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Abstract: Type 2 diabetes (T2D) is a common chronic disease whose etiology is known to have a strong
genetic component. Standard genetic approaches, although allowing for the detection of a number
of gene variants associated with the disease as well as differentially expressed genes, cannot fully
explain the hereditary factor in T2D. The explosive growth in the genomic sequencing technologies
over the last decades provided an exceptional impetus for transcriptomic studies and new approaches
to gene expression measurement, such as RNA-sequencing (RNA-seq) and single-cell technologies.
The transcriptomic analysis has the potential to find new biomarkers to identify risk groups for
developing T2D and its microvascular and macrovascular complications, which will significantly
affect the strategies for early diagnosis, treatment, and preventing the development of complications.
In this article, we focused on transcriptomic studies conducted using expression arrays, RNA-seq,
and single-cell sequencing to highlight recent findings related to T2D and challenges associated with
transcriptome experiments.
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1. Introduction

T2D mellitus is a chronic metabolic disease affecting 6.28% of the world’s population
and characterized by β-cell dysfunction and persistent hyperglycemia [1,2]. It can lead to
many microvascular and macrovascular complications, including kidney failure, diabetic
retinopathy, peripheral neuropathy, heart attack, and stroke, which are associated with
a worse quality of life in affected people [3,4]. T2D currently has a prevalence rate of
6059 cases per 100,000 and is projected to affect 7079 individuals per 100,000 by 2030.
The low quality of life of affected people and the growing incidence of T2D around the
world, especially among young people, make T2D one of the main concerns of public
health worldwide [2]. A good understanding of the etiological factors and pathogenetic
mechanisms is needed to identify risk factors and prevent the development of this disease
or delay the onset of its severe complications. The risk assessment of T2D requires the
consideration of not only BMI, age, and environmental factors, such as food intake and
physical activity, but also inheritance [5]. The candidate-gene study and Genome-Wide
Association Study (GWAS) approaches were used to identify a number of loci and genes
associated with the risk of T2D and its complicated course [6,7]. The subsequent study
of these new loci revealed new molecular mechanisms underlying the disease. Most of
them were responsible for insulin sensitivity, β-cell function, and inflammation. However,
the found genes explain only about 10% of the heritability of T2D [8,9]. It becomes clear
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that single polymorphisms cannot explain the pathogenesis of a complex disease and
act as an independent risk factor. The main difficulty lies in finding the link between
the found variants and phenotypic manifestations, especially if the gene is not directly
involved in glycemic regulation. Moreover, variants of low minor allele frequency that
could make a significant contribution to the development of T2D may not be captured
by GWAS, which makes the problem of “missing heritability” relevant [10]. Most of the
loci identified are located in non-coding regions and play a regulatory role in the control
of gene expression [11]. The main purpose of such studies is the development of risk
assessment tools for the prediction of T2D and its complications, including the construction
of the polygenic risk scores, both based solely on T2D-associated SNPs and adjusted for
gender, age, anthropometric measurements, and laboratory parameters. Accounting for
numerous trait-associated alleles and non-genetic factors made it possible to increase the
predictive power of the models, with the relative performance estimated as areas under
receiver operating characteristic curves, whose values increased from 0.571 to 0.901 [12].
However, there are several limitations that might impede the implementation of these
instruments in practice. Most of the studies were performed on European populations,
and large-scale studies covering people with T2D worldwide are needed due to possible
ethnic differences. Another challenge to the application of the polygenic risk score is the
interpretation of the results, which requires the consideration of non-genetic risk factors
in patients [13]. Moreover, these factors (BMI, age, family history, diet, physical activity),
in combination with the laboratory markers of glycemia, can be crucial for determining
the individual risk of T2D [14]. Nonetheless, the study of gene expression and epigenetic
modifications in people with T2D, coupled with the identification of the rare genetic
variants using the approaches of whole genome, whole exome, or target genes sequencing
in them, have the potential to fill the gap between the genotype data and the phenotype
in diabetic individuals, which will eventually allow for an understanding of genomic
function [15]. Therefore, in the last decade, much attention has been paid to studies on
transcriptome analysis in T2D patients (Table 1). Transcriptome studies analyze the sum
of all RNA transcripts present in an organism. Currently, three main methods are in use
for transcriptome analysis: microarray, RNA sequencing, and single cell sequencing. We
reviewed the main advantages and shortcomings and also discussed the most promising
findings of them and the challenges researchers face when choosing these approaches.
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Table 1. Transcriptomic studies in T2D patients.

Sample Type Transcriptomic Technique Validation Study Group References

PBMC Microarray qPCR 43 newly diagnosed T1D, 12 newly diagnosed T2D, 24 HC [16]

Whole blood Microarray qPCR 6 patients with metabolic syndrome, 6 CAD, 8 T2D, 6 rheumatoid
arthritis patients, 9 HC [17]

Whole blood Microarray qPCR 84 T2D, 60 HC [18,19]

Human islet cells Microarray – 7 non-diabetic subjects, 6 T2D donors [20]

Whole blood Microarray – 19 T1D, 20 T2D, 17 GDM [21]

Human islet cells Microarray qPCR 67 non-diabetic donors, 10 T2D donors [22]

PBMC Microarray qPCR 5 poorly controlled T2D, 7 well-controlled T2D, 6 normoglycemic
individuals [23]

PBMC Microarray – 10 healthy individuals with extreme insulin resistance, 10 healthy
individuals with extreme insulin sensitivity [24]

Whole blood Microarray qPCR 20 T2D with diabetic retinopathy, 10 T2D without diabetic
retinopathy [25]

Abdominal omental adipose tissues Microarray – 12 T2D, 12 HC [26]

Adipose tissue from thigh Microarray qPCR 30 T2D, 30 HC [27]

PBMC Microarray qPCR

5 poorly controlled T2D with dyslipidemia and periodontitis, 7
well-controlled T2D with dyslipidemia and periodontitis, 6

normoglycemic with dyslipidemia and periodontitis, 6 healthy
individuals with periodontitis, 6 HC

[28,29]

Whole blood Microarray TaqMan Low Density Array 2 T2D, 2 HC [30]

Whole blood Microarray – 12 T2D, 19 HC [31]

Neurone, astrocyte, and endothelial cell Microarray
NanoString nCounter platform +

Immunohistochemical
validation of protein expression

6 T2D, 6 HC [32]

Skeletal muscle RNA-Seq – 271 participants with glucose tolerance ranging from normal to
newly diagnosed T2D [33]

PBMC RNA-Seq – 2 T2D, 2 CAD, 6 T2D + CAD, 7 HC [34]

Skin samples RNA-Seq – 74 T2D, 148 HC [35]
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Table 1. Cont.

