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Abstract
Present-day diagnostic tools and technologies for canine diseases and other vector-borne parasitic diseases hardly meet the
requirements of an efficient and rapid diagnostic tool, which can be suitable for use at the point-of-care in resource-limited settings.
Loop-mediated isothermal amplification (LAMP) technique has been always a method of choice in the development and valida-
tion of quick, precise, and sensitive diagnostic assays for pathogen detection and to reorganize point-of-care (POC) molecular
diagnostics. In this study, we have demonstrated an efficient detection system for parasitic vector-borne pathogens like Ehrlichia
canis andHepatozoon canis by linking the LAMP assay to a smartphone via a simple, inexpensive, and a portable “LAMP box,”
All the components of the LAMP box were connected to each other wirelessly. This LAMP box was made up of an isothermal
heating pad mounted below an aluminum base which served as a platform for the reaction tubes and LAMP assay. The entire setup
could be connected to a smartphone via an inbuilt Wi-Fi that allowed the user to establish the connection to control the LAMP box.
A 5 V USB power source was used as a power supply. The sensitivity of the LAMP assay was estimated to be up to 10−6 dilution
limit using the amplified, purified, and quantified specific DNA templates. It can also serve as an efficient diagnostic platform for
many other veterinary infectious or parasitic diseases of zoonotic origin majorly towards field-based diagnostics.
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Introduction

Pathogenic organisms are the agents of infectious diseases,
and their transmission can be threatening in all respects and

can result in economic losses. Promising diagnosticmethods
are therefore needed for the proper diagnosis and manage-
ment of such diseases. In such cases, point-of-care (POC)
tests can be a boon especially in resource-limited or field
settings. Nucleic acid (NA) detection using point-of-care
(POC) is a rapidly evolving field which has great application
in clinical and commercial setups (Auroux et al. 2002; Yager
et al. 2008; Lui et al. 2009; Arora et al. 2010; Kovarik et al.
2013;Gauglitz 2014; Sackmann et al. 2014).NA-basedPOC
diagnostic platforms require NA isolation and purification
before proceeding for amplification (Easley et al. 2006), and
these are very important and influential parameters.
Polymerase chain reaction (PCR) is the most routinely used
method for NA amplification which undergoes multiple
thermo-cycling steps for complete amplification of NA. On
the contrary, isothermal amplification of NA drastically cuts
down the thermo-cycling stages, which is more economical
without compromisingwith the quality of DNA (Asiello and
Baeumner 2011; Chang et al. 2013; Yan et al. 2014). Many
interesting and efficient technological advances in POC
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testing can play a vital role in patient care and public health
care by providing user-friendly, handy, smarter, rapid, eco-
nomical, and pervasive diagnostic setups on the go (Jani and
Peter 2013; Vashist et al. 2014; Vashist et al. 2015).
Subsequently, many such newly developing nucleic acid
amplification test (NAAT) devices are shifting from the clas-
sical laboratory-based platforms to mobile, comprehensive,
lucid, and economical POC testing platforms (Yang and
Rothman 2004; Chin et al. 2012; Jiang et al. 2014; Priye
and Ugaz 2016). Loop-mediated isothermal amplification
(LAMP) has popped up to be a very popular isothermal
NAAT forNAdetection due to its less complex thermal steps
and higher sensitivity (Notomi et al. 2000; Notomi et al.
2015; Song et al. 2016; Tian et al. 2016). Moreover, isother-
mal NAATs do not necessarily require thermal cyclers,
thereby eliminating the need of complex hardware and soft-
ware’s for such kind of tests. For end-point result analysis,
LAMP assay generally relies on turbidity monitoring and
using indicators like hydroxynaphthol blue (HNB) (Lau
et al. 2015), SYBR green dye as a post-reaction analysis
(Iwamoto et al. 2003), or agarose gel electrophoresis
(Notomi et al. 2000). Apart from LAMP assay, there have
been many other assays like the rolling circle amplification
(RCA) (Monsur Ali et al. 2014), strand displacement ampli-
fication (SDA) (Shi et al. 2014), signal-mediated amplifica-
tion ofRNA technology (SMART) (Hall et al. 2002), nucleic
acid sequence-based amplification (NASBA) (Compton
1991), single primer-triggered isothermal amplification
(Ma et al. 2015), helicase-dependent amplification (HDA)
(Vincent et al. 2004), and cross priming amplification (CPA)
(Xu et al. 2012; Craw and Balachandran 2012; Chang et al.
2013) which are used to achieve isothermal amplification of
NA. Still, LAMP has been faster, more stable, and sensitive
for NA detection (Notomi et al. 2000; Notomi et al. 2015).
Interestingly, LAMP-basedmethods have shown to produce
>50-foldmore amplicon than PCR-based techniques (Seyrig
et al. 2011). Apart from this, LAMP assay provides a flexi-
bility to amplify medium- to long-range template strands of
nucleic acids (>130 bp and <300 bp), which makes it highly
favorable for amplification of NA of several infectious path-
ogens (Notomi et al. 2000). LAMP assay amplification can
give good results even in the presence of certain inhibitors
(Abdul-Ghani et al. 2012) and some food ingredients
(Kaneko et al. 2007; Wang et al. 2008; Kiddle et al. 2012).
The specificity of the LAMP assay is due to four to six dif-
ferent specific primers and aBst polymerase enzymeused for
amplification (Notomi et al. 2000; Parida et al. 2008; Craw
and Balachandran 2012; Tanner and Evans Jr. 2014). Many
significant advances have been developed for detecting the
LAMP amplicons including electrochemical detection
mechanism (Zhang et al. 2014), pH sensing modality, and
many more (Ahmed et al. 2008; Toumazou et al. 2013;
Zhang et al. 2014).

