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Abstract: In this study, the in vitro antimicrobial, antiparasitic, antiproliferative and cytotoxic activities
of essential oil from Baccharis parvidentata Malag. (EO-Bp) and Lippia origanoides Kunth (EO-Lo) were
explored. The relevant effects were observed against the parasitic protozoans Plasmodium falciparum,
Trypanosoma cruzi, Trypanosoma brucei and Leishmania amazonensis (ranging 0.6 to 39.7 µg/mL) and
malignant MCF-7, MCF-7/HT, 22Rv1, and A431 cell lines (ranging 6.1 to 31.5 µg/mL). In parallel,
EO-Bp showed better selective indexes in comparison with EO-Lo against peritoneal macrophages
from BALB/c mice and MRC-5 cell line. In conclusion, EO-Lo is known to show a wide range of
health benefits that could be added as another potential use of this oil with the current study. In the
case of EO-Bp, the wide spectrum of its activities against protozoal parasites and malignant cells, as
well as its selectivity in comparison with non-malignant cells, could suggest an interesting candidate
for further tests as a new therapeutic alternative.

Keywords: Baccharis parvidentata; Lippia origanoides; essential oil; protozoa; cancer cells

1. Introduction

The search for biologically active compounds is currently a subject of interest in the
food, cosmetic and pharmaceutical industries, among others [1]. Plant-based natural prod-
ucts are a potential source of new agents and/or drugs [2]. The ability of plant species to
biosynthesize a broad variety of complex and innovative scaffolds is outstanding and can be
utilized or further developed as a major source of leads for new drugs if appropriate in vitro
and in vivo assays are established. Numerous plant extracts and pure natural compounds
have been discovered [3,4]. Among those, essential oils (EOs) have been shown to display
a wide range of therapeutic properties [5,6]. EOs are a mixture of volatile compounds that
have been found in different plant organs from several botanical families [5], including
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Asteraceae [7] and Verbenaceae [8]. In our previous study, the chemical and biological
properties of the EOs from Baccharis parvidentata Malag. (Asteraceae) and Lippia origanoides
Kunth (Verbenaceae) from high-altitude locations in Brazil were assessed [9].

Several of the curative properties found in the genus Baccharis have been ascribed
to their EOs, which have been reported in the scientific literature to exhibit a wide range
of biological properties [9–11]. However, the studies of B. parvidentata of the southeast of
Minas Gerais and Rio de Janeiro States, Brazil, are scarce. The composition of the EOs
from the aerial parts was recently reported, and sabinene (15.2%), himachalol (10.3%) and
β-pinene (9.2%) were identified as the major volatile compounds [9].

On the other hand, the pharmacology of the genus Lippia has been widely examined.
The content of EOs from the species of the genus Lippia is frequently variable [12,13]
and exhibit numerous biological activities. The bioactivity of the EOs produced from L.
origanoides has also been widely evaluated and exhibits numerous biological activities
and has been summarized [14]. The EO composition of L. origanoides from Petropolis,
Brazil, showed methyl (E)-cinnamate (40.0%), hedycaryol (8%), α-eudesmol (7.6%) and
β-eudesmol (7.3%) as the most noteworthy compounds [9]. The high content of methyl
(E)-cinnamate in the EO of L. origanoides herein evaluated, matched somewhat with the
chemotype E previously described [14], which to the best of our knowledge has not been
fully explored.

The therapeutic potential of the EOs has not been fully investigated; although a
preliminary antimicrobial activity has been assayed that documented the minimal inhibitory
concentrations (MIC) against some bacteria and fungi [9]. In this context, the purpose of
this study was to explore in vitro the pharmacological properties of EOs from B. parvidentata
(EO-Bp) and L. origanoides (EO-Lo), including antimicrobial, antiparasitic, antiproliferative,
and cytotoxic activities.

2. Results and Discussion

The EOs were evaluated against a wide panel of microorganisms: Gram-negative
Escherichia coli; Gram-positive Staphylococcus aureus; yeast Candida albicans; and proto-
zoa Plasmodium falciparum, Trypanosoma cruzi, T. brucei brucei, Leishmania amazonensis, and
L. infantum; malignant: MCF-7 (human breast cancer), MCF-7/HT (4-hydroxytamoxifen-
resistant MCF-7/HT subline), 22Rv1 (human prostate carcinoma), and A431 (human epider-
moid carcinoma); and non-malignant cells: MRC-5 (human fetal lung fibroblast), MCF-10A
(normal breast cells), and peritoneal macrophage from BALB/c mice (PMM).