Sample Type Transcriptomic Technique Validation Study Group References

Endothelial cells from cubital vein RNA-Seq – 5 T2D, 5 HC [36]

Whole blood RNA-Seq – 6 T2D with thirst and fatigue, 6 HC [37]

Neutrophils RNA-Seq qPCR 5 newly diagnosed T2D, 5 HC [38]

Visceral adipose tissue RNA-Seq qPCR 10 T2D, 10 HC [39]

Adipose tissue from thigh RNA-Seq qPCR 5 T2D, 5 HC [40]

Neutrophils RNA-Seq – 11 T2D, 7 HC [41]

Human islet cells Single-cell RNA-Seq RNA in situ hybridization 4 T2D, 6 HC [42]

Human islet cells Single-cell RNA-Seq – 6 T2D, 12 HC [43]

Human islet cells Single-cell RNA-Seq – 1 T1D donor, 3 T2D donors, 2 children, 3 HC [44]

Human islet cells Single-cell RNA-Seq RNA in situ hybridization 3 T2D, 5 HC [45]

PBMC—peripheral blood mononuclear cells; HC—healthy controls; T1D—type 1 diabetes; T2D—type 2 diabetes mellitus; GDM—gestational diabetes mellitus; CAD—coronary artery
disease. Studies are divided by method (microarray, RNA-seq, single-cell RNA-Seq).
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2. Approaches for Assessing Gene Expression in T2D

To evaluate gene expression, several methods are widely used in molecular biology, in-
cluding both conventional (northern blot, RT-qPCR, expression arrays) and more advanced
(RNA-seq, single-cell sequencing) technologies (Figure 1).
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Northern blot, developed in 1977, is one of the first methods used by researchers to
analyze gene expression in T2D patients [46]. It includes the separation of RNA by gel elec-
trophoresis and subsequent hybridization with a probe labeled with chemiluminescent [47].
Even though northern blot is quite cheap and easy to perform and has a high specificity,
its sensitivity is lower compared to that of RT-qPCR [48]. Compared to expression arrays,
the northern blot is inferior in terms of the number of simultaneously analyzed genes, but
its sensitivity is higher [49]. Today, the northern blot is not widely used in the clinic due
to the relatively low sensitivity and slow analysis; its use for scientific purposes is also
limited [50].

Among the variety of methods applied over time to analyze the expression of genes
associated with T2D, quantitative reverse transcription polymerase chain reaction (RT-
qPCR), DNA microarrays, and RNA-seq are the most preferred. RT-qPCR is a reliable and
widely used technique for analyzing the expression level of target sequences. It is highly
sensitive and specific, relatively cheap, allowing for the analysis of large samples, and it
does not require a long and multi-stage sample preparation [51]. One of the difficulties
in conducting an RT-qPCR experiment is the choice of a reference gene that is expressed
relatively constant in tissues, since the accuracy of the results depends on it [52]. RT-qPCR
provides reliable data and is used to validate the results of NGS or microarray experiments.
It should be noted that the RT-qPCR approach application for expression analysis makes no
allowance for the detection of new transcripts, and it also requires hypotheses, pre-designed
probes, and, therefore, thorough experiment planning.

A gene expression array (or DNA microarray) is a technology that has been success-
fully used for measuring and analyzing gene expression for over a decade. The principle
of the approach is to hybridize the fluorescently labeled complementary DNA from the
control and experimental samples to oligonucleotides attached to a solid surface of the
array [53]. The crucial limitation of this approach arises from microarray probes design
based on the reference genome. Low binding specificity, leading to cross-hybridization and
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background signals, may substantially affect the results of the study [54]. The repetitive
or related sequences, alternatively spliced transcripts, and SNPs cannot be analyzed us-
ing DNA microarray. In addition, the variety of microarrays used by researchers while
conducting experiments reduces the reproducibility of the data obtained [55]. Despite the
shortcomings, gene expression arrays are still in demand, since microarray technology is
cheaper than NGS, and the sample preparation process is simpler and more “traditional”,
which allows for the analysis of a relatively larger number of samples. The main stages
of the analysis of data obtained using expression arrays include quality assessment and
normalization. The main challenge in the analysis of microarray data is to find patterns of
differential expression that are able to characterize the difference between samples. Today,
two main approaches are used: the first is to identify individual DEGs; the second involves
the identification of functionally related gene sets with an altered expression. There are
many commercial tools and open-source software packages for finding DEGs in microarray
experiments [56]. The main tool for the second approach is Gene Set Enrichment Analysis
(GSEA) software. Overrepresented functions are revealed when comparing DEGs against
the rest of the genome or when performing a GSEA that assigns ranks to each gene in the
transcriptome depending on the differential expression level [57].

Over the past few years, RNA-seq has become a standard approach for gene expression
measurement. Initially, the Sanger sequencing method was used for cDNA sequencing,
but it was soon replaced by next generation sequencing (NGS). In addition, the Sanger
sequencing method was not suitable for the analysis of transcript expression [58]. One of
the main limitations of RNA-seq is the high cost, as well as the long and complex sample
preparation process, which reduces the sample size. Another difficulty in conducting such
an analysis is the lack of optimized standard protocols, as well as the large output file
sizes [59].

However, the benefits of this method greatly outweigh its disadvantages. For instance,
unlike RT-qPCR and expression arrays, RNA-seq does not require a priori sequence infor-
mation, which allows for the identification of new splice-variants, SNPs, novel transcripts,
and non-coding RNAs [60]. The first stage of RNA-seq results analysis is quality control,
including read trimming (the removal of adapter sequences, reads with poor quality, and
duplicated reads) and the analysis of sequence quality and GC content [61]. The next
step is read alignment to the genome (in case novel transcript discovery is required) or
annotated transcriptome (when novel transcript discovery is not needed) and subsequent
read counting using various tools for within-sample normalization [62]. Several software
tools are available today to analyze DEGs in RNA-seq experiments (DeSeq2, SAMseq,
NOISeq, EBSeq, Sleuth, baySeq, edgeR, limma-vomm, etc.). The choice of method mostly
depends on the goals, the sample size, and the number of replicates. When comparing the
DEGs software tools, the NOIseq, DESeq2, and limma+vomm methods present the best
levels of specificity. However, an optimal method for determining DEGs when conducting
an RNA-seq experiment is still lacking, so it is recommended to combine different tools
to obtain more reliable results [63]. The final step is to assess the biological functions of
DEGs as well as the molecular pathways in which they are involved, using the GSEA
software [62].