Hepatozoon canis causes canine hepatozoonosis which is
one of the most commonly occurring infections found in the
canine populations globally (Otranto and Dantas-Torres 2010;
Singh et al. 2017a). The causative parasite involved in it has a
relatively complex and unique life cycle, where the infection
takes place on ingesting the ixodid tick which already contains
the mature oocysts of the parasite (Nava et al. 2015). The brown
dog tick,Rhipicephalus sanguineus (sensu lato), has been report-
ed to be the sole vector responsible for H. canis infection
(Gavazza et al. 2003; Nava et al. 2015). Conventional parasito-
logical techniques such as microscopy have been used for the
diagnosis of canine hepatozoonosis (Baneth and Shkap 2003).
According to some previous studies, several sensitive tests such
as indirect fluorescent antibody test (IFAT) and enzyme-linked
immunosorbent assay (ELISA) have been proven to be sensitive
especially in diagnosing chronic infections (Shkap et al. 1994;
Mylonakis et al. 2005).Molecular diagnostic assays such as PCR
and real-time PCR have been employed for the identification and
diagnosis of H. canis infections (Otranto et al. 2011; Abd Rani
et al. 2011; Aktas et al. 2015; Singh et al. 2017a). PCR being a
gold standard for diagnosis, these molecular tests win over other
tests due to their high sensitivities and specificities for the detec-
tion of such infections from the host as well as the vector (Latrofa
et al. 2014; Singh et al. 2017b). However, PCR assays are not
easily accessible in the field, due to their higher costs and com-
plex mechanism (Mandal et al. 2015). LAMP assays have been
substantially used for the precise and timely diagnosis of various
infectious agents or pathogens (Notomi et al. 2000; Parida et al.
2008; Notomi et al. 2015; Mandal et al. 2015). Furthermore, it is
easier to evaluate the end-point results either by dye-based
methods or by visualizing the presence of turbidity in positive
reactions (Mori et al. 2001; Karanis and Ongerth 2009). In the
field of veterinary diagnosis, LAMP assays have been developed
and effectively used for the detection of Babesia gibsoni (Ikadai
et al. 2004; Mandal et al. 2015), Trypanosoma evansi (Thekisoe
et al. 2005), Theileria equi (Alhassan et al. 2007), Babesia
caballi (Alhassan et al. 2007), Cryptosporidium parvum
(Karanis et al. 2007), Babesia orientalis (He et al. 2009),
Toxoplasma gondii (Krasteva et al. 2009), Theileria parva
(Thekisoe et al. 2010), Theileria sergenti (Wang et al. 2010),
and Tritrichomonas foetus (Oyhenart et al. 2013).

Canine monocytic ehrlichiosis (CME), significantly marked
by the presence of clinical and hematological signs, is caused by
a tick-borne bacterium called Ehrlichia canis (Harrus andWaner
2011). CME has been known to have similar clinical signs and
hematological alterations like other tick-borne diseases which
can be quite challenging for veterinarians for its diagnosis and
treatment (Harrus andWaner 2011). It occurs as amulti-systemic
disease, ranging from an acute to subclinical and, in some cases,
leading to a chronic phase (Harrus and Waner 2011). The path-
ogen is widespread globally and is predominantly found in trop-
ical and subtropical regions.Moreover, co-infection of dogs with
E. canis and other tick-transmitted pathogens has also been
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reported in such regions, where the vectors are prevalent
(Mekuzas et al. 2009; Santos et al. 2009; Al Izzi et al. 2013;
Eiras et al. 2013; De Tommasi et al. 2013). Several molecular
diagnostic tests such as PCR, nested PCR, and real-time PCR
assays have been previously used to detect E. canis in dogs
(McBride et al. 1996; Stich et al. 2002; Doyle et al. 2005;
Kledmanee et al. 2009; Nakaghi et al. 2010; Peleg et al. 2010;
Cardozo et al. 2011). The 16S rRNA nested PCR assay devel-
oped for the diagnosis and detection of E. canis has been fre-
quently used; however, a nested PCR assay targeting the p30
gene has been recently reported to be more sensitive (Stich
et al. 2002). Despite of being highly specific and sensitive nested
PCR tests, they are often judged due to their time-consuming
process and cross-contamination issues, which may lead to
false-positive results (Cardozo et al. 2011). On the other hand,
LAMP assays are sensitive and specific and have an advantage
of producing and visualizing the results in relatively lesser period
of time (Notomi et al. 2000).