In general, the EOs showed low antimicrobial activity except for the EO-Bp that
caused relevant growth inhibition of S. aureus with a median inhibitory concentration (IC50)
value < 10 µg/mL (Table 1). Both EOs inhibited all protozoal parasites. EO-Bp displayed
the best activity, T. brucei and P. falciparum were the most susceptible to its effect (Table 2).
The protozoal parasites were also susceptible to EO-Lo, although with higher values of
IC50, except for L. amazonensis equally susceptible to EO-Lo and EO-Bp and for L. infantum,
which showed IC50 > 64 µg/mL. Moreover, both EOs showed antiproliferative activity
(Table 3), but EO-Bp, with IC50 ranging from 6.1 to 15.1 µg/mL, was a better inhibitor of all
malignant cell growth than EO-Lo with IC50 from 9.1 to 31.5 µg/mL.

In the same way, EO-Bp showed higher cytotoxic effects than EO-Lo in the used
models (Table 3), according to the obtained median cytotoxic concentration (CC50). How-
ever, when the selectivity indices (SI) were obtained, the most promising activity was
achieved for EO-Bp in PMM and MRC-5 models with respect to antiprotozoal activities
(Figure 1A,C). In contrast, for the antiproliferative effect, EO-Bp showed better results
in the PMM model, while for EO-Lo, better indexes were obtained with respect to the
MRC-5 model (Figure 1B,D). In particular, with regards to the SI values calculated with
respect to MCF-10A, both EOs showed unspecific activity in comparison with a malignant
sensitive cell line (MCF-7) and a hormone-resistant cell subline (MCF-7/HT) with values
around unity.
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Table 1. Antimicrobial and antiparasitic activity of essential oils from Baccharis parvidentata and Lippia
origanoides growing in Brazil.

Infectious Agent
IC50 (µg/mL)

EO-Bp EO-Lo Rd

E. coli >64 >64 0.8 (0.76–0.84)
S. aureus 9.2 (8.7–9.7) >64 8.3 (7.9–8.7)

C. albicans >64 >64 2.0 (1.9–2.1)
P. falciparum 3.0 (2.9–3.2) 14.4 (13.7–15.1) 0.02 (0.01–0.03)
T. cruzi (A) 5.2 (4.9–5.5) 29.6 (28.1–31.1) 0.8 (0.7–0.9)
T. brucei (T) 0.6 (0.5–0.7) 8.1 (7.7–8.5) 0.05 (0.02–0.08)

L. amazonensis (P) 39.7 (37.7–41.7) 37.8 (35.9–39.7) 0.4 (0.3–0.5)
L. amazonensis (A) 17.4 (16.5–18.3) 31.8 (30.2–33.4) 1.3 (1.2–1.4)

L. infantum (A) 8.1 (7.7–8.5) >64 3.7 (3.5–3.9)
IC50: median inhibitory concentration with a 95% confidence interval. EO-Bp: essential oil from Baccharis
parvidentata. EO-Lo: essential oil from Lippia origanoides. Rd: reference drug (chloramphenicol for E. coli;
erythromycin for S. aureus; miconazol for C. albicans; chloroquine for P. falciparum; benznidazole for T. cruzi;
suramine for T. brucei; pentamidine for L. amazonensis; miltefosine for L. infantum). Between the parentheses are
parasite forms. A: amastigotes; T: trypomastigote; P: promastigotes.

Table 2. Antiproliferative activity of essential oils from Baccharis parvidentata and Lippia origanoides
growing in Brazil.

Malignant Cell Line
IC50 (µg/mL)

EO-Bp EO-Lo Rd

MCF-7 12.9 (12.2–13.5) 15.8 (15.0–16.6) 1.9 (1.8–2.0)
MCF-7/HT 12.4 (11.8–13.0) 24.4 (23.2–25.6) 3.8 (3.6–4.1)

22Rv1 6.1 (5.8–6.4) 9.1 (8.6–9.5) 0.81 (0.77–0.85)
A431 15.1 (14.3–15.8) 31.5 (30.8–32.1) 1.2 (1.1–1.3)

IC50: median inhibitory concentration with a 95% confidence interval. EO-Bp: essential oil from Baccharis
parvidentata. EO-Lo: essential oil from Lippia origanoides. Rd: reference drug (cisplatin).

