNA-DSB Repair Defects
The DNA-binding subunits Ku70 and Ku80 form the DNA-PK
holoenzyme, in combination with the DNA-dependent protein
kinase catalytic subunit (DNA-PKcs), found on chromosome
8q11.21. The holoenzyme is involved in the early in the
recognition of DNA-DSBs, and recruits other NHEJ proteins to
the site of damage. To date, no patients have been described
with defects in Ku70 or Ku80. Only a handful of patients
with DNA-PKcs have been described. Microcephaly has not
been described, but too few patients have been recognized to
confidently ascertain the classical phenotype, which includes
both SCID, CID and autoimmunity (8, 33, 34). Hematopoietic
stem cell transplantation has been successfully performed (8,
34)—not enough data are available to recommend any particular
approach, although from first principles, patients would be
expected to demonstrate a similar response as those with
mutations in DCLRE1C.

Ataxia telangiectasia-like disorder caused by mutations in
MRE11A, on chromosome 11q21, is extremely rare, with
few patients reported worldwide, predominantly of Arabic
background. MRE11A encodes for MRE11, part of the MRN
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complex irresponsible for initial DNA-DSB detection and end-
stabilization. Clinical features resemble those of patients with
classical ataxia telangiectasia, although progressive cerebellar
ataxia occurs later in life with slower progression. Microcephaly
has been described in some patients (35). Antibody deficiency is
reported, but significant T-lymphocyte immunodeficiency is not
described. Lymphoid tumors have not been reported (36, 37).
Hematopoietic stem cell transplantation has not been reported
for this condition.

Isolated reports of patients with RAD50 deficiency are
published (38). RAD50, part of the MRN complex, is encoded by
RAD50, found on chromosome 5q31.1, and causes a Nijmegen
breakage-like syndrome. Patients display radiosensitivity, but
immunodeficiency and lymphoid tumors are not reported—
hematopoietic stem cell transplantation has not been reported for
this condition.

The final stage of DNA-DSB repair requires the ligation
complex comprising DNA ligase 4, X-ray repair cross-
complementing protein 4 (XRCC4), and XRCC4-like factor
(Cernunnos-XLF). XRCC4 protein is encoded by XRCC4 on
chromosome 5q14.2. Several patients have been described with
bi-allelic missense mutations in XRCC4 (39–41). Microcephaly,
short stature and developmental delay are the predominant
features—although there is a marked defect in DNA-DSB repair
at a cellular level, V(D)J recombination appears unaffected,
implying a separation of function (42). Patients do not present
with features of immunodeficiency, and hematopoietic stem cell
transplantation has not been reported for this condition.

INDICATION FOR HEMATOPOIETIC STEM
CELL TRANSPLANTATION

Each of the genetic defects mentioned above can present
with typical features of severe combined immunodeficiency,
which is an absolute indication for HSCT. Most, if not all
patients with features of significant CID, particularly those of
frequent or severe infections despite prophylaxis, significant
autoimmunity, lymphoproliferation, or malignancy should
be considered for HSCT, preferably before the development
of significant end-organ damage or other co-morbidities.
Potentially, each of the genetic defects described that can
present with immunodeficiency could lead to very low
or absent T-lymphocyte receptor excision circles (TRECs)
(see chapter on Universal newborn screening for severe
combined immunodeficiency), which would be detected by
newborn-screening—such patients should be considered
for transplantation.

APPROACH TO HEMATOPOIETIC STEM
CELL TRANSPLANTATION FOR DNA
DOUBLE STRAND BREAKAGE REPAIR
DISORDERS

Systemic chromosomal fragility and radiosensitivity have
important implications for approaching HSCT, particularly with
regard to the conditioning agents employed. Although patients

with Artemis deficiency generally tolerate fully myeloablative
conditioning at the time of transplantation, patients with other
DNA-DSB repair defects do not tolerate fully myelo-ablative
conditioning regimens. However, a recent report from the
PIDTC analyzed patients with Artemis-deficient T-B-NK+ SCID
and demonstrated a worse survival outcome than those with
RAG-deficient T-B-NK+ SCID (21). The increased mortality
appeared not to be related to an excess of infections, suggesting
that the intrinsic systemic radiosensitivity may be implicated
in the excess mortality. Ideally, for good long term results,
these patients need to achieve donor stem cell engraftment,
without the use of alkylating agents causing long term sequalae.
One possibility in the future may the use of antibody-based
conditioning regimens to create space in the marrow niche for
donor stem cells, which may lack the long term toxicities (43, 44).

For patients who have other DNA-DSB repair defects
described above, myeloablative conditioning is significantly
associated with inferior overall survival compared to those
who receive a reduced intensity conditioning regimen. A
large multi-center series of over 80 patients with LIG4-
deficiency, Nijmegen Breakage Syndrome and Cernunnos-XLF
deficiency, transplanted for numerous indications including
immunodeficiency, severe autoimmunity, bone marrow failure
and malignancy, demonstrated that patients receiving a reduced
intensity, or Fanconi-based regimen had significantly better
survival in the immediate post transplant period than those
receiving a fully myelo-ablative conditioning regimen (45). These
regimens included standard doses of alemtuzumab or anti-
thymocyte globulin serotherapy, but reduced doses of busulphan,
cyclophosphamide and melphalan, and reduced to normal doses
of fludarabine. The immune related complications resolved
with successful HSCT, but other constitutional features such
as microcephaly and growth failure were unresolved. Although
median follow up was short, no secondary malignancies were
described. There was no survival difference relating to the
indication for HSCT, or the donor stem cell source. There was
a high incidence of acute graft vs. host disease, particularly
amongst those receiving myelo-ablative conditioning regimens.
These findings have reinforced the recommendation of the
Inborn ErrorsWorking Party of the European Blood andMarrow
Transplant society to use a reduced intensity conditioning
regimen when transplanting these patients (24). There is no
place for ionizing radiation in the conditioning regimens
for these patients. There are concerns that, as in patients
with Fanconi anemia (46), transplantation may predispose to
other malignancies in later life—no evidence of this has been
documented to date, but long term vigilance will be required for
these patients.