The gold standard nucleic acid amplification tests (NAAT),
multiplexed quantitative reverse-transcription polymerase chain
reaction (qRT-PCR), and many such tests require sophisticated,
expensive, power-consuming, and bulky thermal cyclers (for dif-
ferent thermal conditions) with fluorescence detection systems
(for performing real-time fluorescence detection). These tech-
niques come with conditions like high turnaround time and com-
plexity; hence, these factors make them less favorable for point-
of-care testing and their application in fields. Recently, many
evolving NAAT devices are transiting from the traditional
benchtop-based detection systems towards more complete, mo-
bile, and inexpensive field-based systems (Yang et al., 2004;
Chin et al. 2012; Jiang et al. 2014; Priye and Ugaz 2016).

In the present study, we report the development of a
smartphone-based rapid, accurate, and networked diagnostic
LAMP box system for canine infectious diseases. This LAMP
box comprises an isothermal heating pad which serves as a plat-
form for placing the reaction tubes, heat sensor to check the
temperatures, a UV, and white LED lights for visualizing the
results, and then this entire setup can be connected to the
smartphone via an inbuilt Wi-Fi which allows the user to estab-
lish a connection, and subsequently it leads to the simple graph-
ical user interface (GUI) which can control the steps of reaction
of the LAMP box. A 5 VUSB power source was used to supply
power for the LAMP assay in the box. This developed platform
can be used for many such infectious diseases particularly to-
wards field-based diagnostics.

Materials and methods

Sample preparation and PCR assay

Previously collected and identified positive blood samples for
E. canis and H. canis from dogs of Hainan province, which

were confirmed byDNA sequencing, were processed for fresh
DNA isolation (unpublished data). Total DNA was isolated
using 200 ul of EDTA-anticoagulated blood samples by using
TIANamp blood DNA kit (TIANGEN, China) and Sangon
Biotech Ezup blood DNA kit according to the manufacturer’s
protocol. DNA concentrations and purities were determined
by measuring the absorbance using a NanoDrop
Spectrophotometer (Thermo Scientific, USA). The extracted
DNA samples were eluted in nuclease-free water and proc-
essed and/or stored at −20 °C for downstream applications.
The DNA samples which were isolated were subjected to
amplification by PCR using previously developed PCR assays
(Inokuma et al. 2002; Pinhanelli et al. 2015). The primers used
and their thermal cycling conditions are summarized in
Table 1.

End-point PCR assays on the basis of the 18S rRNA gene
of H. canis and p30 gene of E. canis were performed, which
consisted of 1 μl of DNA solution, 12.5 μl of 2x Buffer for
TransGen Biotech PCR SuperMix, 5 μl of 2 mM dNTPs, 3 μl
of 25 mMMgSO4, 0.5 μl of forward primer, 0.5 μl of reverse
primer (50 pmol/μl each) (Table 2), 1 μl of 2 x EcoTaq PCR
Super Mix (1 U/μl), and double distilled water to make up a
final volume of 25μl. The reaction mixtures were cycled in an
Eppendorf gradient thermal cycler (Eppendorf). PCR products
were examined on 2% agarose gel stained with 0.4 μg/ml
ethidium bromide using a Quick-Load 5kb DNA Ladder
marker (TAKARA BIO, Inc. China), visualized under the
Gel Doc XR+ Imaging system (BIO-RAD Laboratories, Inc.).

