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Autophagy is a cellular process involved in the selective degradation and recycling of
dysfunctional intracellular components. It plays a crucial role in maintaining cellular
homeostasis and survival by removing damaged and harmful proteins, lipids, and
organelles. SIRT1, an NAD+-dependent multifunctional enzyme, is a key regulator of the
autophagy process. Through its deacetylase activity, SIRT1 participates in the regulation
of different steps of autophagy, from initiation to degradation. The levels and function of
SIRT1 are also regulated by the autophagy process. Dysregulation in SIRT1-mediated
autophagy hinders the proper functioning of the endocrine system, contributing to the
onset and progression of endocrine disorders. This review provides an overview of the
crosstalk between SIRT1 and autophagy and their implications in obesity, type-2 diabetes
mellitus, diabetic cardiomyopathy, and hepatic steatosis.
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INTRODUCTION

Autophagy is a highly conserved cellular process involved in cellular homeostasis by selectively
degrading the nuclear and cytoplasmic organelles, lipids, and proteins (1). It is an adaptive process
against metabolic stress by removing the damaged organelles, protein aggregates, harmful
substances and recycling them for the synthesis of new cellular components (1). In mammals, 3
types of autophagy have been described, microautophagy, chaperone-mediated autophagy, and
macroautophagy (2). During microautophagy, cargos are encapsulated and broken down by the
direct invagination or protrusion of lysosome membrane (3). Chaperone-mediated autophagy does
not involve membrane structures to engulf the proteins (3). It instead uses chaperones to identify a
cargo protein that contains a pentapeptide motif (KFERQ) (4). The protein substrate is then
unfolded and translocated across the lysosomal membrane for degradation (4). Macroautophagy
involves the formation of a double-membrane vesicle known as autophagosome to sequester target
cargo (1). The autophagosome sequestered-cargo is then degraded by the fusion between lysosome
and autophagosome, which forms an autolysosome (1).

Apart from non-selective nutrient recycling, autophagy mediates the degradation of specific
cargos, such as protein aggregates (aggrephagy/proteophagy), endoplasmic reticulum
(reticulophagy/ER-phagy), mitochondria (mitophagy), peroxisome (pexophagy), nucleus
(nucleophagy), pathogens (xenophagy), lipids (lipophagy), ribosome (ribophagy), or even
lysosomes themselves (lysophagy) (5, 6). In mammals, selective autophagy is mediated by
specific receptors, including squestosome1 (SQSTM1), neighbor of breast cancer type 1 (NBR1),
Toll interacting protein (TOLLIP), B-cell lymphoma 2 (Bcl-2)/adenovirus E1B 19-kDa interacting
protein-3 (BNIP3), optineurin (OPTN), FUN14 domain containing 1 (FUNDC1), prohibitin 2
n.org July 2022 | Volume 13 | Article 9309191

https://www.frontiersin.org/articles/10.3389/fendo.2022.930919/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.930919/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yuwanghk@hku.hk
https://doi.org/10.3389/fendo.2022.930919
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.930919
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.930919&domain=pdf&date_stamp=2022-07-14


Kim et al. SIRT1-Mediated Autophagy in Endocrine Disorders
(PHB2), reticulophagy regulator 1 (RETREG1), calcium-binding
and colied-coil domain 2 (CALCOCO2), and nuclear FMR1
Interacting protein 1 (NUFIP1) (5, 6).

Autophagy is a dynamic process that is elegantly controlled
by various signaling molecules, such as the mechanistic target of
rapamycin (mTOR)-1, 5’ adenosine monophosphate-activated
protein kinase (AMPK), protein kinase B (Akt), and sirtuin 1
(SIRT1) (7). This review focuses on macroautophagy (herein
referred as autophagy) and will describe the current
understanding on its crosstalk with the SIRT1 signaling
pathways. The implications of the dysregulated SIRT1 function
and autophagy in endocrine disorders, including obesity, type-2
diabetes mellitus, diabetic cardiomyopathy, and hepatic steatosis
will be discussed.
PROCESS, LOCATION AND REGULATION
OF AUTOPHAGY

The sequential steps involved in autophagy process are initiation,
elongation of phagophore, maturation of autophagosome,
formation of autolysosome (fusion between autophagosome
and lysosome), and degradation of the damaged or superfluous
cellular components (8) (Figure 1).

The initiation step of mammalian autophagy involves the
Unc51-like kinase (ULK) complex, which consists of ULK1/2,
autophagy-related gene (ATG)13, FIP200, and ATG101 (9, 10).
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Under nutrient starved condition, the ULK complex dissociates
from mechanistic target of rapamycin 1 (mTORC1) and
translocates to autophagosome initiation site (11). At the
initiation site, the ULK complex facilitates the activation of
autophagy-specific class III phosphatidylinositol 3-kinase
complex I (PI3KC3-CI), which consists of Beclin1, vacuolar
protein sorting (VPS) 34, VPS15, and ATG14L (12). The
PI3KC3-CI complex then leads to the formation of
phosphatidylinositol-3-phosphate (P3P), which recruits
double-FYV-containing protein 1 (DCFP1) and WD-repeat
protein interacting with phosphoinositide (WIPI) for
autophagosome formation at the characteristic endoplasmic
reticulum (ER) structure known as the omegasome (13, 14).