While expression arrays and RNA-seq make it possible to analyze an incomparably
larger number of genes, the results of experiments conducted using these methods require
validation by RT-qPCR.

Single-cell sequencing technology became widespread in recent years. This method has
a number of advantages over standard RNA-seq: it allows for the study of cell population
structures, the identification of the functional and developmental heterogeneity of the
cell population, and the distinguishing of a small number of cells [64]. The single-cell
phenotyping of transcriptome changes has the potential to detect the expression of cell-
specific genes and possibly identify new cell subtypes. The search for DEGs during single-
cell experiments is challenging because the data obtained differ significantly from the bulk
RNA-seq data due to high heterogeneity, small total read counts, and a large number of
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zero counts [62,65]. Usually, single-cell libraries are aligned to the reference transcriptome.
Both standard software for bulk RNA-seq (DESeq2, edgeR) and special tools for single-cell
sequencing (D3E, DEsingle, MAST, Monocle2, SigEM, SCDE, scDD, SINCERA) are used for
the analysis. A comparison of these methods showed that special tools do not significantly
outperform the standard ones. All the tools have their own advantages and limitations, but
none of them meet today’s requirements for solving single-cell sequencing problems, so
the search for a precise analysis method continues to this day [66].

3. Transcriptome Studies in T2D

The pathogenesis of T2D is not completely understood. The significance of immune
inflammation and lipid metabolism in the development of T2D [67] has been described
repeatedly; however, transcriptomic studies allow for the supplementation of the available
information on potential pathways that are involved in the pathogenesis of diabetes or
are affected in T2D patients—for example, the ubiquitin-proteasome system, cell-cycle
pathways, and cancer signaling. Supplementary Table S1 presents the main DEGs and
biological processes identified by transcriptome studies.

3.1. DEGs Involved in Lipid Metabolism

Adipose tissue plays a significant role in the development of insulin resistance in
T2D [68]. According to modern concepts, the role of adipose tissue in the pathogenesis of
diabetes comes down to the accumulation of excess lipids in the liver and to inflammation
accompanied by inflammatory cytokine production, leading to impaired insulin signal-
ing [69]. A recent RNA-seq study in visceral adipose tissue showed the reduced expression
of genes responsible for fatty acid synthesis and mitochondrial function and the increased
expression of genes associated with innate immunity and transcriptional regulation in
obese diabetic women [39]. While this study was mainly focused on visceral adipose
tissue, Saxena and colleagues directed their attention to peripheral subcutaneous adipose
tissue. The researchers compared expression profiles in thigh subcutaneous adipose tissue
cells in 30 diabetic patients and 30 controls. A total of 971 differentially expressed genes
(DEGs) were found. Pathway enrichment analysis revealed immune and inflammatory
response signaling pathways, including the HIF-1 signaling pathway, activated in the
obesity-induced chronic hypoxic state and involved in the regulation of proinflammatory
cytokines, endothelial NO synthase, insulin signaling, and gluconeogenesis [70,71]. The
upregulation of elements of the inflammatory NF-kappa B signaling pathway was also de-
termined, which allowed for the conclusion that subcutaneous adipose tissue was inflamed
in T2D patients and visceral fat along with the activation of other inflammation-related
pathways. Additionally, pathways were found to be directly involved in fat metabolism
(AMPK signaling pathway, Adipocytokine signaling pathway) and glucose metabolism
(insulin signaling pathway, PI3K-Akt pathway) [27].

Saxena and colleagues repeated the comparison of the expression profiles of femoral
fat in T2D patients and healthy controls using RNA-seq and found an altered expression
for 2752 genes and 65 miRNAs. The expression of 10 genes was validated by qPCR
(AKT2, BCL6, LIPE, METTL9, CD59, LMNA, FOS, CCL2, MUSTN1, ZNF638). Pathway
enrichment analysis revealed the activation of pathways involved in glucose and lipid
metabolism, such as the PPAR signaling pathway, and related to cholesterol metabolism,
glycolysis/gluconeogenesis, fatty acid degradation, and maturity-onset diabetes of the
young. These findings confirmed the results of a previous microarray study. Regarding
the found miRNAs, eight of them (miR-133B, -210, -22, -25, -27A, -27B, -30E, -503) were
associated with obesity, inflammation, T2D, and its microvascular complications, such as
diabetic nephropathy and retinopathy [40].

Plasma free fatty acids are known as one of the causes of peripheral insulin resis-
tance [72]. The RNA sequencing of palmitate-treated pancreatic cells of human donors
without diabetes demonstrated an expression of 86% (56) of 69 preselected T2D-associated
candidate genes, according to previous GWAS. Genes whose expression level was modified
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by palmitate exposure acted as regulators of cell death and morphology, cellular movement
and development, gene expression, molecular transport, lipid metabolism, ubiquitin, and
proteasome function. An important finding of the study is the inhibition by palmitate of
the transcription factors PDX1, PAX4, MAFA, and MAFB, which play a key role in the
development of insulin-producing β cells [73].

The combined analysis of gene expression and lipidomics in T2D patients is especially
important for understanding the complex relationship between the lipid profile and the
development of T2D. The results of integrated lipidomics and transcriptomic analysis
revealed a correlation between the altered lipid profile and significantly enriched pathways
in the peripheral blood of T2D individuals. The most significant pathways were one carbon
pool by folate, arachidonic acid metabolism, and the insulin signaling pathway [19]. Since
it is sometimes difficult to draw a direct connection between research findings and T2D
and to assess the significance of the found association, comprehensive studies of the kind
will allow for the identification of non-obvious relationships which could go unnoticed
during isolated gene expression profiling.

3.2. DEGs Belonging to Ubiquitin–Proteasome System

A gene expression analysis in pancreatic islets cells using DNA microarrays, performed
by Bugliani and colleagues, demonstrated the differential expression of 1285 genes enriched
in 23 pathways and numerous functions. Among them, the ubiquitin–proteasome system
was consistently affected in the islets of diabetic individuals compared to the controls. A
total of 30 genes encoding ubiquitin-conjugating and ubiquitin-ligating enzymes were
downregulated, and 4 upregulated genes belonged to the E3 (ubiquitin-ligating) family.
Additionally, the expression of UCHL1, USP 1, 16, 46, and COPS 2, 3, and 5, responsible
for deubiquitinating enzymes, was downregulated. The differential expression of UBE2K,
UCHL1, and PSMB7 was confirmed by RT-qPCR. Subsequent immunohistochemistry
demonstrated a significantly higher number of β-cells positive for ubiquitination and lower
proteasome activity in T2D islets, thus confirming previous findings. The researchers
suggested that reduced proteasome activity may impact insulin secretion by islet cells [20].
The expression of genes of the ubiquitin–proteasome system (UBE2H, UBE3A, USP2, USP54,
USP30) was also inhibited in palmitate-treated pancreatic cells, which supports the theory
of Bugliani and colleagues regarding the significant influence of proteasome activity on
insulin secretion by β cells [73].

