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Despite consensus on the neurological nature of autism spectrum disorders (ASD), brain biomarkers remain
unknown and diagnosis continues to be based on behavioral criteria. Growing evidence suggests that brain ab-
normalities in ASD occur at the level of interconnected networks; however, previous attempts using functional
connectivity data for diagnostic classification have reached only moderate accuracy. We selected 252 low-
motion resting-state functional MRI (rs-fMRI) scans from the Autism Brain Imaging Data Exchange (ABIDE)
including typically developing (TD) and ASD participants (n = 126 each), matched for age, non-verbal IQ, and
head motion. A matrix of functional connectivities between 220 functionally defined regions of interest was
used for diagnostic classification, implementing several machine learning tools. While support vector machines
in combination with particle swarm optimization and recursive feature elimination performed modestly (with
accuracies for validation datasets b70%), diagnostic classification reached a high accuracy of 91% with random
forest (RF), a nonparametric ensemble learning method. Among the 100 most informative features (connectivi-
ties), for which this peak accuracy was achieved, participation of somatosensory, default mode, visual, and sub-
cortical regions stood out. Whereas some of these findings were expected, given previous findings of default
mode abnormalities and atypical visual functioning in ASD, the prominent role of somatosensory regionswas re-
markable. The finding of peak accuracy for 100 interregional functional connectivities further suggests that brain
biomarkers of ASD may be regionally complex and distributed, rather than localized.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Autism spectrum disorder (ASD) is a highly heterogeneous disorder,
diagnosed on the basis of behavioral criteria. From the neurobiological
perspective, ‘ASD’ can be considered an umbrella term thatmay encom-
pass multiple distinct neurodevelopmental etiologies (Geschwind and
Levitt, 2007). Since any given cohort is thus likely composed of ill-
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understood subtypes (whose brain features may vary subtly or even
dramatically), it is not surprising that brain markers with perfect
sensitivity and specificity remain unavailable. Nonetheless, given
the specificity of diagnostic criteria (American Psychiatric Associa-
tion, 2013), the hope that some (potentially complex) patterns of
brain features may be unique to the disorder is not unreasonable
and worthy of pursuit.

Issues of heterogeneity and cohort effects can be partially addressed
through theuse of large samples, as provided by the recentAutismBrain
Imaging Data Exchange (ABIDE) (Di Martino et al., 2014), which incor-
porates over 1100 resting state functional MRI (rs-fMRI) datasets from
17 sites. The use of these data for examining functional connectivityma-
trices for large numbers of ROIs across the entire brain is further prom-
ising, as there is growing consensus about ASD being characterized by
aberrant connectivity in numerous functional brain networks (Schipul
et al., 2011; Vissers et al., 2012; Wass, 2011). However, the functional
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2015.04.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.nicl.2015.04.002
rmueller@sdsu.edu
http://dx.doi.org/10.1016/j.nicl.2015.04.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/22131582
www.elsevier.com/locate/ynicl


239C.P. Chen et al. / NeuroImage: Clinical 8 (2015) 238–245
connectivity literature in ASD is complex and often inconsistent (Müller
et al., 2011; Nair et al., 2014), and data-driven machine learning (ML)
techniques provide valuable exploratory tools for uncovering potential-
ly unexpected patterns of aberrant connectivity that may characterize
the disorder.

A fewprevious ASD studies have used intrinsic functional connectiv-
ity MRI (fcMRI) (Van Dijk et al., 2010) for diagnostic classification,
i.e., for determiningwhether a dataset is from anASD or typically devel-
oping participant solely based on functional connectivity. Anderson and
colleagues (2011), using a large fcMRI connectivity matrix, reached an
overall diagnostic classification accuracy of 79%, which was however
lower in a separate small replication sample. Uddin et al. (2013a) used
a logistic regression classifier for 10 rs-fMRI based features identified
by ICA, which corresponded to previously described functional net-
works. The classifier achieved accuracies about 60–70% for all but one
component identified as salience network, for which accuracy reached
77%. Imperfect accuracy in these studies may be attributed to moderate
sample sizes (N ≤ 80). However, in a recent classification study using
themuch larger ABIDE dataset, Nielsen et al. (2013) reported an overall
accuracy of only 60%, suggesting that the approach selected, a leave-
one-out classifier using a general linear model, may not be sufficiently
powerful.