Following the initiation process of autophagy, the elongation
and maturation stages require the participation of two-ubiquitin
like conjugation systems, which are the microtubule-associated
protein 1 light chain 3 (LC3) and ATG system. ATG7 and
ATG10 act in a similar manner to the E1 enzyme of the
ubiquitin-proteasome system (15). They help to conjugate the
ATG12 to ATG5, forming an ATG5-ATG12 complex (15). This
complex then interacts with the ATG16 to form an ATG16-
ATG5-ATG12 complex, which participates in the elongation and
maturation of the autophagosome (16). During this step, LC3-I is
produced by ATG4-mediated proteolysis of pro-LC3. The ATG3
(ubiquitin-like E2 enzyme) and ATG7 then conjugate LC3-I to
phosphatidylethanolamine (PE) to form insoluble LC3-II that is
inserted into the autophagosome membrane (13, 17). LC3-II is
FIGURE 1 | Autophagy Mechanism. The autophagy process involves multi-steps which are initiation, elongation, maturation, fusion and degradation. The initiation
step of mammalian autophagy involves the ULK complex (consisting of ULK1/2, ATG13, FIP200, and ATG101). The ULK complex phosphorylates Beclin1 to activate
PI3K complex (composed of Beclin1-VPS34-VPS15-ATG14L). The PI3K complex then induces P3P formation, which recruits DCFP1 and WIPI for autophagosome
formation. During the elongation and maturation stage, ATG7 and ATG10 help to conjugate the ATG12 to ATG5, forming an ATG5-ATG12 complex. This complex
then interacts with the ATG16 to form an ATG16-ATG5-ATG12 complex that is involved in elongation and maturation of the autophagosome. LC3-I is formed by the
proteolysis of pro-LC3 by ATG4. The ATG3 and ATG7 conjugate LC3-I to PE to form LC3-II that inserts into the autophagosome membrane. After the elongation
and maturation, autophagosome with target cargo is trafficked to the lysosome to fuse and form an autolysosome. This process is regulated by RAB protein family,
SNARE protein family, and MBP. The autolysosome then releases acidic hydrolase to degrade the inner content and the degraded cargo is released back to the
cytoplasm to be reused for cellular processes.
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the hallmark of autophagic membrane formation and involved in
the selective sequestration of the target cargo by recognizing and
interacting with the cargo receptor protein (CRP), which then
detects and binds to the LC3-interacting region (LIR) of the
target cargo (18).

The final step of this dynamic process is fusion between
autophagosome and lysosome leading to the degradation of the
inner content. After the elongation and maturation step,
autophagosome encapsulating the target cargo is trafficked to
the lysosome to fuse and form an autolysosome. This process is
regulated by the ras-associated binding (RAB) protein family,
soluble N-ethylmaleimide-sensitive factor attachment protein
receptor (SNARE) protein family, and membrane binding
proteins (MBP) (15, 19). The autolysosome then releases acidic
hydrolase to degrade the inner content and the degraded cargo is
released back to the cytoplasm to be reused for cellular processes.

Autophagy mainly takes place in the cytoplasm, where
autophagosome and autolysosome are formed (20). In
response to an autophagy initiation signal, not only the
autophagosome is nucleated at the cytoplasm but also LC3-I,
which is primarily localized in the nucleus, is exported to the
cytoplasm (20, 21). When autophagic initiation signal is given,
the acetylated LC3-I localized in the nucleus is deacetylated by
Sirtuin 1 (SIRT1) (17). The deacetylated LC3-I then binds to the
nuclear diabetes and obesity regulated factor (DOR) protein,
which helps LC3-I to export to the cytoplasm (17). At the
cytoplasm, LC3-I is conjugated by the ATGs to form LC3-II,
which helps sequestration of the target cargo for selective
degradation. In addition to SIRT1, recent study by Shim et al.
demonstrates the role of exportin-1 (XPO-1) as an alternative
nuclear export of LC3-I (6). Under cyclic mechanical stress
condition, the use of leptomycin B, XPO-1 dependent nuclear
export inhibitor, led to the accumulation of LC3 in the nucleus
(6). This LC3 accumulation in the nucleus was not observed
when EX527, a SIRT1 inhibitor, was used (6).

Although the exact mechanism largely remains unclear,
emerging evidences suggest that mammalian autophagy also
plays a role in degradation of the components in the nucleus
through a process known as nuclear autophagy. Nuclear
autophagy is an evolutionarily conserved process in eukaryotes
that helps to degrade nuclear components. It uses the nuclear
envelop to target and encapsulate the autophagic substrate in
nucleus, and exports them to the cytoplasm for lysosomal
degradation (22). For example, under oncogenic condition,
lamin B1 at the nucleus is recognized as an autophagic
substrate and it directly interacts with the nuclear LC3 for
autophagic degradation (23). Under senescent condition,
nuclear SIRT1 also directly interacts with the nuclear LC3 for
degradation (24–27). Under cyclic mechanical stress condition,
nuclear LC3 interacts with NUFIP1 of ribosome and allow XPO-
1 dependent nuclear-cytoplasmic transport for autophagic
degradation (6).

As autophagy participates in maintaining cellular
homeostasis, it is often regulated by various physiological
stressors. Among these, the most studied autophagic signals
are nutrition, energy, ER stress, and hypoxia (Figure 2) (28).
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Nutritional cue regulates autophagy through the mTORC1
and cAMP-dependent protein kinase A (PKA)-dependent
pathways (19) (Figure 2A). Under basal condition of
eukaryotic cell, mTORC1 senses the presence of nutrients (19,
29). In a nutrient rich condition (mainly the presence of arginine,
leucine, and glutamine), mTORC1 phosphorylates ULK1 at Ser
757, which disturbs the interaction between ULK complex and
AMP-activated protein kinase (AMPK) (19). ULK complex-
AMPK interaction is necessary for autophagy initiation as it
helps AMPK to activate ULK complex by phosphorylating ULK1
at Ser 317 and 777 (11). Hence, under nutrient rich condition,
activated mTORC1 prevents the interaction between ULK
complex-AMPK, eventually inhibiting autophagy initiation
(19). Similarly, PKA also participates in the downregulation of
autophagy by sensing nutrition presence. Under glucose rich
condition, PKA inhibits autophagy process by phosphorylating
LC3 at Ser 12, directly activating mTORC1 (through
phosphorylation at Ser 2448), and inactivating AMPK (29–31).

Presence of cellular energy, ATP, regulates autophagy
through the Liver Kinase B1 (LKB1)-AMPK pathway
(Figure 2B). Under ATP depleted condition, LKB1 senses the
decreased ATP/AMP ratio and activates AMPK (32). In addition
to the aforementioned direct activity of AMPK to induce
autophagy by activating the ULK complex, AMPK also
indirectly induce autophagy by inactivating mTORC1.
Precisely, AMPK not only activates Tuberous Sclerosis
Complex 2 (TSC2), a mTORC1 negative regulator, but also
phosphorylates KIAA1303 (Raptor), a subunit of mTORC1, to
prevent mTORC1 activity (32). As ATP depletion activates
AMPK to directly and indirectly inactivate mTORC1, this
eventually leads to the upregulation of autophagy.