Table 3. Cytotoxic in vitro effect of essential oils from Baccharis parvidentata and Lippia origanoides
from Brazil.

Cell
CC50 (µg/mL)

EO-Bp EO-Lo

PMM 72.8 (69.2–72.9) 75.5 (71.7–79.3)
MRC-5 6.0 (5.7–6.3) 29.6 (28.1–31.1)

MCF-10A 15.4 (13.9–16.9) 29.9 (27.1–32.7)
CC50: median cytotoxic concentration with a 95% confidence interval. EO-Bp: essential oil from Baccharis
parvidentata. EO-Lo: essential oil from Lippia origanoides. PMM: peritoneal macrophage from BALB/c mice.
MRC-5: human fetal lung fibroblast cells line. MCF-10A: normal breast cells line.

Brazil is reputed for its floristic diversity; hence its flora should be considered an
important reservoir of active molecules with potential industrial applications [15]. Plant
species from several botanical families have been described for their EO content and their
antimicrobial [16], antiparasitic [17], anticancer [18], anti-oxidant [19], and insecticidal [20]
activities. In the present study, the antiproliferative properties of EO from B. parvidentata
and L. origanoides, collected in Brazil, against bacteria, fungi, protozoal parasites, malignant
and non-malignant cells were investigated.

Although MIC values of these EOs: 625 to 1250 µg/mL against bacteria (E. coli and S.
aureus), 156 to 2500 µg/mL against fungi (Aspergillus niger, Fonsecaea pedrosoi, and Trycophy-
ton rubrum) and 78 to 2500 µg/mL against yeast (C. albicans and Cryptococcus neoformans)
have been reported [9], our results confirm that no relevant activity was observed at
64 µg/mL, in both studied EOs except EO-Bp against S. aureus. It is known that S. aureus
is a Gram-positive bacterium frequently found in the upper respiratory tract and on the
skin as an opportunistic pathogen, being a common cause of sinusitis, abscesses, and food
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poisoning [21,22]. In this sense, EOs of other Baccharis species have been documented due
to their potentialities against S. aureus, such as B. dracunculifolia DC [23] and B. oreophila
Malme [24].
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Figure 1. Selective indexes of essential oils from Baccharis parvidentata and Lippia origanoides from
Brazil. (A) Antiprotozoal activity of EOs in comparison with cytotoxicity against PMM; (B) antipro-
liferative activity against malignant cells by EOs in comparison with cytotoxicity against PMM;
(C) antiprotozoal activity of EOs in comparison with cytotoxicity against MRC-5; (D) antiproliferative
activity against malignant cells of EOs in comparison with cytotoxicity against MRC-5. EOs: essential
oils from Baccharis parvidentata and Lippia origanoides; EO-Bp: essential oil from Baccharis parvidentata;
EO-Lo: essential oil from Lippia origanoides; PMM: peritoneal macrophage from BALB/c mice; MRC-5:
human fetal lung fibroblast cells line.

A wide inhibitory spectrum was appreciated against protozoal parasites of medical
importance and malignant cells. Therefore, our screening strategy suggests the activity of
the studied EOs against eukaryotic cells. The mechanisms underlying the antiprotozoal and
antiproliferative actions of the tested EOs were not studied. Nevertheless, during the last
decade, it has been postulated that the mechanism of action for oils and their constituents
is rather complex. Several of these effects are attributable to the lipophilic nature and
low molecular weight of the main components that comprise the EOs, which allow them
to cross cell membranes, alter membrane composition, and increase membrane fluidity,
leading to the leakage of ions and cytoplasmic molecules. Altering membranes leads to
reduced ATP production, alteration of the pH gradient, and loss of mitochondrial potential,
which can result in cell death. In addition, the induction of cell death by the activation
of apoptotic and/or necrotic processes, cell cycle arrest, and loss of function of essential
organelles has been observed. In parallel, some EOs may also act as pro-oxidant elements,
which can alter the cellular redox state and compromise cellular survival. Nevertheless, the
activities of EOs generally result from complex interactions between the different classes
of compounds that can result in a great diversity of mechanisms of action and molecular
targets [5].