In the present study, we implemented several multivariate learning
methods, including random forest (RF), which is an ensemble learning
method that operates by constructing many individual decision trees,
known in the literature as classification and regression trees (CART).
Each decision tree in the forest makes a classification based on a boot-
strap sample of the data and a random subset of the input features.
The forest as a whole makes a prediction based on the majority vote
of the trees. One desirable feature of the random forest algorithm is
the bootstrapping of the sample to have a built-in training and valida-
tionmechanism, generating anunbiased out-of-bag error thatmeasures
the predictive power of the forest. Features were intrinsic functional
connectivities (Van Dijk et al., 2010) between a standard set of regions
of interest using only highest quality (lowmotion) datasets fromABIDE.
2. Methods and materials

Data were selected from the Autism Brain Imaging Data Exchange
(ABIDE, http://fcon_1000.projects.nitrc.org/indi/abide/) (Di Martino
et al., 2013), a collection of over 1100 resting-state scans from 17 differ-
ent sites. In view of the sensitivity of intrinsic fcMRI analyses to motion
artifacts and noise (as described below),we prioritized data quality over
sample size. We excluded any datasets exhibiting artifacts, signal drop-
out, suboptimal registration or standardization, or excessive motion
(see details below). Sites acquiring fewer than 150 timepointswere fur-
ther excluded. Based on these criteria, we selected a subsample of 252
participants with low head motion (see details below). Groups were
matched on age and motion to yield a final sample of 126 TD and 126
ASD participants, ranging in age from 6 to 36 years (see Table 1 for sum-
mary and see Inline Supplementary Table S1 for fully detailed partici-
pant and site information).

Inline Supplementary Table S1 can be found online at http://dx.doi.
org/10.1016/j.nicl.2015.04.002.
Table 1
Participant information.

Full sample ASD, M ± SD [range, #391]

N (female) 126 (18)
Age (years) 17.311 ± 6.00 [8.2–35.7]
Motion (mm) .057 ± .020 [.018–.108]
Non-verbal IQ 106.86 ± 17.0 [37–149]
2.1. Data preprocessing

Data were processed using the Analysis of Functional NeuroImages
software (Cox, 1996) (http://afni.nimh.nih.gov) and FSL 5.0 (Smith
et al., 2004) (http://www.fmrib.ox.ac.uk/fsl). Functional images were
slice-time corrected, motion corrected to align to the middle time
point, field-map corrected and aligned to the anatomical images using
FLIRT with six degrees of freedom. FSL3s nonlinear registration tool
(FNIRT) was used to standardize images to the MNI152 standard
image (3 mm isotropic) using sinc interpolation. The outputs were
blurred to a global full-width-at-half-maximum of 6 mm. Given recent
concerns that traditional filtering approaches can cause rippling of mo-
tion confounds to neighboring time points (Carp, 2013), we used a
second-order band-pass Butterworth filter (Power et al., 2013;
Satterthwaite et al., 2013) to isolate low-frequency BOLD fluctuations
(.008 b f b .08 Hz) (Cordes et al., 2001).

Regression of 17 nuisance variables was performed to improve data
quality (Satterthwaite et al., 2013). Nuisance regressors included six
rigid-body motion parameters derived from motion correction and
their derivatives. White matter and ventricular masks were created at
the participant level using FSL3s image segmentation (Zhang et al.,
2001) and trimmed to avoid partial-volume effects. An average time se-
ries was extracted from each mask and was removed using regression,
along with its corresponding derivative. Whole-brain global signal
was also included as a regressor to mitigate cross-site variability
(Power et al., 2014). All nuisance regressors were band-pass filtered
using the second-order Butterworth filter (.008 b f b .08 Hz) (Power
et al., 2013; Satterthwaite et al., 2013).