Stress signal at the ER participates in the autophagy
regulation (Figure 2C). The accumulation of misfolded
proteins at the ER induces stress. Under ER stress condition,
cytosolic Ca2+ level increases (29). This leads to the activation of
calcium/calmodulin-dependent protein kinase kinase 2/b
(CaMKK2/CaMKKb) to activate AMPK (29). As the activity of
AMPK is increased with ER stress, mTORC1 activity is inhibited
while ULK complex is activated, consequently inducing
autophagy. The ER stress condition also triggers the unfolded
protein response (UPR) process, which facilitates the autophagy
elongation machinery (33). Precisely, the ER membrane contains
a UPR sensor that responds to an accumulation of unfolded
proteins. UPR activates the double stranded RNA activated-
protein kinase-like ER kinase (PERK)-eukaryotic translation
initiation factor 2 (eIF2a)-activating transcription factor 4
(ATF4) pathway, which upregulates the production of ATGs
necessary for autophagy process (33).

Hypoxia is another condition that is involved in the regulation of
autophagy (Figure 2D). Under hypoxia environment, there is an
upregulation of hypoxia inducible factor 1 (HIF1) (34). Increased
expression of HIF1 upregulates the expression of BNIP3 as BNIP3
promoter contains a functional hypoxia response element (HRE)
that is activated by HIF1 (34). The BH3 functional domain of
BNIP3 competitively interferes with the interaction between the
Beclin1 and Bcl-2 (35). This disruption liberates Beclin1 from Bcl-2
July 2022 | Volume 13 | Article 930919
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from the inhibitory complex, eventually leading it to be used for the
autophagy initiation process (35).
SIRT1 AND AUTOPHAGY

SIRT is a family of nicotinamide adenine dinucleotide (NAD+)-
dependent enzymes that play roles in diverse cellular processes
including cell survival, metabolism, proliferation, senescence,
apoptosis, and DNA repair (36, 37). All of the SIRT family
members share NAD+-dependent catalytic domain, but they
have varying localization and function due to the difference in
the lengths and sequences of C and N terminal (36). In the
mammals, there are 7 different isoforms of SIRTs (SIRT 1-7) that
are sub-divided into 4 classes (class I-IV) according to the
phylogenetic tree analysis (38). Apart from the well-known
deacetylation activity, recent studies report that the
mammalian SIRTs also exhibit other functions including ADP-
ribosylation, demalonlysation, desuccinylation, and RNA
polymerase I transcription machinery (37).

Class I consists of SIRT1-3 that participate in deacetylation.
SIRT1 translocate between nucleus and cytoplasm, SIRT2 is
expressed in cytoplasm, while SIRT3 is found in the nucleus
and mitochondria (37). Class II includes SIRT4 that mainly
functions as an ADP-ribosyl transferase in the mitochondria
(37). Unlike Class I and II, Class III involves SIRT 5 and 6 that
has various functions. SIRT5 is expressed in the mitochondria,
Frontiers in Endocrinology | www.frontiersin.org 4
acting as a deacetylase, demalonlyase, and desuccinylase (37).
SIRT6 is located in the nucleus to regulate the nuclear ADP-
ribosyl transferation and deacetylation (37). Lastly, Class IV
includes SIRT7 that functions as deacetylase and RNA
polymerase I transcription machinery in the nucleus (37).

Among the mammalian SIRTs, SIRT1 is the most studied and
largest human SIRT, sharing closet homology with yeast silent
information regulator (Sir2) (37). Human SIRT1 gene consists of
11 exons with 33,715 base pairs and it locates at the 10q21.3
chromosome (39). The human SIRT1 gene encodes 747-amino
acid polypeptide, having conserved core domain with N-terminal
and C-terminal extensions (37). The essential for SIRT1 activity
(ESA) domain locates at the C terminal of SIRT1 (641-664 amino
acids), and it interacts with the catalytic core domain for
deacetylase activity (40–42). SIRT1 contains two nuclear
localization signals (NLS), which extends from 32 to 39 and
223 to 230 amino acids, and two nuclear exportation signals
(NES) that expands from 138 to 145 and 425 to 431 amino acids
(42). These structures help dynamic translocation of SIRT1
between the nucleus and cytoplasm, allowing unique location-
specific functions in different cells.

SIRT1 plays essential roles in regulating the autophagy
process through its deacetylase activity (43, 44). SIRT1
mediates autophagy by interacting not only with the ATGs but
also the upstream regulators that are involved in various steps of
autophagy, which includes initiation, elongation, maturation,
fusion, and degradation (45).
FIGURE 2 | Autophagy Regulation. (A) The nutritional cue leads to the mTORC1 and cAMP-dependent-PKA-dependent pathways. In a nutrient rich condition
(presence of amino acids), mTORC1 inhibits the interaction between ULK complex and AMPK by phosphorylating ULK1. Under nutrient depleted condition,
mTORC1 is inactivated to allow the AMPK to interact with ULK1 for autophagy initiation. Under nutrition rich condition (presence of glucose), PKA inhibits autophagy
process by phosphorylating LC3, activating mTORC1, and inactivating AMPK. (B) Under ATP depleted condition, LKB1 senses the decreased ATP/AMP ratio and
activates AMPK, which inactivates mTORC1 by activating TSC2 and phosphorylating Raptor of mTORC1. This eventually leads to the upregulation of autophagy.
(C) Under ER stress condition, the cytosolic Ca+2 level increases to activate CAMKK2/CaMKKb that activates AMPK. AMPK helps to inhibit mTORC1 activity to
induce autophagy by activating TSC2 and phosphorylating Raptor. The ER stress condition also triggers an UPR process that responds to an accumulation of
unfolded proteins. UPR activates PERK-eIF2a-ATF4 pathway, which upregulates the production of ATGs necessary for autophagy process. (D) Under hypoxia
condition, there is an increased expression of HIF1 that upregulates the expression of BNIP-3. BNIP3 promoter contains HRE that is activated by the HIF1. The BH3
functional domain of BNIP3 competitively interferes with the interaction between the Beclin1 and Bcl-2. This disruption liberates Beclin1 to be used for the autophagy
initiation process.
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SIRT1-Mediated Autophagy Initiation
In autophagy initiation, SIRT1 regulates TSC2 stability (46)
(Figure 3A). TSC2 suppresses the mTORC1 signaling pathway
by inactivating Ras homolog enriched in brain (Rheb), which
activates mTORC1. Rheb requires the binding of GTP for its
activity to induce mTORC1 activation, while the GTPase-
activating protein (GAP) domain of TSC2 stimulates GTP
hydrolysis (47). Increased TSC2 stability increases GTP
hydrolysis to inactivate Rheb, consequently downregulating the
mTOR signaling process and initiating autophagy process.
Under nutrition deprived condition, TSC2 complex stability is
maintained by preventing ubiquitin-mediated degradation due
to the deacetylase activity of SIRT1 (25, 28).