The most sensitive parasite was T. brucei, which is responsible for African trypanoso-
miasis or sleeping sickness, mostly found in equatorial Africa. Human African trypanoso-
miasis takes two forms depending on the parasite involved, which are both transmitted by
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tsetse flies (Glossina spp.). Sleeping sickness in eastern and southern sub-Saharan Africa is
an acute form caused by the subspecies T. brucei rhodesiense. Trypanosomiasis in the central
and western regions of Africa is a slow-progressing form caused by T. brucei gambiense.
Both trypanosomes invade the brain, causing mental deterioration, coma and death if left
untreated [25,26].

The studied EOs displayed an important activity against 22Rv1 malignant cells, which
are derived from human prostate carcinoma. In men, prostate cancer is the most commonly
identified cancer and one of the most important causes of cancer-related deaths; inflam-
mation is also associated with the pathogenesis of this disease [27,28]. The discovery and
development of chemotherapeutic agents that can bind specifically prostate tumor cells is
crucial to improve the treatment effectiveness and eventually avoid castration in affected
patients [28,29].

Another point to consider is that EO-Bp showed the same IC50 value (p > 0.05) against
susceptible MCF-7 and hormone-resistant MCF-7/HT (12.9 and 12.4 µg/mL, respectively).
It is known that one of the hallmarks of cancer therapy resides in the ability of malignant
cells to accumulate genetic/epigenetic changes until they achieve self-renewal, produce
differentiated progeny, and develop resistance to therapy [30]. Thus, these results could
represent a potential treatment opportunity for cancers that develop hormone resistance.

Moreover, toxicity on non-malignant cells is an important criterion in the drug develop-
ment process. In that regard, EOs showed certain cytotoxicity, with CC50 values < 100 µg/mL.
However, EO-Bp exhibited a selective antiparasitic effect on T. brucei, T. cruzi and P. falci-
parum, with SI values ranging from 14 to 128. Thus, these EOs should be considered for
further exploration in animal models.

Another interesting result was that, in general, higher biological activities were ob-
served for EO-Bp in comparison with EO-Lo (Tables 1–3), including: (i) number of suscep-
tible organisms or cells: 7 vs. 5; (ii) average of all activities: 11.8 µg/mL vs. 22.5 µg/mL;
(iii) range of activity against parasite: 0.6–39.7 µg/mL vs. 8.1–37.8 µg/mL, as well as
malignant cell lines: 6.1–15.1 µg/mL vs. 9.1–31.5 µg/mL, and (iv) better SI with respect
to parasites: 1–128 vs. 0–9 and malignant cells: 1–12 vs. 0–8, respectively. In addition,
to the best of our knowledge, EO-Bp was analyzed in our study for the first time for its
antiparasitic and antiproliferative potential; while EO-Lo was previously studied against
protozoal parasites T. evansi [31], T. cruzi [32], and L. chagasi [33], and malignant cell line
MDA-MB-231 [34]. Therefore, the higher potential activity of EO-Bp opens the possibility
for further studies as a new therapeutic agent.

In Brazil, there are currently 167 species in the Baccharis genus; the country is one
of the main centers of diversity of this genus [35,36]. The species of this genus are very
relevant in folk medicine, with several species being used for the control and treatment
of diseases, beyond the economic and environmental aspects. In this regard, a previous
review highlights the antimicrobial and antiprotozoal activity of Baccharis species, which
was considered a promising source of biologically active compounds [10]. In particular,
the activity of EO-Bp have been scarcely explored; however, knowledge of the chemical
structures may explain the observed biological activity and could serve as scaffolds for
rational drug design, suggesting chemical modifications to increase activity, bioavailability,
and toxicity, among other characteristics, allowing the design of new and more active com-
pounds [17]. Then, to have a general overview of probable bioactive compounds of EO-Bp,
reports retrieved from scientific literature related to the assayed pharmacological activities
of identified major compounds are summarized in Table 4 [9]. In this sense, reports about
the antimicrobial, antiparasitic and antiproliferative activities of the main compounds from
EO-Bp were found. In some instances, although different cell targets in comparison with
our study have been assayed, the versatility of activities is demonstrated and supports
our results. Among these compounds, reports suggest that sabinene demonstrates a wide
spectrum of antimicrobial and antiparasitic activities, while himachalol displayed antimi-
crobial and anticancer actions. In contrast, β-pinene was the most versatile compound and
displayed antimicrobial, antiparasitic and anticancer activities.
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Table 4. In vitro pharmacological activities retrieved from scientific literature on major compounds
identified in the essential oils from Baccharis parvidentata growing in Brazil.