2.2. Motion

Motion was quantified as the Euclidean distance between consecu-
tive time points (based on detected six rigid-body motion parameters).
For any instance greater than 0.25 mm, considered excessive motion,
the time point as well as the preceding and following time points
were censored, or “scrubbed” (Power et al., 2012a). If two censored
time points occurred within ten time points of each other, all time
points between them were also censored. Datasets with fewer than
90% of time points or less than 150 total time points remaining after
censoring were excluded from the analysis. Runs were then truncated
at the point where 150 usable time points were reached. Motion over
the truncated run was summarized for each participant as the average
Euclidean distance moved between time points (including areas that
were censored) and was well matched between groups (p = 0.92).

2.3. ROIs and connectivity matrix

Weused 220 ROIs (10mmspheres) adopted fromameta-analysis of
functional imaging studies by Power et al. (2011), excluding 44 of their
264 ROIs because of missing signal in N2 participants. Mean time
courseswere extracted from each ROI and a 220× 220 connectivityma-
trix of Fisher-transformed Pearson correlation coefficients was created
for each subject. We then concatenated each subject3s functional con-
nectivities to construct a group level data matrix. For each ROI pair,
we regressed out age (as numerical) and site (as categorical) covariates
TD, M ± SD [range, #391] p-Value (2-sample t-test)

126 (31)
17.116 ± 5.700 [6.5–34] 0.800
.058 ± .020 [.020–.125] 0.923
106.28 ± 12.8 [67–155] 0.800

http://fcon_1000.projects.nitrc.org/indi/abide/
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Fig. 1. Informative features selected by RF. (A) Pie chart showing the number of informative ROIs per functional network. (B) Normalized number of informative ROIs per network (ratio of
the number of times network ROIs participate in an informative connection divided by the total number of ROIs in given network). This number can exceed 1 because a given ROI may
participate in several informative connections. (C) Heatmap of informative connections by functional networks. (D) Number of informative ROIs per anatomical parcellation.
(E) Normalized number of informative ROIs per anatomical parcel (ratio of the number of times anatomical ROIs participate in an informative connection divided by the total number
of ROIs in given parcel). (F) Heatmap of informative connections by anatomical parcel.
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from data matrix. For interpretation of findings, ROIs were further
sorted according to two classification schemes. One was functional,
using ROI assignments into networks by Power et al. (2011). The
otherwas anatomical, using eachROI3s centerMNI coordinate and a sur-
face based atlas (Fischl et al., 2004) included in FreeSurfer. These ana-
tomical labels were also used to generate connectograms (Irimia et al.,
2012) for complementary visualization of informative connectivities
(Inline Supplementary Table S2).

Inline Supplementary Table S2 can be found online at http://dx.doi.
org/10.1016/j.nicl.2015.04.002.

2.4. Machine learning algorithms

Three ML algorithms (see Supplemental methods for technical
details) were implemented in this study to perform a binary classifica-
tion (ASD vs. TD) using rs-fMRI data: (i) support vector machines
(SVM) in combination with particle swarm optimization (PSO) for
feature selection (PSO-SVM); (ii) support vector machines with recur-
sive feature elimination (RFE-SVM) for feature ranking; and (iii) a non-
parametric ensemble learning method called random forest (RF).

2.4.1. Particle swarm optimization (PSO-SVM)
We first used PSO (Kennedy, 1995) in combination with a base clas-

sifier, a linear support vectormachine. PSO is a biologically inspired, sto-
chastic optimization algorithm that models the behavior of swarming
particles. The PSO algorithm was utilized as a feature selection tool to
obtain a compact and discriminative feature subset for improved accu-
racy and robustness of the subsequent classifiers.