3.3. DEGs Involved in Immune Response

Corbi and colleagues described DEGs implicated in cell-to-cell signaling and inter-
actions, cellular movement, immune cell trafficking, inflammatory response, and other
networks in circulating the lymphocytes and monocytes of T2D individuals with dyslipi-
demia and periodontitis. Moreover, the DEGs for patients with poorly or well-controlled
glycemia were different, which may be of interest for the targeted therapy of T2D. The
study once again demonstrated the importance of inflammation in the development of
T2D [28]. Using the association rule mining method, the authors analyzed microarray data
and identified CDC42SE2 as a DEG in patients with decompensated T2D, dyslipidemia,
and periodontitis—chronic inflammatory diseases [29]. An increased expression of RELA,
the p65 subunit of the NF-kappa-B complex which regulates DNA transcription, cell sur-
vival, and immune response to infection, were also revealed in gingival tissue affected by
periodontitis in T2D patients [74]. The activation of components of the NF-kB signaling
pathway was also noted in a study by Saxena et al. [27] and by Lv and colleagues [37].
In an RNA-seq study performed by Lv et al., LRRC19, activating NF-kB and stimulating
pro-inflammatory cytokines synthesis, was one of the significant DEGs involved in the
pathogenesis of T2D.

Another study demonstrated 76 overexpressed genes and 222 suppressed genes com-
mon in Han and Kazak Chinese diabetic patients compared to healthy controls. Downregu-
lated genes were mostly enriched in immune response processes such as granulocytes and



Genes 2022, 13, 1176 9 of 23

T-lymphocytes activation and involved in antigen processing pathways. The upregulated
genes were associated with fatty acid and carbon metabolism. It seems interesting that,
despite the presence of many common networks, the genetic patterns differ in the Han and
Kazak Chinese patients, which allows for conclusions to be drawn about the differences in
the gene expression in different populations [26]. The overexpression of the HLA-DQA1
and HLA-DQB1 genes encoding subunits of MHC class II molecules, which are responsible
for antigen presentation by immune cells, was demonstrated in T2D individuals, proving
the commonality of immune response activation in T1D, T2D, and latent autoimmune
diabetes in adults. The activation of genes associated with the IL-5, IL-6, and IL-17 sig-
naling pathways, as well as with T-cell immune response in patients with well-controlled
T2D when compared with poorly controlled T2D, may indicate a better regulation of the
immune response in patients with well-controlled T2D [23]. On the other hand, such
expression changes can be considered as a potential prognostic marker for the assessment
of the effectiveness of hypoglycemic therapy in the future.

Neutrophils are known to play an important role in the development of immune
inflammation. In the analysis of the expression profile in neutrophils from T2D patients and
healthy controls, 1990 upregulated and 1314 downregulated DEGs were found. The upreg-
ulated DEGs were mainly involved in myeloid leukocyte activation, T-cell activation, the
adaptive immune system, cytokine production, the immune response-regulating signaling
pathway, the cytokine-mediated signaling pathway, immunoregulatory interactions be-
tween a lymphoid and a nonlymphoid cell, and the immune response–regulation pathway.
The downregulated genes were related to inflammatory response, interleukin-10 signaling,
the regulation of cytokine production, and cytokine–cytokine receptor interaction [38].

To shed light on the mechanisms of neutrophil involvement in the inflammatory
process in T2D, Kleinstein and co-authors also performed RNA-seq transcriptomic anal-
ysis. Having compared the expression profiles of neutrophils in 11 diabetic patients and
7 healthy controls, the authors identified 50 DEGs. The SLC9A4, NECTIN2, and PLPP3
genes with the most altered expression in T2D patients were significantly downregulated.
Most of the discovered genes are involved in the inflammatory process, as well as in lipid
metabolism. The expression of the GNPDA1 gene was shown to be associated with glucose
metabolism [41].

A study performed by Grayson and colleagues discovered the dysregulation of genes
associated with T-cell-activation and signaling in T2D individuals compared with healthy
controls, once again providing evidence of the involvement of the immune system and
cell-mediated immunity in the pathogenesis of T2D [17].

In an analysis of skeletal muscle expression profiles in 271 individuals with glucose
tolerances ranging from normal glucose metabolism to clinical manifestation of T2D, the
UBN1 (ubinuclein 1) gene was the most differentially expressed [33]. To our knowledge,
this gene has not previously been described as associated with T2D or glucose metabolism.

Coronary artery disease (CAD) is a common comorbidity in T2D and is one of the
leading causes of death in diabetic patients worldwide [75,76]. In this regard, the results of
studies aimed at searching for common expression patterns in individuals with T2D and
CAD are of particular interest. According to Gong and colleagues, T2D and CAD patients
indeed show similar features of expression profiles in PBMC. Among the overlapping
DEGs, genes enriched in terms of viral infectious cycle, anti-apoptosis, endocrine pancreas
development, blood coagulation, and innate immune response were the most significant.
When comparing the T2D group of patients with healthy controls, the most significant
genes were those involved in the G1/S transition of the mitotic cell cycle, blood coagulation,
inflammatory response, endocrine pancreas development, and viral reproduction [34].
Previously, researchers also identified common DEGs in CAD and T2D. These included
IL2RA, TNFRSF1A, and MAPK11 [17], involved in a huge number of cellular processes such
as proliferation, differentiation, and transcription regulation. These data once again prove
the significant role of inflammation in the pathogenesis of T2D and indicate a complex
interplay in the development of T2D and CAD.
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The endothelial dysfunction, inevitably leading to atherosclerosis, CAD, and microvas-
cular complications, is known to often accompany T2D [77]. The comparative analysis of
gene expression in the endothelial cells of T2D individuals and healthy controls revealed
51 upregulated and 101 downregulated DEGs associated with metabolism and growth
pathways [36]. It is evident that the analysis of endothelial cells is not possible in routine
practice to identify risk groups for cardiovascular complications in T2D patients. However,
this study straightens out the mechanisms involved in endothelial dysfunction and the
development of macro- and microvascular complications in T2D.