Major Compounds Pharmacological Property Target (Results) Reference

Sabinene
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Antiparasitic

- Trypanosoma cruzi (% growth inhibition 95.7 ± 0.4
at 100 µg/mL, 89.9 ± 9.6 at 50 µg/mL, 71.6 ± 1.6
at 10 µg/mL and 12.3 ± 0.3 at 5 µg/mL)

[43]

Antiproliferative - Oral squamous cell carcinoma (IC50~67 µg/mL) [44]

3. Materials and Methods
3.1. Essential Oils

EO-Bp and EO-Lo were obtained previously by Perera et al. [9] and were obtained
by common hydrodistillation in a Clevenger apparatus for 3 h and dried with anhydrous
sodium sulfate. The EOs were chemically characterized using gas chromatography–mass
spectrometry (GC–MS) and gas chromatography coupled to flame ionization detection
(GC-FID) analyses (Supplemental Materials; Table S1). For biological assays, each EO was
diluted in dimethyl sulfoxide (DMSO) at 20 mg/mL. This work is registered in SISGEN
(Sistema Nacional de Gestão do Patrimonio Genetico, Brazil) under the access authorization
number AC7DDF5.

3.2. Microorganisms and Cells

The reference strain of Gram-negative E. coli ATCC8739, Gram-positive S. aureus
ATCC6538, yeast C. albicans B59630, and protozoa P. falciparum Ghana, T cruzi Tulahuen
CL2, T. brucei brucei Squib-427, L. amazonensis MHOM/77BR/LTB0016, and L. infantum
MHOM/MA(BE)/67 were used for assessing the EOs against infectious agents. In addition,
four malignant cell lines were included: MCF-7 (ATCC® HTB-22), MCF-7/HT (estab-
lished in the laboratory), 22Rv1 (ATCC® CRL-2505TM), and A431 (CRL-1555TM); three
non-malignant cells were included MRC-5 (CCL-171™), MCF-10A (ATCC® CRL-10317)
breast cells, and PMM isolated at the moment of use from healthy animals (approved
protocol number: CEI-IPK-68-20).

3.3. Antimicrobial Screening

The integrated antimicrobial screening in 96-well plates was adopted from Cos
et al. [45]. Serial dilutions of the EOs were prepared from the DMSO stock solutions
in sterile demineralized water in 96-well plates using an automated liquid-handling work-
station (Beckman Coulter Biomek 3000), in which the final DMSO concentration was <1%.
In all cases, negative (100% growing) and positive (a reference drug) control were included.
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Antibacterial and antifungal assays were performed with 5 × 103 CFU/well of E. coli,
S. aureus (cultured in Mueller Hinton Broth medium (MHB) from Sigma-Aldrich, St. Louis,
MO, USA) or C. albicans (cultured in RPMI medium from Sigma-Aldrich, St. Louis, MO,
USA). EOs were added at concentrations ranging from 0.25 to 64 µg/mL. Then, plates
were incubated 17 h at 37 ◦C, and viability was determined fluorimetrically by the addition
of resazurin (Sigma-Aldrich, St. Louis, MO, USA) for 30 min at 37 ◦C or 4 h at 37 ◦C
to bacteria and fungi cultures, respectively [46]. Finally, fluorescence was measured at
530 nm excitation and emission of 590 nm using a fluorimeter (Tecan Group, Maennedorf,
Switzerland). Reference drugs were chloramphenicol (Sigma-Aldrich, Bornem, Belgium),
erythromycin (Sigma-Aldrich, Bornem, Belgium) and miconazole (Janssen Pharmaceuticals,
Beerse, Belgium) for E. coli, S. aureus and C. albicans, respectively.