2.4.2. Recursive feature elimination (RFE-SVM)
In a second approach, we used recursive feature elimination, a prun-

ing technique that eliminates original input features by using feature
ranking coefficients as classifier weights, and retains a minimum subset
of features that yield best classification performance (Guyon, 2002). The

http://dx.doi.org/10.1016/j.nicl.2015.04.002
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output obtained from this algorithm is a list of all features ranked in the
order of most informative to least. We used RFE to reduce the feature
space dimensionality and select the top informative features.

2.4.3. Random forest (RF)
In RF, the basic unit is a classification tree and the ensemble of trees (or

forest) is used to classify participants using features (e.g., connectivity
measures from fMRI; see Inline Supplementary Fig. S1). Each tree clas-
sifies or predicts a diagnostic status, and the forest3s final prediction is
the classification having themost votes based on all the trees in the forest.
In random forests, it is not necessary to perform cross-validation or a
separate test set to obtain an unbiased estimate of the test set error be-
cause validation is intrinsic to RF. Out-of-bag (OOB) error is estimated in-
ternally, during the RF run (http://www.stat.berkeley.edu/~breiman/
RandomForests). Each tree in the forest is constructed using a bootstrap
sample from the original data. The bootstrap randomly draws samples,
with replacement from the original dataset. Each bootstrap sample will
contain approximately two-thirds of the original observations, which re-
sults in one-third of the subjects being left out (i.e., not used in the con-
struction of a particular tree). These out-of-bag samples are used to
attain an unbiased estimate of the classification error (Breiman, 2001).
The OOB error estimate can be shown to be almost identical to the error
obtained by cross-validation (Hastie et al., 2009). RF is an example of
bootstrap aggregation or bagging and is relatively protected from
overfitting (Breiman, 2001). As an additional improvement of the bagging
process, RF reduces the correlation between trees by using a subset of the
variables at each split in the growing of each tree. RF also provides vari-
able importance measures for feature selection. The OOB data are used
to determine variable importance, based on mean decrease in accuracy.
This is done for each tree by randomly permuting a variable in the OOB
data and recording the change in accuracy or misclassification using the
OOB data. For the ensemble of trees, the permuted predictions are aggre-
gated and compared against the unpermuted predictions to determine
the importance of the permuted variable by the magnitude of the de-
crease in accuracy of that variable. When the number of variables is
very large (in the order of 2 × 104), RF can be run once with all the vari-
ables, then again using only the most important variables selected from
the first run.

Inline Supplementary Fig. S1 can be found online at http://dx.doi.
org/10.1016/j.nicl.2015.04.002.

In the present study,we used theR package randomForest (Liawand
Wiener, 2002) for feature selection and classification analysis. As impor-
tance scores, proximity measures, and error rates vary because of the
random components in RF (out of bag sampling, node-level permuta-
tion testing), we created a forestwith a sufficient number of trees to en-
sure stability. To optimize the most important RF parameters, we fine-
tuned the number of trees per forest to 10,000 as the plotted error
rate was observed to stabilize (see Inline Supplementary Fig. S2), and
set the number of variables randomly selected per node to 150, after
tuning for this parameter. The RF algorithm ranked all features based
on variable importance given by the mean decrease in accuracy. After
the initial run with all features, we used the variable importance mea-
sures to select for 100 top informative features that were then used to
build a classifier and obtain OOB error (see Inline Supplementary
Fig. S3). Using these 100 features, we obtained the OOB error to assess
how well the model predicted new data (see Inline Supplementary
Fig. S4).

Inline Supplementary Figs. S2, S3, S4 can be found online at http://
dx.doi.org/10.1016/j.nicl.2015.04.002.