An alternative conditioning approach, for some patients at
least, may be to use an antibody-based conditioning regimen to
achieve myeloid engraftment (43, 44).

Ataxia Telangiectasia
The ataxia- telangiectasia mutated (ATM) protein is involved
in DNA-damage sensing, cell cycle checkpoints and DNA-dsb
repair, and is activated upon damage of DNA double strands.
Mutations in ATM cause ataxia telangiectasia, a rare autosomal
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recessive disorder manifest by progressive cerebellar ataxia,
oculocutaneous telangiectasia, gonadal sterility, postnatal growth
retardation, recurrent sinopulmonary infection which may lead
to chronic lung disease, and a high incidence of predominantly
lymphoid tumors (47). Few patients have undergone HSCT—
the results are generally worse compared to those of patients
with other DNA-dsb repair disorders (45). However, most were
transplanted for malignancy, which tends to be aggressive and
is difficult to treat as patients poorly tolerate the required
chemotherapy. Hence it is not clear currently what role HSCT
plays in the management of these patients, although reduced
intensity conditioning regimens are probably best employed
if HSCT is considered. Alternative therapeutic options, which
are not yet available clinically, may be the use of antisense
oligonucleotides to correct splicing, frameshift and missense
mutations and revert absent or unstable protein to partially
or fully functional protein (48), or the use of ribosomal read-
through agents to overcome premature termination codons, and
enable some normal protein expression (49).

CONCLUSION

Patients with defects in the DNA-DSB repair pathway experience
infections, autoimmunity, bone marrow failure and have an
increased risk of lympho-reticular malignancy, particularly
associated with EBV infection. The systemic nature of the defect
renders them susceptible to chemotherapy-related toxicities,
and an increased risk of graft vs. host disease. Best outcomes
are obtained with reduced intensity conditioning regimens—
antibody-based regimens are likely to reduce toxicity risks
further. Long term surveillance is required to ascertain the
risk of secondary malignancies. The role of HSCT in patients
with ataxia-telangiectasia is to be determined and not currently
routinely recommended.
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Wolska-Kuśnierz and Gennery HSCT for DNA DSB Repair Disorders

treatment options – a retrospective analysis. J Clin Immunol. (2015)
35:538–49. doi: 10.1007/s10875-015-0186-9

23. Deripapa E, Balashov D, Rodina Y, Laberko A, Myakova N, Davydova
NV, et al. Prospective study of a cohort of russian nijmegen breakage
syndrome patients demonstrating predictive value of low kappa-deleting
recombination excision circle (KREC) numbers and beneficial effect of
hematopoietic stem cell transplantation (HSCT). Front Immunol. (2017)
8:807. doi: 10.3389/fimmu.2017.00807

24. EBMT/ESID Guidelines for Hematopoietic Stem Cell Transplantation for

Primary Immunodeficiencies. Available online at: http://www.ebmt.org/
Contents/About-EBMT/Who-We-Are/ScientificCouncil/Documents/
EBMT-ESIDGuidelinesForInbornErrorsFinal~2011.pdf/

25. Altmann T, Gennery AR. DNA ligase IV syndrome: a review. J Orphanet Rare
Dis. (2016) 11:137. doi: 10.1186/s13023-016-0520-1

26. Grunebaum E, Bates A, Roifman CM. Omenn syndrome is associated with
mutations in DNA ligase IV. J Allergy Clin Immunol. (2008) 122:1219–
20. doi: 10.1016/j.jaci.2008.08.031

27. O’Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela
B, et al. DNA ligase IV mutations identified in patients exhibiting
developmental delay and immunodeficiency. Mol Cell. (2001) 8:1175–
85. doi: 10.1016/S1097-2765(01)00408-7

28. Buck D, Moshous D, de Chasseval R, Ma Y, le Deist F, Cavazzana-Calvo
M, et al. Severe combined immunodeficiency and microcephaly in siblings
with hypomorphic mutations in DNA ligase IV. Eur J Immunol. (2006)
36:224–35. doi: 10.1002/eji.200535401

29. van der Burg M, van Veelen LR, Verkaik NS, Wiegant WW, Hartking NG,
Barendregt BH, et al. A new type of radiosensitive T-B-NK+ severe combined
immunodeficiency caused by a LIG4 mutation. J Clin Invest. (2006) 116:137–
45. doi: 10.1172/JCI26121

30. Nourizadeh M, Shakerian L, Borte S, Fazlollahi M, Badalzadeh M,
Houshmand M, et al. Newborn screening using TREC/KREC assay for
severe T and B cell lymphopenia in Iran. Scand J Immunol. (2018)
26:e12699. doi: 10.1111/sji.12699

31. Faraci M, Lanino E, Micalizzi C, Morreale G, Di Martino D,
Banov L, et al. Unrelated hematopoietic stem cell transplantation
for Cernunnos-XLF deficiency. Pediatr Transplant. (2009)
13:785–9. doi: 10.1111/j.1399-3046.2008.01028.x
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