3.4. DEGs Participating in Cancer Signaling and Cell-Cycle Pathways

Also of interest is the upregulation of the cancer signaling pathway, which was ob-
served repeatedly in patients with T2D. For instance, differentially expressed genes in T2D
patients and healthy controls were analyzed using microarray technology in the Pakistani
population. A total of 1017 genes were downregulated and 640 were upregulated when
comparing these two groups. However, the small sample size in this study should be con-
sidered (two representatives from each study group). Among the differentially expressed
genes identified by the pilot study were those involved in the molecular mechanisms of
cancer, cell cycle, DNA replication, recombination and repair, cellular growth and pro-
liferation, cell-to-cell signaling and interaction, and others. Canonical pathway analysis
revealed important signaling pathways: insulin receptor signaling, apoptosis signaling,
p53 signaling, molecular mechanism of cancer, and cell cycle regulation pathways. The
suppression of the p53 tumor suppressor protein gene and the dysregulation of protoonco-
gene MYC in diabetic patients clearly support the theory of an association between T2D
and cancer incidence [30]. The data obtained appear consistent with results of other studies
on the subject. For instance, the cancer signaling pathway was shown to be the most
upregulated pathway in elderly individuals with T2D compared to older people without
T2D. In addition, this study also confirmed immune inflammation in T2D, showing the
upregulation of T-cell activation and migration and inflammation pathways [31]. These
findings reaffirm existing evidence of an increased risk of cancer among T2D patients due
to hyperinsulinemia, hyperglycemia, or chronic inflammation [78].

The differential expression of cell cycle genes in the neurons, astrocytes, endothelial
cells, and blood cells of diabetic patients was demonstrated by several studies [30,32,36].
The microarray study conducted by Taneera and co-authors was devoted directly to the
analysis of the expression profile of cell cycle genes in the islet cells of T2D individuals
and healthy controls. The authors reported altered gene expression for cyclins, a cyclin-
dependent kinase, and a cyclin-dependent kinase inhibitor. The expression of CCND1,
CDK18, and CDKN1A was upregulated, while CCND3 and CDK5 were downregulated in
T2D patients compared to controls. Moreover, the CCND1 and CDK1A expression levels
were shown to correlate with HbA1C levels. CCND3 expression correlated with both
HbA1C and insulin secretion. The expression levels of CDK5 and CDK18 positively and
negatively correlated with insulin secretion, respectively. An interesting finding of the
study was the effect of age on the expression of the CDKN1A, CDKN2A, CCNI2, CDK3, and
CDK16 genes [22].

3.5. DEGs in T2D Complications

A better understanding of the gene expression changes’ role in diabetic complications
might provide novel insights into the genome function mechanisms in T2D, making it pos-
sible to define the risk groups for a severe course of disease and to prevent its microvascular
and macrovascular complications. The CD44 and CCL5 genes were found to be associated
with wound healing in diabetic patients when analyzing the transcriptome of dermal
lymphatic endothelial cells [79]. CCL5 is a chemokine that is a chemoattractant for inflam-
matory cells that release pro-angiogenic factors, stimulating wound vascularization [80].
The transmembrane protein CD44 is also responsible for wound healing, angiogenesis,
and immune modulation [81]. Previously published data on the increased concentration
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of CD44 in the serum of patients with insulin resistance provide hope for the possibility
of using this molecule as a potential predictive marker for the development of diabetic
complications [82].

Wu and colleagues compared the expression profiles in the skin of 74 T2D patients
and 148 healthy controls. The results indicate the involvement of genes responsible for
the immune response (CCL20, CXCL9, CXCL10, CXCL11, CXCL13, CCL18), as well as
the tumor necrosis factor superfamily and infectious disease pathway genes. The data
obtained from RNA-seq correlated with the results from microarray datasets processed
in the same way [35]. The overexpression of genes associated with immune response
and inflammation in the skin of T2D individuals is consistent with the idea of immune
inflammation underlying T2D skin manifestations [83].

The differential expression of 320 genes was found while performing transcriptional
profiling comparing the blood-derived RNA of Mexican patients with diabetic retinopathy
and T2D individuals without this complication. Confirmation by RT-PCR and cDNA
sequencing revealed differential splicing in the TUBD1 gene encoding Tubulin delta 1. The
co-expression of the a and b transcript isoforms was shown to be protective against diabetic
retinopathy in T2D patients. The co-expression of the isoforms a, b, and d increased the
risk of developing non-proliferative retinopathy, and the absence of the co-expression of
the a and b isoforms was associated with the risk of proliferative retinopathy. A conclusion
was made about the possible use of TUBD1 gene transcriptional isoforms as a biomarker
for the presymptomatic diagnosis of diabetic retinopathy [25].

To reveal the pathogenesis of neuronal and endothelial damage in T2D, which poten-
tially leads to diabetic neuropathy and dementia, Bury et al. conducted a study on cortical
neurons, astrocytes, and endothelial cells, in which 912, 2202, and 1227 genes were shown
to be differentially expressed, respectively, when comparing diabetic and nondiabetic pa-
tients. The expression level of the selected genes was confirmed using the NanoString
nCounter platform. The most significant among them were DDIT3, H2AFX, HMOX1,
NQO1, COX5B, GRIN1, and TF. The expression and localization of proteins encoded by
the COX5b, NDUFb6, TGFβ1, FOXO3a, and p53 genes in neurons were validated using
immunohistochemistry analysis. The affected signaling pathways included the HIF-1 sig-
naling pathway, the insulin signaling pathway, cell cycle, cellular senescence, and oxidative
phosphorylation signaling. The activation of these neuronal signaling pathways can be
associated with neuronal dysfunction in dementia, and changes in the gene expression in
astrocytes and endothelial cells indicate that T2D also impacts non-neuronal cells in the
central nervous system [32].

3.6. The Role of Ethnic Differences

Of particular interest are studies on the gene expression in different ethnicities rep-
resentatives, since it is known that African American origin is a risk factor of T2D devel-
opment [84]. The results of a comparative analysis of the expression profiles in the white
blood cells of African American and Caucasian origin subjects demonstrated statistically
significant differences. The communication between innate and adaptive immune cells and
primary immunodeficiency signaling pathways was significantly downregulated in African
American subjects, while the complement system and interferon signaling pathways were
downregulated in individuals of Caucasian origin. The researchers also found common
patterns specific to T2D patients. Thirty DEGs were detected when compared with the
control group. The expression of ABCA1, ALAS2, IL4, IL8, and PTGS2 was validated by
qPCR. The identified DEGs were implicated in immune responses, lipid metabolism, and
organismal injury/abnormality [18].