3. Results

3.1. Classification accuracy of the three algorithms

The PSO-SVM achieved an accuracy of 81% on the training, and of
58% on the validation dataset, with 44% sensitivity and 72% specificity
(for matching details, see Inline Supplementary Table S3). Accuracy
for RFE-SVMwas 100% on the training dataset and 66% on the validation
dataset, with 60% sensitivity and 72% specificity. RF classified ASD with
only 58% accuracy without feature selection. However, using the top
100 features with the highest variable importance (as defined above),
RF achieved 90.8% accuracy (OOB error rate 9.2%), with sensitivity at
89% and specificity at 93%. In fact, using only the 10 most informative
features, RF still attained an accuracy of 75%, with 75% sensitivity and
75% specificity. Note that the RFmethodology does not have an external
validation set, but the bootstrap sample of the data for each tree acts as
an internal validation dataset. Using an external 20% validation set,
accuracy fromRFwas at similar levels as for PSO andRFE (Inline Supple-
mentary Table S4). However, since RF is an ensemble learning method,
such external validation is not usually part of the RF procedure (see the
Discussion section).

Inline Supplementary Tables S3, S4 can be found online at http://dx.
doi.org/10.1016/j.nicl.2015.04.002.
3.2. Characterization of informative features from RF

Given the overall better performance from RF (compared to the other
ML techniques), we proceeded to examine the most informative features
selected by RF. When selecting only the 10 top features, several regions
werenoted to participate in twoormore informative connections: left an-
terior cingulate gyrus, postcentral gyrus bilaterally, right precuneus, and
left calcarine sulcus (see Inline Supplementary Fig. S5A). The pattern for
the top 100 features, which yielded the peak accuracy of 91%, involved
connections between 124 ROIs (see Inline Supplementary Fig. S5B). The
left paracentral lobule and the right postcentral gyrus participated in ≥6
informative connections, which was ≥2SD above the mean participation
among the 124 informative ROIs.

Inline Supplementary Fig. S5 can be found online at http://dx.doi.
org/10.1016/j.nicl.2015.04.002.

We further examined these top 100 features by functional networks,
as defined in Power et al. (2011). We first determined the number of
times ROIs from a specific network participated in an informative con-
nection (Fig. 1A). The distribution differed significantly from the overall
distribution of ROIs across different networks in Power et al. (χ2 =
33.348, p=0.001). Default mode, somatosensory/motor (hand region),
and visual networks ranked at the top, accounting for half of all informa-
tive connections. We further examined normalized network impor-
tance (i.e., the number of times network ROIs participated in an
informative connection divided by the total number of ROIs in the
given network; Fig. 1B). This ratio highlighted the importance of so-
matosensory/motor networks (both mouth and hand regions), ahead
of subcortical, memory retrieval, and visual networks. Within the two
top networks, the somatosensory cortex (postcentral gyrus) participat-
ed in 23 of the top 100 connections, whereas the primary motor cortex
(precentral gyrus) participated in only 9. Finally, we depicted the 100
top connections in a heat map matrix (Fig. 1C), which highlighted the
importance of connections between DMN and visual ROIs (14 informa-
tive features). Informative features for the somatosensory/motor hand
regions were dominated by connections with subcortical ROIs.

Examining the 100 top features by broad anatomical subdivisions
(Fischl et al., 2004), the distribution did not differ significantly from ex-
pected (χ2 = 5.225, p = 0.98). We found 60 participations by parietal
lobes bilaterally, followed by 45 for occipital lobes bilaterally. The
right frontal lobe also had heightened density of informative con-
nections (with 21 participations; Fig. 1D). When normalizing participa-
tions by the number of ROIs within each subdivision (analogous to the
procedure described above), the bilateral parietal lobes again stood
out, followed by the right temporal lobe (Fig. 1E). On the heat map
matrix (Fig. 1F), the highest concentration of themost informative con-
nections was found to involve the parietal lobes bilaterally, with six in-
formative connections each within the left and right parietal lobes, and
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an additional six between the right parietal and left occipital lobes and
five between the left parietal and right frontal lobes.