Moreover, emerging studies report that under hypoxia
condition SIRT1 regulates the BNIP-3 mediated autophagy
initiation (44) (Figure 3B). SIRT1 deacetylases the nuclear
Forkhead box protein O3 (FOXO3) (48). This deacetylation
leads FOXO3 to bind to BNIP-3 promotor, inducing BNIP-3
expression (48). The BNIP-3 expression then triggers autophagy
by helping the dissociation of Beclin1 from the Bcl-2-Beclin1
complex (49). The released Beclin1 then activates PI3K complex
which is necessary for autophagy initiation.

SIRT1-Mediated Autophagy Elongation
and Maturation
Elongation and maturation stages can be also regulated by the
deacetylase function of SIRT1. Under nutrient rich condition,
Frontiers in Endocrinology | www.frontiersin.org 5
acetylation of ATG5, ATG7, and ATG12 by E1A binding protein
p300 acetyltransferase (EP300) inhibits the formation of ATG16-
ATG5-ATG12 complex, preventing autophagosome elongation
(50) (Figure 4A). On the other hand, under nutrient starvation,
SIRT1 facilitates the formation of ATG16-ATG5-ATG12
complex by directly deacetylating ATG5, ATG7, and ATG12,
aiding elongation of the autophagic vesicle (51) (Figure 4B).

SIRT1 also regulates the translocation of nuclear LC3-I to the
cytoplasm that is necessary for the formation of LC3-II which is
inserted to the elongating autophagosome (44, 52) (Figure 4C).
Under nutrient starvation, SIRT1 directly deacetylates nuclear
LC3-I at Lys 49 and Lys 51 (44, 52). The interaction between the
deacetylated LC3-I and DOR protein allows the nuclear export of
LC3-I (44, 52). The deacetylated cytoplasmic LC3-I then
interacts with ATG7, helping LC3-I to conjugate to PE and
form LC3-II that is inserted to the autophagosome membrane for
selective targeting of the cargo (44, 52).

SIRT1-Mediated Autophagy Fusion
and Degradation
The fusion and degradation process of autophagy can also be
mediated by SIRT1 (Figure 5). Specifically, under nutrient
starved condition, deacetylation of FOXO1 by SIRT1 regulates
autophagosome-lysosome fusion by increasing expression of the
Rab7. Rab7 participates in autolysosome formation by
facilitating the trafficking of the mature autophagosome to the
lysosome (45, 53). As most lysosomes are localized in
FIGURE 3 | SIRT1-mediated autophagy initiation regulation. (A) Under starved condition, Deacetylase activity of SIRT1 also increases the stability of TSC2 to
promote GTP hydrolysis of Rheb. Rheb suppression downregulates the mTOR signaling process. (B) Under hypoxia condition, SIRT1 deacetylases FOXO3 to bind
to BNIP-3 promotor and promote BNIP-3 expression.
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theperinuclear region, autophagosome has to move towards the
perinuclear region to fuse with the lysosome. Rab7 helps to
regulate this microtubule-dependent bidirectional transport by
interacting with LC3 (54).
Dual Interaction Between SIRT1
and Autophagy
Emerging evidences demonstrate the dual interaction between
SIRT1 and autophagy: not only SIRT1 regulates autophagic
activity but also autophagy controls SIRT1 level by lysosomal
degradation (26, 55). Depending on the cell condition,
autophagy may upregulate or downregulate SIRT1 level. A
recent study by Xu et al. suggests that under senescence
condition, SIRT1 is recognized as a nuclear autophagy
substrate (27). Through the direct interaction between LC3
and SIRT1, SIRT1 is transported to the cytoplasm for
lysosomal degradation (26, 27). However, under non-senescent
condition, autophagic activity is necessary in maintaining SIRT1
level. According to the study reported by Chen et al., endothelial
cells treated with chloroquine, which is an autophagy blocker,
showed significant decrease of SIRT1 level (56). Similar results
were observed when the same cells were treated with 3-
methyladenine (3-MA), an inhibitor of PI3K (56).
Frontiers in Endocrinology | www.frontiersin.org 6
SIRT1-MEDIATED AUTOPHAGY AND
ENDOCRINE DISORDERS

Autophagy plays essential roles in tissue development and
homeostasis by participating in the turnover of the intracellular
components including lipids, proteins, and organelles (57). On the
other hand, irregular autophagic process hinders the normal
functioning of the metabolic process, leading to the induction of
endocrine disorders (58). Accordingly, emerging evidences suggest
that dysregulation in SIRT1-mediated autophagy is involved in the
onset and development of obesity, type-2 diabetes mellitus, and
diabetic cardiomyopathy.