3.7. Early Expression Changes

To identify the specific expression patterns of insulin resistance, a transcriptomic pro-
file of peripheral blood mononuclear cells was analyzed in healthy subjects with extremes
of the distribution of HOMA-IR. A total of nine genes from Adrenergic Signaling in the
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CardioMyocytes pathway with a significantly altered expression in PBMC (ADCY9, TNNI3,
RAPGEF3, CACNA1S, CACNG3, ADRA1B, CAMK2D, PPP2R3C, PPP2CA) were identified
when comparing subjects with extreme insulin resistance or sensitivity. The function of
these genes is to regulate calcium influx, cell growth, and apoptosis [24]. Even though these
genes are not directly involved in the regulation of glucose homeostasis, this finding in
healthy and young individuals provides an opportunity for the further search for genetic
markers of the risk of developing T2D.

The search for expression changes common for T2D and impaired fasting glucose
brings us closer to universal biomarkers that allow for the identification of risk groups for
developing T2D. These biomarkers can include both DEGs and circulating miRNAs. Cui
and co-authors found the overexpressed TAF1 gene and downregulated MAFK as common
nodes in T2D individuals and subjects with impaired fasting glucose [85]. The TAF1 gene
was associated with insulin resistance and glycated hemoglobin and was overexpressed in
obese T2D subjects in previous studies [86,87]. The MAFK gene may also play an important
role in T2D pathogenesis, as it regulates numerous β-cell-related genes [88]. The researchers
also found common dysregulated miRNAs: miR-29a, miR-144, and miR-192 [85]. The dys-
regulation of these microRNAs has already been described in previous studies comparing
T2D subjects and healthy controls [89].

3.8. MicroRNA Expression Changes

Over the past decade, researchers repeatedly demonstrated miRNA expression changes
in T2D. The availability of circulating miRNAs makes them promising biomarkers for the
presymptomatic diagnosis of T2D. The expression profile changes of multiple circulating
miRNAs were demonstrated in studies on diabetic patients [89,90]. MiR-29a, miR-144,
miR-375, and miR-34a are among the most studied miRNAs in T2D patients. MiR-375 is
highly expressed in pancreatic islets [91], whole blood [92], plasma [93], and serum [94],
and it is involved in insulin secretion and glucose homeostasis [95]. MiR-34a regulates the
inhibition of cell-cycle progression and the induction of apoptosis, associated with p53
function [96]. The expression changes of miR-34a were also detected in the PBMC [97],
serum [94], and plasma [98] of diabetic patients. The target gene for miR-29a and miR-144 is
IRS1, a mediator between the insulin receptor, insulin-like growth factor 1, and PI3K/AKT
intracellular signaling pathway elements involved in the translocation of GLUT4 into the
plasma membrane for glucose transport [99–101]. According to early studies, miR-144 was
found in serum [102], plasma [103], muscle [104], and whole blood [92]. MiR-29a, in turn,
was expressed in all insulin-dependent organs and tissues [105]. Altered levels of miR-29a
were also detected in plasma [106], serum [95], and whole blood [92].

4. Common Features of Gene Expression in Type 1 Diabetes and Gestational
Diabetes Mellitus

An interesting finding was described by Chinese authors who showed that a decreased
expression of jun proto-oncogene (JUN) and the upregulation of interleukin 1β (IL-1β)
in peripheral blood may have a prognostic value for T2D development in children [107].
Interestingly, the differential expression of the IL1B gene has already been described in
children with T2D by Kaiser and colleagues. The study analyzed the expression profiles in
children with type 1 diabetes (T1D) and T2D. The comparison showed that the IL1B gene
belongs in common for T1D and T2D DEGs, while the expression of MYC is significantly
increased in T1D children when compared with T2D children [16]. IL-1β plays a significant
role in the pathogenesis of diabetes, as it is known to regulate the inflammatory process,
leading to β-cell death [108].

The search for common pathogenetic mechanisms and prognostic markers for T1D and
T2D is also of particular interest. Gao and colleagues compared the T1D and T2D expression
profiles with healthy controls. The MGAM and NAMPT genes had a high predictive value
for T2D. PNP and CCR1 were common DEGs for T2D and T1D [109]. To date, there are
no studies to explain the relationship between the PNP gene and diabetes, but it is known
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that antagonists of CCR1 (C-C chemokine receptor type 1) can inhibit the recruitment of
monocytes and lymphocytes into the renal interstitium and thus have a beneficial effect in
slowing down the development of diabetic nephropathy [110]. The suppression of CCR1
also attenuates neuropathic pain in diabetic mice [111]. MGAM (maltase-glucoamylase)
is known to modulate gluconeogenesis and has a high hydrolytic activity against glucose
oligomers [112,113]. The NAMPT gene was also repeatedly reported as associated with
T2D and obesity [114].

In another microarray study, the expression profiles in the peripheral mononuclear
blood cells of patients with T1D were closer to gestational diabetes mellitus (GDM) as
compared to T2D. The DEGs common to T1D, T2D, and GDM were 22 genes, 7 of which
(EGF, FAM46C, HBEGF, ID1, SH3BGRL2, VEPH1, and TMEM158) proved to be the most
significant [21]. The epidermal growth factor (EGF) was shown to regulate insulin secretion,
and its level was reduced in diabetic mice [115]. FAM46C, being a target gene for miR-657, is
involved in the pathogenesis of GDM by regulating macrophage proliferation and migration
and thus modulating the inflammatory response in GDM [116]. The heparin-binding EGF-
like growth factor encoded by the HBEGF gene is crucial for glucose-stimulated β-cell
proliferation, as demonstrated in rats [117]. The DNA-binding protein inhibitor ID1 was
found in the islets of diabetic mice and is also associated with diabetes. ID1 knockout plays
a protective role and prevents the development of glucose intolerance and the loss of b-cell
gene expression induced by a high-fat diet [118]. Rs9352745, the expression quantitative
trait locus for SH3BGRL2 gene, is associated with gestational weight gain [119]. This
may partly explain the excess weight gain during pregnancy in patients with GDM. The
role of the VEPH1 gene in the development of diabetes has not yet been studied, but
Melted, an ortholog of VEPH1 in Drosophila, is known to be involved in insulin/PI3K
signaling [120]. The role of the last gene, TMEM158, in the pathogenesis of T2D has yet to
be studied. Despite the lack of a comprehensive theory that fully explains the significance
of the aforementioned genes in the development of T2D, T1D, and GDM, the search for
common mechanisms can contribute to the improvement of approaches to the prevention
and precision treatment of diabetes.