We examined the 100 top features by several other criteria. They
were almost evenly dividedwith respect to the direction ofmean FCdif-
ferences (45% over-, 55% underconnected in the ASD group) and type of
connection (49% inter-, 51% intra-hemispheric). 95% of the top connec-
tionswere betweennetworks, 5%werewithin networks, 87%weremid-
to long-distance (N40 mm Euclidean distance), and 11% were short-
distance (b40 mm). However, these percentages of Euclidean distance
(χ2 = 0.228, p-value = 0.63) and of network connection (χ2 = 2.24,
p-value = 0.13) did not differ significantly from those expected based
on the totality of 24,090 features examined in the entire connectivity
matrix.

4. Discussion

In this study, we used intrinsic functional connectivities between a
set of functionally defined ROIs (Power et al., 2011) for machine learn-
ing diagnostic classification of ASD. While accuracy remained overall
modest for PSO-SVM and RFE-SVM approaches, it was high (91%) for
random forest. The RF algorithm is well-suited for classification of
fcMRI data for several reasons: It (i) is applicable when there are more
features than observations, (ii) performs embedded feature selection
and is relatively insensitive to any large number of irrelevant features,
(iii) incorporates interactions between features, (iv) is based on the the-
ory of ensemble learning that allows the algorithm to learn accurately
both simple and complex classification functions, and (v) is applicable
for both binary and multi-category classification tasks (Breiman, 2001).

4.1. Regions and networks

We examined in two steps which single regions and functional net-
works were most ‘informative’, contributing most heavily to diagnostic
classification. First, focusing on only the ten top features, for which an ac-
curacy of 75%was achieved,we found that limbic (left anterior cingulate),
somatosensory (postcentral gyri bilaterally), visual (calcarine sulcus),
and default mode (right precuneus) regions stood out (Supplementary
Fig. 3A). This was largely supported by subsequent examination of the
100 top features, for which the peak classification accuracy of 91% was
reached. Half of all ROIs involved in these connections belonged to three
(out of 14) networks, which were default mode, somatosensory/motor
(hand) and visual (Fig. 1A).

The informative role of the DMN in diagnostic classification was not
surprising, given extensive evidence of DMN anomalies in ASD. These
include fMRI findings indicating failure to enter the default mode in
ASD (Kennedy et al., 2006; Murdaugh et al., 2012), as well as numerous
fcMRI reports of atypical connectivity of the DMN (Assaf et al., 2010;
Courchesne et al., 2005; Di Martino et al., 2013; Keown et al., 2013;
Monk et al., 2009; Redcay et al., 2013; Uddin et al., 2013b; von dem
Hagen et al., 2013;Washington et al., 2014; Zielinski et al., 2012). Func-
tionally, the DMN is considered to relate to self-referential cognition,
including domains of known impairment in ASD, such as theory of
mind and affective decision making (Andrews-Hanna et al., 2010).

The visual system appears to be overall relatively spared in ASD
(Simmons et al., 2009), and atypically enhanced participation of the vi-
sual cortex has been observed across many fMRI (Samson et al., 2012)
and fcMRI studies (Shen et al., 2012), with the added recent finding of
atypically increased local functional connectivity in ASD being associat-
edwith symptom severity (Keown et al., 2013). The relative importance
of visual regions and occipital lobes probably reflects atypical function
of the visual system inASD (Dakin and Frith, 2005) rather than integrity.