SIRT1-Mediated Autophagy and Obesity
Obesity is a complex endocrine disorder characterized by an
excessive fat accumulation in adipose tissue of an individual (59).
Autophagy is closely associated to obesity as abnormal changes
in autophagic activity disturbs the normal lipid homeostasis,
contributing to the increased fat content in the adipose tissue
(60). The role of autophagy in obesity is shown in a recent study
by Zhang et al. demonstrating that inhibition of autophagy
through the downregulation of FOXO3 leads to lipid
accumulation in adipocytes of mice (61). The association
between autophagy inhibi t ion and adipocyte l ipid
FIGURE 4 | SIRT1-mediated autophagy elongation and maturation regulation. The BNIP-3 expression then induces autophagy by using its functional BH3 domain
to dissociate Beclin1 from the Bcl-2-Beclin1 complex. (A) Under nutrient rich condition, EP300 acetyltransferase inhibits the elongation of the autophagosome by
acetylating the ATG5, 7, and 12. (B) Under nutrient deprived state, SIRT1 directly deacetylates these ATGs to form ATG 16-5-12 complex that aids in the elongation
of the autophagic vesicle. (C) Under starved condition, SIRT1 directly deacetylates the nuclear LC3-I. The deacetylated LC3-I then interacts with DOR protein and
this interaction between the deacetylated LC3-I and DOR protein allows the nuclear export of LC3-I. The deacetylation of LC3-I also helps LC3-I to interact with
ATG7. Through this interaction, the translocated LC3-I conjugates to PE, forming LC3-II which is inserted to the autophagosome membrane to help selective
targeting of the cargo.
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accumulation was also described in a study by Wu et al. The use
of icaritin, an osteoinductive agent, attenuated lipid
accumulation with an increase in autophagy flux (62). As
adipocyte lipid accumulation is closely related to obesity, this
suggests that autophagy may participate in regulating obesity
condition by inhibiting lipid accumulation. Similarly, this
association between autophagy and obesity is recently reported
by Nunzio et al. in human studies, where they demonstrated that
obese patients have significantly lower levels of LC3 in compared
to the normal weight (63).

SIRT1 dysregulation in adipose tissue disturbs autophagic
activity to degrade lipid molecules, leading to lipid droplets
accumulation in the adipocytes and contributing to the
development of obesity. The link between SIRT1-mediated
autophagy and obesity was recently demonstrated by a study by
Li et al. in an adipose-specific SIRT1 knockout mice. The SIRT1
knockout mice exhibited an increase in the fat mass and body
weight with an increased exosome, which is due to the defect in
autophagy activity (reduced LC3-II and ATG7 level) (64).
Restoring SIRT1 activity with the SIRT1 activator, SRT1720,
improved autophagy impairment and metabolic abnormality.

Other than changes in the lipid homeostasis, it has been
previously reported that reduced energy expenditure and
locomotor activity are another major influence leading to
obesity (65, 66). In relation to this, Meng and Cai described
that autophagy defects in the hypothalamus plays a role in the
development of obesity through reduced energy expenditure and
locomotor activities. According to their study, high-fed diet mice
with medisobasal hypothalamic region-directed ATG7
knockdown not only developed much more severe obesity but
also showed reduced energy expenditure and locomotor
activities (67). Recent study by Xiao et al. further suggests the
link between autophagy and hypothalamic obesity. High-fed diet
mice with ATG5 knock-out in proopiomelanocortin (POMC)
neurons, which are located at the arcuate nucleus of the
hypothalamus, showed both reduced energy expenditure and
increased fat mass (68). In addition, study by Skobo et al.
suggests that impairment of the autophagic process in skeletal
muscles also reduces locomotor activity thereby reducing energy
expenditure and inducing obesity. Knockdown of Ambra1,
Frontiers in Endocrinology | www.frontiersin.org 7
which is an essential component of Beclin1, impaired the
locomotor activity and skeletal muscle development in
Zebrafish (69). Hence, these overall suggest that autophagy
impairment may not only be associated to obesity development
due to changes in lipid homeostasis but also reduced locomotor
activities and energy expenditure.

SIRT1 dysregulation in hypothalamus and skeletal muscle
may also be associated to the development of obesity. In relation
to the aforementioned link between autophagy impairment in
the hypothalamus and obesity, Cakir et al. demonstrated that
changes in the SIRT1-FOXO1 axis in hypothalamus is also
associated to obesity. Rats with either pharmacological
inhibition or siRNA-mediated knock down of hypothalamic
SIRT1 showed significant increase in body weight and food
intake than control (70). The decreased level of acetylated
FOXO1 suggested that SIRT1 regulates body weight in FOXO1
dependent manner (70). As autophagy is regulated through the
SIRT1-FOXO1 axis and autophagy impairment in hypothalamus
also leads to obesity, this suggests that SIRT1-FOXO1-autophagy
axis in hypothalamus may be also associated to the development
of obesity. Similarly, study by Ryall et al. suggested that decrease
in SIRT1 level in skeletal muscle leads to disruption of muscle
regeneration, development, thereby impairing the motor activity
due to a mechanism that involve a decrease in NAD+ level (71).
Price et al. also reported that increased SIRT1 improves in
mitochondrial function in skeletal muscles through an AMPK
pathway thereby increasing energy expenditure (69, 72). As the
stimulation of AMPK increases autophagy activity, this suggests
a close relationship between SIRT1 and autophagy in skeletal
muscle function and development, consequently improving
skeletal function and energy expenditure to protect
against obesity.

SIRT1-Mediated Autophagy and Type-2
Diabetes Mellitus
Type-2 diabetes mellitus (T2DM) is a condition characterized by
high blood glucose level, insulin resistance, and lack of insulin
secretion. These processes are normally related to impaired
insulin sensitivity and pancreatic b-cell function to produce or
secrete insulin to the blood. Under non-pathological condition,
FIGURE 5 | SIRT1-mediated autophagy fusion regulation. Under nutrient-starved condition, SIRT1 mediates the autophagy and lysosome fusion by deacetylating
FOXO1. The deacetylation of FOXO1 is necessary for the expression of Rab7 that helps to regulate this microtubule-dependent bidirectional transport of the
autophagosome to the lysosome.
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autophagy participates in improving insulin sensitivity and b-
cells survival.