5. Findings from Single-Cell Sequencing Studies

Great knowledge about the processes undergone directly in the pancreas was obtained
from single cell studies. Using this new technology, researchers have shown the high
proliferative capacity of multipotent pancreatic progenitor cells, as well as their develop-
mental heterogeneity and dedifferentiation processes in adult T2D individuals. Segerstolpe
et al. applied another approach to the transcriptome analysis of pancreatic islet cells. The
single-cell transcriptome profiling of endocrine and exocrine pancreatic cells obtained from
six healthy controls and four T2D donors revealed the downregulated expression of INS
and FXYD2 genes and the overexpression of GPD2 and LEPROTL1 in the β-cells of T2D
individuals. All of the genes were previously reported to be involved in T2D pathogenesis
through modulating insulin secretion and regulating body weight. The expression of
PCSK1N and SCG5 was found to correlate with the body mass index in all cell types of the
pancreatic islets [42].

A similar conclusion was reached by Lawlor and colleagues, who also found a de-
creased expression of INS along with STX1A in T2D β-cells compared with nondiabetic
donors. Both detected genes play a significant role in insulin secretion by β-cells. Among
other things, the researchers also found an upregulated expression of CD36 and a down-
regulated expression of GDA in α-cells. CD36, a fatty acid transporter, was previously
shown to be associated with diabetes, while the role of LAPTM4B and RCOR1, significantly
dysregulated in δ-cells, remains unclear and requires further investigation [45,121].

Another study based on a single-cell RNA-seq of islet cells from 6 diabetic and
12 non-diabetic organ donors revealed the dysregulated expression of 54, 48, 119, and
33 genes in α-, β-, and δ-cells and PP cells, respectively. Most of them have an unknown
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function (28%) or are related to non-islet cell growth (38%) or another non-islet cell function
(26%) [43].

A study comparing the α- and β-cell expression profiles of T2D donors and children
showed intriguing results [44]. One of the main findings of the study reveals that the islet
cells’ expression profile in child donors had immature gene signatures. Indeed, islet cell
differentiation is known to complete after maturation in the postnatal period [122]. The
expression profiles in T2D donors were partially like those in children, demonstrating
the dedifferentiation process that causes the dysfunction of insulin secretion, which may
be one of the key mechanisms in the development of T2D, along with insulin resistance.
The dedifferentiation of β-cells into a multipotent progenitor state may be caused by
hyperglycemia, as previously shown (glucose toxicity) [123]. However, the expression
profiles of β-cells in healthy old and young mice are very similar, which may indicate that
the processes of β-cell dedifferentiation occur not only under the influence of hyperglycemia
but also in the normal state [124].

According to the results of another single-cell study on islet cells from mice, the differ-
entiation and increase of β-cells are regulated by reactive oxygen species and Srf/Jun/Fos
transcription factors [125]. At the same time, heterogeneity in the regulation of genes
responsible for functional maturation and endoplasmic reticulum (ER) stress was also
found in the β-cell population [126]. It was shown that the loss of functional b-cell mass
due to the dedifferentiation of β-cells and their loss of maturity might be in response to
ER stress [127]. Since recent studies have shown the reversibility of the dedifferentiation
process, this gives hope that suppressing ER stress will help to restore lost functions.

Interestingly, a single-cell study performed on isolated β-cells from healthy donors also
showed islet cell dedifferentiation and transdifferentiation. In particular, insulin-secreting
cells showed a low expression level of β-cell genes and an overexpression of progenitor
markers. β-cells were assumed to be in a plastic state and undergo dedifferentiation during
isolation and ex vivo cultivation [128]. Additionally, researchers showed an independent
accumulation of genetic aberrations and transcriptional noise in islet cells with age [129].
Undoubtedly, these age-related changes can affect, among other things, the endocrine
function of the pancreas, which can partly explain the development of T2D in middle-aged
and older adults.

Later, in another single-cell study, pancreatic cells (in particular, progenitor ductal
cells) from human donors demonstrated developmental heterogeneity [130]. An important
conclusion of this work is that, in addition to exocrine and endocrine progenitors, there
may be a ducto-endocrine differentiation gradient. In addition, these cells were found
in the pancreas of T1D and T2D donors regardless of disease duration. The possibility
of stimulating these cells in vivo opens new opportunities for further pharmacological
research and the elaboration of novel therapeutic approaches. The results of recent research
put before us the forgotten concept of the plastic state of ductal progenitor cells capable of
differentiation into facultative progenitors and dedifferentiation [131].

Single-cell transcriptomic studies on islet cells have become one of the most popular
molecular methods in the study of T2D in the past years, since it requires a relatively small
amount of material and allows for the determination of the expression signatures of individ-
ual cells, including those with a low abundance. One of the main difficulties in conducting
a single-cell experiment is the choice of sample preparation protocol. Bonnycastle and
colleagues demonstrated the importance of proper fixation and the cryopreservation of
islet cell samples for further single-cell sequencing. The researchers found significant differ-
ences in the proportion of the detected cell types, as well as in the specific patterns of gene
expression in the islets prepared for a single cell experiment using different protocols [132].
This indicates the need to develop a standardized approach to sample preparation methods,
sequencing, and bioinformatics analysis in the single-cell study by investigators. A small
number of the analyzed samples of islet cells derived from donors, due to difficulties in
obtaining material for analysis, may manifest in the absence of the replication of research
results. For instance, Wang and colleagues analyzed the results of three previously pub-
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lished single-cell studies in T2D patients and control groups and found a limited number
of overlapping genes expressed by β-cells. These include downregulated ERO1LB and
upregulated TTR, FXYD2, TUBA1C, FTL, and INS [133]. Another issue of current interest is
the limited number of reliable α- and β-cell markers, which would help to separate cell
populations. The use of flow cytometry made it possible to determine the marker TM4SF4
specific for α-cells, as well as CD24 and CD44 localized on the membranes of acinar and
ductal cells, while β-cells turned out to be TM4SF4- and CD24-negative [134]. These find-
ings can undoubtedly be extremely useful and beneficial for obtaining data specific to the
populations of islet cells. However, the problem of the morphofunctional and molecular
heterogeneity of β-cells remains. Protein expression studies came to the rescue in solving
this issue, which made it possible to identify surface proteins and intercellular molecules
specific for subpopulations of β-cells. Thus, the differential expression of ST8SIA1 and CD9
allows for the distinguishing between subpopulations of β-cells in normal adult islets and
for the revelation of significant differences in terms of β-cells subpopulation percentages in
diabetic donors [135,136]. A deeper understanding of the β-cells population heterogeneity
will allow us to develop strategies for the prevention and targeted therapy of T2D in
the future.