The role of somatosensory regionswas particularly prominentwhen
considering a normalized ratio of informative ROIs (Fig. 1B). Although
only a total of 26 somatosensory/motor ROIs (hand and mouth regions
combined) were included in the analysis, these participated in 44 out of
the 100 most informative connections. This effect was distinctly driven
by the primary somatosensory cortex in the postcentral gyrus (rather
than motor cortex). Our finding may be related to impaired emotional
recognition of facial expressions in patients with focal damage to the
right somatosensory cortices (SI and SII) observed by Adolphs and
colleagues (2000), given that perception of facial expressions is also fre-
quently impaired in individuals with ASD (Nuske et al., 2013). Although
somatosensory anomalies have been described in a number of ASD
studies (Puts et al., 2014; Tomchek and Dunn, 2007; Tommerdahl
et al., 2007), the highly prominent role of somatosensory regions in di-
agnostic classificationwas remarkable. The imaging literature on the so-
matosensory cortex in ASD is currently limited. Cascio and colleagues
(2012) found atypical activation patterns in adults with ASD for pleas-
ant and unpleasant tactile stimuli in the PCC and insula, which could re-
flect altered functional connectivitywith the somatosensory cortex (not
tested in the cited study). Atypical postcentral responses to somatosen-
sory stimuli have also been observed in one evoked potential study in
young children with ASD (Miyazaki et al., 2007). Although little is
known about differential responses betweenASD and TD groups to rest-
ing state instructions or confined conditions within bore and head coil
during scanning, it is possible that tactile or proprioceptive processing
had some effect on the role of somatosensory ROIs in diagnostic classi-
fication. However, focus on low frequencies in our study would be ex-
pected to emphasize intrinsic fluctuations (thought to reflect history
of co-activation (Lewis et al., 2009)) over online processing effects
that tend to occur at higher frequencies.

4.2. Issues, caveats, and perspectives

Diagnostic classification accuracy achieved using random forest ma-
chine learning was distinctly above accuracies reported from previous
studies using rs-fcMRI (Anderson et al., 2011), including a recent publi-
cation (Nielsen et al., 2013) using the same consortium database as in
the present study. This was likely due to its advantages as an ensemble
learningmethod. RF implements a bootstrapping ‘out-of-bag’ validation
process (randomly selected subsamples), contrary to the othermachine
learning tools (PSO-SVM, RFE-SVM) used here, which required external
validation datasets. This latter procedure may provide stringent protec-
tion from overfitting to the idiosyncrasies of any given training dataset,
asmay be seenwith conventional leave-one-out validation (Ecker et al.,
2010a; Ecker et al., 2010b; Iidaka, 2015; Ingalhalikar et al., 2011; Nielsen
et al., 2013). The procedure depends, however, on the assumption that
training and validation samples can be adequately matched. Such
matching may be difficult, if many variables (e.g., age, sex, motion,
site, eye status, scanner, imaging protocol) are potentially relevant (cf.
Online Supplementary Table A.1). Aggravating the problem, some po-
tentially crucial variables, such as IQ, symptom severity, and handed-
ness, were incomplete in ABIDE (missing for some sites) and could
thus not be well matched. Other possibly important variables, some of
which are hard to operationalize (e.g., history of interventions, medica-
tion) were entirely unavailable. Even if matching on all those variables
were possible, a more intractable problem would remain. There is gen-
eral consensus that ASD is an umbrella term for several –maybemany –
underlying biological subtypes (Jeste and Geschwind, 2014), which are
currently unknown. Any substantial difference between training and
validation datasets in the composition of these subtypes, which cannot
be detected and cannot therefore be avoided, is likely to result in poor
prediction in a validation dataset. In ASD machine learning classifica-
tion, accuracy will tend to be overestimated in training datasets (with
common leave-one-out procedure), but underestimated in external
validation datasets because of the problems described above. Indeed,
when using such a split into training and external validation sets, RF
yielded accuracies similar to PSO and RFE-SVM. However, such split is in-
consistent with RF as an ensemble learning technique, which instead im-
plements out-of-bag validation. In our view, this approach presents a
solution to the matching problems described above, as the bootstrapping



243C.P. Chen et al. / NeuroImage: Clinical 8 (2015) 238–245
procedure itself ensuresmatching of training and validation datasets. This
solution may be considered ideal, given the currently available sample
limitations even from consortium datasets. As described in Section 2.2,
the mandatory (Power et al., 2015; Satterthwaite et al., 2013) selection
of low-motion data reduced the initially large ABIDE sample to only 252
participants. External 20% validation sets included only 26 participants
per group, highlighting the matching issues described above. Distinctly
larger high-quality datasetsmay in the future allow investigators to gobe-
yond the pragmatic bootstrapping solution offered by RF and return to
evenmore stringent external validation procedures because the probabil-
ity of adequate matching for unknown subtypes by chance alone will in-
crease with much larger numbers.