Insulin sensitivity is associated with activities of hypothalamus,
skeletal muscle, liver, and adipose tissue, which are insulin-
responsive (73). These insulin-responsive tissues mediate glucose
uptake process depending on the presence of insulin. Yamamoto et
al. recently demonstrated that autophagy participates in the insulin
signaling process of liver, skeletal muscle, and adipose tissue using
mouse model with increased constitutive autophagy by Beclin1
mutation. Under high food diet, this mouse exhibited enhanced
insulin sensitivity at skeletal muscle, liver, adipose tissue thanmouse
with basal levels of autophagy by reducing ER stress (74, 75). These
effects were reversed after the use of the autophagy inhibitor SBI-
0206965 (74, 75). In addition, Meng and Cai previously reported
that hypothalamic autophagy is also necessary in systemic insulin
sensitivity by using chronic high fat diet mice. The mice with
medisobasal hypothalamic region-directed ATG7 knockdown
developed systemic insulin resistance with higher level of glucose
intolerance and hyperinsulinemia, suggesting that autophagy is
necessary in maintaining insulin sensitivity (67).

Moreover, the role of autophagy in b-cell survival is
demonstrated by a study by Liu et al. According to the study,
intermittent fasting in mice fed with high fat diet improved
glucose tolerance b-cell function, and b-cell mass by restoring
autophagic flux (76). However, this improvement in glucose
tolerance was not evident when same condition was applied to
the autophagy defective mice (76). Similar results were also
observed previously in the study by Bartolomé et al. The mice
with decreased autophagic activity due to b-cell specific deletion
of TSC2 showed increased b-cell apoptosis and b-cell function
failure (77). Hence, the aforementioned findings overall suggest
that autophagy plays a crucial role in preventing T2DM by
improving insulin sensitivity and pancreatic b-cell function.

As autophagy is necessary in preventing T2DM by improving
insulin sensitivity and pancreatic b-cell function, dysregulation
in SIRT1-autophagy axis may hinder the normal autophagy
activity, eventually leading to the onset and exacerbation of
T2DM condition. The link between SIRT1-mediated
autophagy and T2DM is described in a recent study by Ren et
al., demonstrating that metformin treatment attenuated fat diet
induced-T2DM condition in a rat model with elevated levels of
SIRT1, Beclin1, ATG12, LC3, and FOXO1. These findings
suggest that SIRT1-FOXO1-autophagy mechanism participates
in the process of T2DM condition (78). The link between SIRT1-
autophagy-T2DM axis is further supported by a study performed
by Ma et al. According to the study, SIRT1 knockout rats not
only showed less amelioration of the T2DM condition with
resveratrol treatment but also showed a decrease in the
autophagy markers (ATG5, ATG7, and LC3) (79). A possible
mechanism underlying the SIRT1-autophagy-T2DM was
recently demonstrated by Josephrajan et al. Fatty acid binding
protein 4 (FABP4) is a protein that is expressed by the adipocytes
and it is necessary in insulin sensitivity. SIRT1 knockout mice
exhibited decreased FABP4 secretion, similar to the results when
ULK1/2 and VPS34 were inhibited (80). This suggests that
FABP4 is secreted from adipose tissue in SIRT1-dependent
Frontiers in Endocrinology | www.frontiersin.org 8
manner via mechanism that requires autophagic components
(80). Dysregulation of the SIRT1-autophagy axis may hinder
FABP4 expression leading to insulin sensitivity impairment and
progression of T2DM. Hence, these findings overall illustrate the
link between SIRT1-mediated autophagy and T2DM.

SIRT1-Mediated Autophagy and Diabetic
Cardiomyopathy
Diabetic cardiomyopathy is commonly referred as an irregular
cardiac function and structure in diabetic individuals with an
absence of other cardiac risk factors such as coronary artery
disease and endothelial senescence (81). Autophagy is an essential
cellular mechanism that is involved in diabetic cardiomyopathy
development as it not only participates in regulating diabetes-
inducing factors but also cardiac functions. A recent study done
by Zang et al. demonstrates the link between autophagy and diabetic
cardiomyopathy. In a diabetic mouse model, cardiac autophagy
inhibition through the knockout of ATG5 led to early onset and
accelerated progress of the cardiomyopathy condition (82).
Similarly, it has been previously described by Sciarretta et al. that
autophagy activation helps to alleviate myocardial ischemia in
diabetic mice. Inhibition of autophagy by ATG7 depletion and
mTORC1 activation increased infarct size and cardiomyocyte death
(83). On the other hand, restoration of autophagy activity through
mTORC1 inhibition and ATG7 re-expression reduced
cardiomyocyte death and infarct size (83). These studies
demonstrate that autophagy is associated to diabetic
cardiomyopathy by alleviating the cardiac structural and function
dysfunction under diabetic condition.

Emerging evidence suggests the role of SIRT1-mediated
autophagy in diabetic cardiomyopathy. Ma et al. described that
cardiac-specific SIRT1 knock out demonstrates diabetic
cardiomyopathy symptoms including cardiac hypertrophy,
insulin resistance, and irregular glucose metabolism (84).
Furthermore, results from a recent study by Ren et al.
suggested that modulating the SIRT1-FOXO1 mediated
pathway helps to improve diabetic cardiomyopathy condition
(85). In high-fat diet-induced diabetic rats, treatment of
curcumin, which is a SIRT1 activator, decreased FOXO1
acetylation and improved myocardial function by decreasing
apoptosis of cardiomyocytes (85). Similar results were also
observed in a study by Makino et al, in which caloric
restriction of diabetic rat showed improvement in left
ventricular diastolic function with elevated level of SIRT1,
FOXO1, and autophagy markers (LC3-II and Beclin1) (86).
Overall, these findings suggest that SIRT1-mediated autophagy
participates in alleviating diabetic cardiomyopathy condition.