The antiprotozoal assessment was carried out using different models, and parasite
forms as will be described below. Activity against P. falciparum was measured with parasites
cultured in human erythrocytes A+ (with 1% parasitemia and 2% hematocrit) in RPMI
medium (with 0.5 (g/v)% AlbumaxTM) at 37 ◦C in an atmosphere of 3% O2, 4% CO2, and
93% N2 [47]. Suspensions of cells were distributed in a 96-well plate, treated with different
concentrations of EOs and incubated for 72 h under the same conditions. Then, the plate
was frozen at −20 ◦C, and parasite multiplication was measured after mixing 20 µL of the
hemolyzed parasite suspension with 100 µL of MalstatTM (Flow Inc., Portland, OR, USA)
reagent in a new plate. After 15 min of incubation at room temperature, 20 µL of nitro blue
tetrazolium chloride (NBT; Sigma Aldrich, St. Louis, MO, USA), and 2 mg/mL/phenazine
ethosulfate (Sigma Aldrich, St. Louis, MO, USA) solution was added. The plate was
incubated again for 2 h at room temperature in the dark, and the absorbance was read in a
Biorad 3550-UV microplate reader at 655 nm. Antitrypanosomal activity on amastigotes
of T. cruzi was evaluated, using 4 × 104 amastigotes in 4 × 103 MRC-5 cells maintained in
minimal essential medium (MEM; Life Technologies, Carlsbad, CA, USA) supplemented
with 20 mM L-glutamine, 16.5 mM sodium bicarbonate and 5% of inactivated fetal calf
serum. Then, EOs in tested concentrations were added and incubated for 7 days in the
previous conditions. Parasite growth was assessed by adding the β-galactosidase substrate
chlorophenol red β-D-galactopyranoside (Sigma Aldrich, St. Louis, MO, USA) subsequent
to an additional incubation for 4 h at 37 ◦C. The absorbance was then read at 540 nm [48].
In the case of trypomastigotes of T. brucei, the assessment of activity was performed in
Hirumi-9 medium supplemented with 10% inactivated fetal calf serum (FCSi) at 37 ◦C and
5% CO2 [49]. Assays were performed by adding 1.5 × 104 trypomastigotes/well to the EOs
at different concentrations and incubating them for 72 h under the same conditions. The
fluorimetric resazurin method, with an additional incubation for 24 h at 37 ◦C, was used
to measure parasite growth. Evaluation of activity against L. amazonensis promastigotes
was carried out in a 96-well plate with 2 × 105 parasites/mL and with the different
concentrations of EOs. The plates were sealed with Parafilm and incubated at 26 ◦C for
72 h. Afterward, 20 µL of a solution (5 mg/mL) of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide) (Sigma-Aldrich, St. Louis, MO, USA) was added to each
well and incubated for an additional 4 h. The supernatant was removed, and the formazan
crystals were dissolved with 100 µL DMSO. The absorbance of each well was determined
with a plate reader (Molecular Devices, Sunnyvale, CA, USA) with a test wavelength of
560 nm and a reference wavelength of 630 nm [50]. On the other hand, the evaluation of
antileishmanial activity against the intracellular amastigote form of L. amazonensis and L.
infantum was also performed. In the model of L. amazonensis, a PMM monolayer was used
(plated at 106/mL in 24-well plates) and infected with stationary-phase promastigotes at
a 4:1 parasite/macrophage ratio for 4 h at 5% CO2 and 37 ◦C. The cells were washed to
remove free parasites. EOs were added at different concentrations, and the plates were
further incubated under the same conditions for 48 h [51]. For L. infantum, 3 × 104 PMM
were infected with amastigotes obtained from an infected hamster at a ratio of 15 parasites
per cell. The plate was incubated for 48 h at 37 ◦C and 5% CO2, and different concentrations
of EOs were added. Then, the plate was incubated under the same conditions for 120 h. In
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both parasite species, the supernatant was discarded after the incubation period with the
products; cells were fixed with methanol, stained with 10% Giemsa and microscopically
examined (Motic, Japan) under immersion oil. Total parasite burden was determined by the
number of infected macrophages and the number of amastigotes inside the macrophages.
In the antiprotozoal assays, chloroquine, enznidazole, suramine and miltefosine (donated
by Special Programme for Research and Training in Tropical Diseases from the World
Health Organization (WHO-TDR)) were used as reference drugs for P. falciparum, T. cruzi, T.
brucei, and L. infantum, respectively, while pentamidine (Richet, Buenos Aires, Argentina)
was used for L. amazonensis.