Our findings suggest that intrinsic functional connectivitymay iden-
tify complex biomarkers of ASD, which is not unexpected given the ex-
tensive literature on functional connectivity anomalies in this disorder
(e.g., Vissers et al., 2012). Aside from the use of RF machine learning
and its virtues described above, the main difference between our
study and the relatively unsuccessful classification study by Nielsen
et al. (2013) was our careful selection of high-quality (low-motion)
datasets, resulting in the inclusion of only 252 (out of a total of 1112)
participants, equally divided between two tightly motion-matched di-
agnostic groups. Our procedure was informed by the recent flurry of
studies suggesting that even small amounts of head motion well
below 1 mm affect interregional fMRI signal correlations (Carp, 2011;
Jo et al., 2013; Power et al., 2013b; Power et al., 2014; Satterthwaite
et al., 2013; Van Dijk et al., 2012).

Although we modeled effects of site, the use of multisite data with
the numerous factors of variability it entails remains a challenge that
needs to be accepted as high-quality rs-fMRI data for comparable sam-
ple sizes from a single site are not currently available. Inclusion of 126
ASD participants may provide relative protection from cohort effects
that are probably at work in many small-sample imaging studies. How-
ever, the need for high levels of compliance in fMRI studies, even when
there is no explicit task, inevitably results in inclusionary biases because
low-functioning people with ASD are unable to participate. The meth-
odologically indispensable step of selecting low-motion data probably
added to this issue, given that higher-functioning participants were
likely to move less during scanning. Indeed, our diagnostic groups
were matched for nonverbal IQ , and relatively few ASD participants
with intellectual disability and IQs below 70were included. The pattern
of informative connections observed in our study may therefore not
apply to the lower-functioning end of the autism spectrum.

A high diagnostic classification accuracy was reached for the 100
most informative features. The pattern of these connections was highly
complex, involving numerous brain regions. While some networks (so-
matosensory, default mode, visual) stood out, many others contributed
to the classification. This may be disappointing to anyone harboring the
hope that the neurobiology of ASDmight ultimately be pinned down to
simple and localizable causes. However, the literature on functional and
anatomical brain anomalies in ASD is fully consistent with the concept
of a disorder with highly distributed, rather than localized, patterns
(Akshoomoff et al., 2002; Müller, 2007; Philip et al., 2012; Vissers
et al., 2012; Wass, 2011). The complex pattern (cf. Supplementary
Fig. 5B) should, however, not be viewed as definitive for the ASD popu-
lation as a whole (in particular lower-functioning segments). Instead, it
reflects a distinctive connectivity pattern for a large cohort of children
and young adults with ASD. Sample size, careful data denoising, and re-
finement of machine learning approaches in the present study thus
present a distinct advance in the search for functional connectivity bio-
markers of ASD, but given the challenges described above,much further
work remains to be done. Although fcMRI is generally accepted as a
powerful technique for identifying network abnormalities, the addition
of complementary techniques (e.g., diffusionweightedMRI for assays of
anatomical connectivity; magnetoencephalography for detection of
neuronal coherence in high-frequency bands) will likely enhance diag-
nostic classification and the detection of complex biomarkers (see Zhou
et al. (2014) for a recent multimodal attempt with moderate success).
However, it is also important to recognize that machine learning diag-
nostic classification can only be performed at the level permitted by
the diagnostic procedure itself, which is fundamentally imperfect. It
cannot be expected that a disorder recognized as neurobiological in
nature would be detected by means of purely behavioral and observa-
tional criteria currently used for diagnosis. There can thus be no perfect
fit between brain markers and diagnostic labels. The contribution of
machine learning to the discovery of biomarkers, which can ultimately
replace behavioral criteria, is therefore important.
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