SIRT1-Mediated Autophagy and
Hepatic Steatosis
Hepatic steatosis, known as fatty liver disease, is characterized by
excess accumulation of intrahepatic fat. Chronic hepatic lipid
accumulation induces adverse effect on the liver such as liver
inflammation and metabolic dysfunction (87). Emerging studies
have reported that autophagic process may be associated to the
development of hepatic steatosis. The link between autophagy
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and hepatic steatosis is described in the study by Chang et al.
using an obese and diabetic Otsuka Long-Evans Tokushima
Fatty (OLETF) rat models. When the rats were administered
with ezetimibe, they not only showed significant decrease in
triglycerides, free fatty acids, and total cholesterol levels but also
showed a significant increase in autophagy markers including
ATG5, ATG6, ATG7 and LC3 (88). This ezetimibe-mediated
improvement in hepatic steatosis with increase autophagy
activity suggests that increase in autophagic activity may
alleviate hepatic steatosis. However, recent study by Lima et al.
reports that unlike mice autophagic activity may be associated in
progression of hepatic steatosis in humans. Knockdown of ATG3
in human hepatocyte ameliorated hepatic steatosis condition
while overexpression of ATG3 increased lipid load in
hepatocytes (89). This renders possibility that autophagic
model may function differently depending on the organism.
Also, although all ATGs are essential in autophagic machinery,
in the context of liver steatosis, each ATGmay have different role
in the autophagy-hepatic steatosis interaction.

The link between SIRT1 and hepatic steatosis has been
previously reported by Li et al. Liver-specific SIRT1 knock out
mice showed severe hepatic steatosis compared to the control (90).
In relation to this, accumulating studies demonstrate that SIRT1
may influence the progression of hepatic steatosis in an autophagy
mediatedmanner. The study by Song et al. describes thatmetformin
alleviates hepatosteatosis by restoring SIRT1-mediated autophagy
induction. Obese mice with metformin treatment showed improved
hepatic steatosis with upregulation of SIRT1 expression and LC3-II
level (91). Metformin also decreased lipid accumulation in the liver
and prevented fatty acid-induced suppression of SIRT1-dependent
activation of autophagy process (91). Recent study by Ren et al.
supports the association between the SIRT1-autophagy axis and
hepatic steatosis. Compared to control, both rapamycin (autophagy
inhibitor) and SRT1720 (SIRT1 activator) showed significant
improvement in hepatic steatosis condition of high-fat diet mice
(92). In addition, melatonin treatment enhanced autophagy activity
with improvement in hepatic steatosis condition (92). However,
when SIRT1 was inhibit in melatonin-treated mice, expression level
of melatonin-induced autophagy related genes and melatonin-
induced protective effect on liver decreased (92). Similar to
melatonin, the link between SIRT1-mediated autophagy and
hepatic steatosis was observed in a study by Hong et al. using
erythropoietin. Mice that received erythropoietin showed increased
level of SIRT1 and LC3 with alleviating hepatic steatosis (93).
However, when erythropoietin was given to SIRT1 knockout
mice, not only erythropoietin-induced LC3 level but also hepatic
steatosis condition decreased (93). Hence, these overall suggest that
SIRT-mediated autophagy may be associated to the hepatic steatosis
to a certain extent.
POTENTIAL THERAPEUTIC
INTERVENTION

As the role of SIRT1-mediated autophagy in metabolic disorders
have been increasingly highlighted, clinical and animal studies
Frontiers in Endocrinology | www.frontiersin.org 9
have been conducted to validate the use potential SIRT1
modulator as a therapeutic intervention for endocrine
disorders by targeting SIRT1-autophagy axis.

Accumulating studies have shown that resveratrol acts as a
SIRT1 activator (72, 79, 84, 94–97). In addition, clinical studies
report that resveratrol have beneficial effects on patients with
endocrine disorders such obesity and hepatic steatosis. Precisely,
the effect of resveratrol on obesity and hepatic steatosis has been
described in a clinical study done by Timmers et al. Obese
patients, who received 150 mg of resveratrol per day for 30 days,
have shown increased plasma levels of SIRT1 (98). Moreover,
resveratrol treatment decreased intrahepatic lipid content,
plasma fatty acid, glycerol, and triglyceride level (98). Overall,
30 days of resveratrol treatment mimicked the effect of caloric
restriction in obese humans. Recent clinical study by Hoseini et
al. suggests that resveratrol also has a beneficial effect on patients
with diabetes. Diabetic patients who received 500mg of
resveratrol per day for 4 weeks showed significant decrease in
insulin resistance, glucose, and cholesterol level while increasing
insulin sensitivity (99). Resveratrol also increased T2DM
patients’ SIRT1 level (99).

Although themechanism underlying the effect of resveratrol on
endocrine disorder in humans remain unclear, in vivo studies
describe that resveratrol may target the SIRT1-autophagy axis to
improved disease condition. Ding et al. demonstrated that
resveratrol may target SIRT1-mediated autophagy pathway to
prevent hepatic steatosis and obesity using eight-week old male
Wistar rats. Rats treated with resveratrol not only showed partial
prevention of hepatic steatosis symptoms with increased SIRT1
and autophagy markers level, but also decreased energy intake and
body weight (100). The effect of resveratrol on SIRT1-autophagy
axis to ameliorate diabetic cardiomyopathy was also shown in a
study by Wang et al. using a diabetic mice model. Long term
resveratrol not only improved cardiac function of but also reduced
apoptosis in diabetic mouse heart (101). Resveratrol also increased
SIRT1, FOXO1, Rab7, and autophagy flux with enhanced FOXO1
binding at Rab7 promoter region (101). On the other hand, SIRT1
and Rab7 siRNA prevented the resveratrol improvement of
autophagy flux and cardiac function, suggesting that resveratrol
participates in the improvement of diabetic cardiomyopathy
through SIRT1-FOXO1-Rab7-autophagy pathway (101).
Therefore, the clinical and in vivo findings overall suggest
resveratrol as a potential therapy which targets SIRT1-mediated
autophagic pathway to treat endocrine disorders.