6. Comparative Analysis of Genomic and Transcriptomic Patterns

Of particular interest is the question of how the expression changes obtained from mi-
croarrays and RNA-seq studies correspond to molecular pathways and biological processes
associated with genes at loci associated with T2D in major GWAS. To answer this question,
we performed a comparative analysis of genomic and transcriptomic patterns based on
the datasets from the open databases. First, we obtained a complete list of 628 genes at
GWAS loci using several recent GWAS datasets for T2D, including the UK Biobank study,
GERA [137], and latest meta-analyses involving the DIAGRAM consortium [138,139]. The
analysis was performed using a recently proposed method for the functional annotation
of GWAS data called FUMA [140]. We also selected 2492 DEGs with the most significant
log2-feld change obtained in studies from Table 1. The gene list provided by FUMA was
intersected with a complete list of DEGs. Such an analysis identifies 107 common genes
between the two sets (Figure 2a). We next analyzed the molecular pathways associated with
these common genes. Enrichment analysis using the Molecular Signatures Database [141]
identified 98 canonical pathways, showing a significant overlap with 107 common genes.
The top enrichment included processes related to the cell cycle, mitosis, and immune
system activity (Figure 2b). The relatively small number of shared genes may be due to the
existing limitations of both transcriptomic and GWA studies. In addition, the analysis of
ethnically heterogeneous populations and different tissues may mask existing differences.
At the same time, the recent rapid growth in the number of transcriptomic studies gives
hope for additional data allowing for complex meta-analyses with strict inclusion and
exclusion criteria.
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7. Discussion

To date, the contribution of the hereditary component to the development of T2D
is well known; however, the pathogenesis of this disease is not yet fully understood.
The multifactorial nature of T2D makes it challenging to study, so it seems promising to
identify the genetic factors that have a significant impact on the development of the disease
throughout the application of omics approaches, including genomics, transcriptomics,
proteomics, and others. Over the past decade, our knowledge on the functional pathways
of T2D has been greatly expanded by recent transcriptomic studies that confirmed the
important role of the immune system and inflammation in diabetes development as well as
indicated a clear involvement of the components of the cancer signaling pathway, which
is consistent with the hypothesis that the risk of cancer is significantly higher in T2D
patients [78]. The significant role of visceral adipose tissue in the development of insulin
resistance in T2D was confirmed by RNA-seq research [39]. Additionally, the common
molecular mechanisms in the pathogenesis of T2D, T1D, and GDM were found, as well
as early presymptomatic changes in individuals with borderline insulin resistance and
impaired fasting glucose [24,85].

Conducting a transcriptomic study requires the consideration of many factors that
may affect the results obtained. As is known, T2D patients often have concomitant diseases,
an elevated BMI, and diabetic macro- and microvascular complications influencing the
expression profile, and this should be considered when forming study groups and planning
experiments. In addition, it is necessary to take into consideration hypoglycemic therapy
and medications for comorbidities that are taken by patients and their effectiveness. The
ethnicity of the participants can also play a significant role. It was suggested that the
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molecular mechanisms of the T2D pathogenesis may differ in the representatives of diverse
ethnic groups [26].

One of the main points during the preparation of a transcriptome analysis experiment
is the choice of study material. Since the main insulin targets are the liver, skeletal muscle,
and adipose tissue, studying the expression in these tissues really matters [142]. The main
difficulty is the need for a biopsy or another invasive procedure so that a piece of tissue or
a sample of cells could be tested. Whole blood or PBMC might be a solution to this issue.
Peripheral blood testing is more suitable for searching for potential T2D risk biomarkers
or for early diagnosis due to its accessibility. Of particular interest are studies on the
pancreas; however, obtaining a biomaterial is difficult. The material from deceased donors,
cell cultures, or mouse models of T2D may solve this problem. T2D mouse models are
currently being used by many researchers around the world [143]. It was shown that the
expression profiles of mouse and human α- and β-cells are very similar; however, there
are interspecies differences that do not allow for the full characterization of molecular
and biological processes in T2D individuals [43] and the prediction of the regenerative
behavior of human pancreatic tissue [131]. Additionally, the experiment often requires
special controlled conditions. These limitations and ethical considerations limit the use of
animal models to study T2D. The use of cell cultures is devoid of the listed shortcomings
since it allows the experiment to be carried out under specified conditions. Today, there is a
wide variety of in vitro models of pancreatic cells, each of which has its own advantages
and disadvantages. Some of them, i.e., primary cell lines, are more representative but
have a limited proliferative potential and are difficult to obtain. Transformed cell lines and
stem cells, in contrast, have a longer lifespan but are less representative of the selected
tissue [144]. Scientists are still searching for the ideal in vitro model of the pancreas for
gene expression research.

Due to the high cost and complex sample preparation, the sample size used for
transcriptomic studies is commonly quite small. A small sample size is one of the basic
reasons for validating study results. In the case of a small sample, it makes sense to
validate the expression of selected genes by the RT-qPCR method on an expanded sample
to obtain reliable results, since the RT-qPCR method is more accessible and easier to perform
compared to RNA-seq or expression arrays. One of the core issues of most conducted
transcriptomic studies is the lack of validation by another method. Since transcriptomic
studies provide massive data on a variety of DEGs, researchers are faced with a choice
about the set of genes that require validation. These may be genes with the most significant
expression changes or genes with a described function. When comparing the data on
gene expression obtained by RNA-seq and RT-qPCR, they were reproduced in 85% of
cases. However, the remaining 15% consisted mainly of genes with fewer exons or a lower
expression. When conducting transcriptomic studies, the validation of the expression levels
of such genes by RT-qPCR is required [145].

The interpretation of the study results can also be difficult, since the found DEGs
often do not have the described function. Additional studies aimed at the analysis of
non-coding RNAs, DNA methylation, and histone acetylation, which can affect the level of
expression, as well as proteomic studies, may partly bring us closer to solving the problem
by determining genes that are differentially expressed at both the transcript and protein
levels and factors affecting expression.

8. Conclusions

In this article, we present the main results of transcriptomic studies conducted using
expression arrays, RNA-seq, and single cell sequencing. Recent research provided evidence
for the important role of immune inflammation in the pathogenesis of T2D and revealed the
activation of cancer signaling, cell cycle pathways, and the role of the ubiquitin–proteasome
system in T2D patients. The importance of adipose tissue, both visceral and peripheral,
in the development of insulin resistance was confirmed once again. Despite the massive
data provided by transcriptome studies, there are still many limitations affecting the
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results, as well as challenges that researchers must face from the choice of the material
and method to the interpretation of the results. Undoubtedly, the data obtained using
transcriptomic technologies allow for the shedding of light on the molecular mechanisms
of T2D pathogenesis and the consideration of new diagnostic and therapeutic approaches.
However, before introducing them into clinical practice, additional large-scale studies are
required, considering both the achievements and the limitations of previous studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
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