3.4. Antiproliferative Assay on Malignant Cells

MCF-7, MCF-7/HT, 22Rv1 and A431 cancer cells were cultured in standard 4.5 g/L
glucose DMEM medium (Gibco-Life Technologies, Paisley, UK), when 22Rv1 were culti-
vated in RPMI-1640 medium (Gibco-Life Technologies, Paisley, UK) supplemented with
RPMI-1640 Vitamins (PanEco, Moscow, Russia). In all cases, the culture was supplemented
with 10% fetal calf serum (FCS), antibiotics (50 µg of streptomycin/mL and 50 U of peni-
cillin/mL) and 0.1 mg/mL sodium pyruvate (Santa Cruz Biotechnology, Dallas, TX, USA)
and maintained in a NuAir incubator (NuAir, Plymouth, MN, USA) at 37 ◦C, 5% CO2
and 80–85% humidity. Then, 100 × 103 22Rv1 cells/well, 40 × 103 MCF-7 or MCF-7/HT
cells/well and 35 × 103 A431 cells/well, were seeded into 24-well plates in 900 µL of the
medium, and the plates were incubated for 24 h at 37 ◦C and 5% CO2. Subsequently, EOs
or reference drug were added at different concentrations and the plates were incubated
for 72 h under the same conditions. Cell viability was assessed using MTT at 0.2 mg/mL
per well [52]. After additional incubation for 2 h, the supernatant was discarded, the MTT
formazan purple crystals were dissolved in DMSO (350 µL per well) and the absorbance
was measured at 571 nm and 630 nm as a reference in a MultiScan reader (ThermoFisher,
Waltham, MA, USA) after the plates were gently shaken. Cisplatin (Teva Pharmaceutical
Industries, Petah Tikva, Israel) was used as a reference drug.

3.5. Cytotoxicity Test on Non-Malignant Cells

The cytotoxicity analysis of EOs on 104 MRC-5 cells/well was performed in MEM-
supplemented medium at 37 ◦C and 5% CO2 seeded onto the test plates for 72 h. Cell
viability was assessed fluorometrically after the addition of resazurin as described above.
Cytotoxicity was also studied using MCF-10A cells cultured in medium supplemented
with 5% donor horse serum (BioSera, Nuaille, France), 20 ng/mL epidermal growth factor
(PanEco, Moscow, Russia), 0.5 µg/mL hydrocortisone (ChemCruz, Dallas, TX, USA), and
10 µg/mL insulin (PanEco) at 37 ◦C, 5% CO2 and 80–85% humidity). Briefly, 60 × 103

MCF-10A cells were seeded into 24-well plates in 900 µL of the medium, and then, plates
were incubated for 24 h at 37 ◦C and 5% CO2. Then, different concentrations of EOs were
added, and the plates were incubated for 48 h under the same conditions. Cell viability
was then measured by the MTT method as described above for cancer cell lines. Finally, in
the model of PMM, 3 × 105 cells/mL was treated with different concentrations of EOs over
48 h in the same conditions. Then, 15 µL of MTT solutions were added to each well, and,
after 4 h of additional incubation in the same conditions, the supernatant was discarded,
formazan crystals were dissolved with 100 µL of DMSO and the absorbance was obtained
as described above.

3.6. Statistical Analysis

In each model included in this assessment, three experiments were performed and
percentage growth inhibition for each product concentration was calculated compared
to the untreated cultures (negative control). The IC50 for antibacterial, antifungal and
antiprotozoal assays were determined, while CC50 was obtained in mammalian cell assays.
In both cases, values were obtained from dose–response curves, and results were expressed
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as mean with a 95% confidence interval. Finally, SI was calculated as the ratio of the CC50
for MRC-5/PMM cells and the IC50 for microorganism or malignant cells.

4. Conclusions

In conclusion, EO-Lo is known to show a wide range of health benefits. The current
study added another potential use of this oil in the area of infectious parasitic and malignant
diseases. EO-Bp had antiparasitic and antiproliferative activity with a wide spectrum and
selectivity in comparison with non-malignant eukaryotic cells. Thus, these products from a
plant that grows in Brazilian regions can be considered interesting candidates for further
tests as new therapeutic alternatives.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27061926/s1, Table S1: Chemical composition of the
essential oils from Baccharis parvidentata (EO-Bp) and Lippia origanoides (EO-Lo), growing in Brazil.
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