In addition to resveratrol, recently several studies have
reported the beneficial effect of NAD+ supplements in
preventing endocrine disorders by increasing SIRT1 levels and
activity. A clinical study by Yoshino et al. suggests that
nicotinamide mononucleotide (NMN), which is a rate-limiting
factor in mammalian NAD+ biosynthesis, helps to improve
muscle insulin sensitivity of obese women (102). Moreover,
Weijer et al. reports that nicotinic acid derivative acipimox, an
NAD+ precursor has beneficial effect on skeletal muscle
mitochondrial function (103). Improving mitochondrial
function in skeletal muscle improves energy expenditure,
which helps to improve obese condition. Moreover, Hsieh et
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al. reports that NAD+ supplement may enhance autophagy.
Endothelial cells treated with nicotinamide, which increases the
intracellular NAD+, showed increased level of LC3-II and
autophagosome formation (104). This link between NAD+

supplement and autophagy suggest a possible mechanism by
which increased NAD+ levels may activate SIRT1 to enhance
autophagy, consequently inducing beneficial effects on the
aforementioned endocrine disorders.
CONCLUDING REMARKS

Given the essential role of autophagy in cell homeostasis, the
functional activity and regulation of autophagy have been
extensively studied in recent years. In this review, we described
the autophagy machinery and the role of SIRT1 in regulating
autophagy at different stages ranging from initiation to the
degradation process. Through its deacetylase characteristics,
SIRT1 can either directly act on the autophagy machinery or
indirectly alter the upstream regulators to regulate autophagy
activity. Moreover, the SIRT1-autophagy-endocrine disorder
interplay indicates that SIRT1-mediated autophagy may play a
key role in the onset and progression of endocrine disorders.
Studies suggest that dysregulation of SIRT1-mediated autophagy
may participate in the development of obesity, T2DM, diabetic
cardiomyopathy, and hepatic steatosis.

However, most studies have only demonstrated the association
between SIRT1-mediated autophagy and endocrine disorders.
This leads to several unanswered questions about the underlying
molecular mechanism on SIRT1-autophagy-endocrine disorder
axis. Given that SIRT1 can regulate different steps of autophagy
process, it still remains unclear through which mechanism SIRT1
regulate autophagy to induce endocrine disorder. Moreover,
studies have revealed potential SIRT1-autophagy modulators
such as icaritin and curcumin. However, the underlying
Frontiers in Endocrinology | www.frontiersin.org 10
molecular mechanism still remains unclear and the clinical
studies are lacking to validate their effect on endocrine disorders
in humans. Conducting these studies will provide a valuable
insight on novel therapeutic targets for endocrine disorders.
Lastly, studies have reported that SIRT1-mediated autophagy
not only play a role in endocrine disorders but also other
diseases such as neurodegeneration and nephropathy (79, 105).
Investigating the implication of SIRT1-mediated autophagy in
these diseases may be new frontiers for exploration whichmay also
provide new pharmacological targets.
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77. Bartolomé A, Kimura-Koyanagi M, Asahara S-I, Guillén C, Inoue H,
Teruyama K, et al. Pancreatic b-Cell Failure Mediated by Mtorc1
Hyperactivity and Autophagic Impairment. Diabetes (2014) 63:2996–3008.
doi: 10.2337/db13-0970

78. Ren H, Shao Y, Wu C, Ma X, Lv C, Wang Q. Metformin Alleviates Oxidative
Stress and Enhances Autophagy in Diabetic Kidney Disease via AMPK/
SIRT1-FoxO1 Pathway. Mol Cell Endocrinol (2020) 500:110628.
doi: 10.1016/j.mce.2019.110628
Frontiers in Endocrinology | www.frontiersin.org 12
79. Ma L, Fu R, Duan Z, Lu J, Gao J, Tian L, et al. Sirt1 is Essential for
Resveratrol Enhancement of Hypoxia-Induced Autophagy in the Type 2
Diabetic Nephropathy Rat. Pathol Res Pract (2016) 212:310–8. doi: 10.1016/
j.prp.2016.02.001

80. Josephrajan A, Hertzel AV, Bohm EK, McBurney MW, Imai S-I, Mashek
DG, et al. Unconventional Secretion of Adipocyte Fatty Acid Binding
Protein 4 Is Mediated By Autophagic Proteins in a Sirtuin-1–Dependent
Manner. Diabetes (2019) 68:1767–77. doi: 10.2337/db18-1367

81. Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy. Circ Res (2018)
122:624–38. doi: 10.1161/CIRCRESAHA.117.311586

82. Zang H, Wu W, Qi L, Tan W, Nagarkatti P, Nagarkatti M, et al. Autophagy
Inhibition Enables Nrf2 to Exaggerate the Progression of Diabetic
Cardiomyopathy in Mice. Diabetes (2020) 69:2720–34. doi: 10.2337/db19-1176

83. Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J, Volpe M, et al. Rheb is a
Critical Regulator of Autophagy During Myocardial Ischemia. Circulation
(2012) 125:1134–46. doi: 10.1161/circulationaha.111.078212

84. Ma S, Feng J, Zhang R, Chen J, Han D, Li X, et al. SIRT1 Activation by
Resveratrol Alleviates Cardiac Dysfunction via Mitochondrial Regulation in
Diabetic Cardiomyopathy Mice. Oxid Med Cell Longev (2017) 2017:1–15.
doi: 10.1155/2017/4602715

85. Ren B-C, Zhang Y-F, Liu S-S, Cheng X-J, Yang X, Cui X-G, et al. Curcumin
Alleviates Oxidative Stress and Inhibits Apoptosis in Diabetic
Cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt Signalling Pathways. J Cell
Mol Med (2020) 24:12355–67. doi: 10.1111/jcmm.15725

86. Makino N, Maeda T. Calorie Restriction Delays Cardiac Senescence and
Improves Cardiac Function in Obese Diabetic Rats.Mol Cell Biochem (2021)
476:221–9. doi: 10.1007/s11010-020-03899-0

87. Thyfault JP, Rector RS. Exercise Combats Hepatic Steatosis: Potential
Mechanisms and Clinical Implications. Diabetes (2020) 69:517–24.
doi: 10.2337/dbi18-0043

88. Chang E. Ezetimibe Improves Hepatic Steatosis in Relation to Autophagy in
Obese and Diabetic Rats.World J Gastroenterol (2015) 21:7754. doi: 10.3748/
wjg.v21.i25.7754

89. da Silva Lima N, Fondevila MF, Nóvoa E, Buqué X, Mercado-Gómez M,
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