LAMP assay

The LAMP assay was carried out by using previously used
primers forH. canis and E. canis as mentioned in Table 2. The
LAMP reaction was performed in 25μl reaction volumes as
described (Notomi et al. 2000), with fewer modifications.
Each LAMP reaction of 25 μl contained 9 μl nuclease-free
water, 2.5 μl 10x Isothermal Amplification Buffer Pack (con-
tains 20mMTris-HCl, 10mM (NH4)2SO4, 50mMKCl, 2mM
MgSO4, 0.1% Tween1 20) (New England Biolabs), 3.5 μl
10 mM each dNTPs (New England Biolabs), 1 μl 100 mM
MgSO4 (New England Biolabs), 3.5 μl 5M Betaine
(Affymetrix), 40 pmol each of FIP and BIP primers, 50 pmol
each of the F3 and B3 primers, 1 μl Fluorescent Detection
Reagent (FD), 1.0 μl Bst 2.0 WarmStart DNA Polymerase
(8 units/μl) (New England Biolabs), and 1 μl of sample
DNA template. Contamination issues were resolved to its
maximum by addition of mineral oil on the top part of each
reaction tube. The amplification reaction was performed at 64
°C for 45 min and terminated at a high temperature of 92 °C
for 2 min. Nuclease-free water was used as a negative control
template. After incubation, the tubes containing the amplified
DNA target were checked visually by two persons to check
the color changes observed, purple color represented a

1801Parasitol Res (2021) 120:1799–1809



positive test, whereas no color change referred to as negative
control. To confirm the reaction, 15μl of each LAMP product
was examined on 2% agarose gel stained with 0.4 μg/ml
ethidium bromide using a Quick-Load 5kb DNA Ladder
marker (TAKARA BIO, Inc. China), visualized under the
Gel Doc XR+ Imaging system (BIO-RAD Laboratories, Inc.).

Sensitivity, specificity, and diagnostic performance of
LAMP assay

The isolated DNA samples were processed and were subject-
ed to the 18S rRNA and P30 PCR assays (Table 1) for the
amplification of H. canis and E. canis, followed by the

confirmation of respective amplifications by observing specif-
ic bands by agarose gel electrophoresis. The amplified PCR
products were purified using the DNA gel purification kit
(Sangon prep Kit) as per the manufacturer’s protocol, and
DNA was eluted using 30μl of elution buffer. The concentra-
tions and purities of the eluted samples were determined by
measuring the absorbance using the NanoDrop spectropho-
tometer (Thermo Scientific, USA). Tenfold serial dilutions
of the eluted and quantified DNA were done by using the
eluted and quantified DNA (1μl) which were used to detect
the sensitivity and detection limit of the assay. The amplicons
from PCR were further confirmed by 2.0% agarose gel elec-
trophoresis containing ethidium bromide. To determine the

Table 2 Nucleotide sequences of
LAMP primers used for the
detection of H. canis (18S rRNA
gene) and E. canis (p30 gene)

Primers Type Genes Pathogen
species

Sequences (5′→3′) References

F3-p30 Forward
outer
primer

P30 Ehrlichia
canis

GGCCCAAGAATAGAACTTGA Pinhanelli
et al.
2015

B3-p30 Reverse
outer
primer

P30 Ehrlichia
canis

CCTTCAATTATTATGTCATAGCATG Pinhanelli
et al.
2015

Fip-p30 Forward
inner
primer

P30 Ehrlichia
canis

TGTGTGCGCCGTTCTTATAA
TTgaattcAGTTCTGTACGAGA
CATTCG

Pinhanelli
et al.
2015

Bip-p30 Reverse
inner
primer

P30 Ehrlichia
canis

CATCATAGTTCAGCAACAAA
CATGTgaattcAATGATAAGTCAAT
TAACCCTTC

Pinhanelli
et al.
2015

F3 Forward
outer
primer

18S
rR-
NA

Hepatozoon
canis

GCAAAGTGAAAACAGGCG Singh
et al.
2019

B3 Reverse
outer
primer

18S
rR-
NA

Hepatozoon
canis

AGAATTGGGTAATTTGCGC Singh
et al.
2019

FIP Forward
inner
primer

18S
rR-
NA

Hepatozoon
canis

GCCACGGTAAGCCAATACCA
TAAATCATTCAAGTTTCTGACCT

Singh
et al.
2019

BIP Reverse
inner
primer

18S
rR-
NA

Hepatozoon
canis

GTGACGGTTAACGGGGGATT
GTGGTAGCCGTTTCTCAG

Singh
et al.
2019

Table 1 Primer sets with respective product sizes and thermal cycling conditions for DNA amplification of the pathogens in dogs

Pathogen/tick
species

Gene Primers PCR conditions Reference

Hepatozoon canis 18S
rRNA

HEP-F: ATACATGAGCAAAATCTCAAC
HEP-R: CTTATTATTCCATGCTGCAG

95 °C, 5 min; 35 cycles [95 °C 60
s, 58 °C 60 s, 72 °C 60 s]; 72 °C, 5
min

Inokuma et al.
(2002)

Ehrlichia canis P30 P30-1SPF: ATGGGTGGCCCAAGAATAGA
ACTTG

P30-1SPR: CATCCTGCTATGGTTCCTAGTG

95 °C, 5 min; 40 cycles [95 °C 45 s,
60 °C 30 s, 72 °C 30 s]; 72 °C, 5 min

Pinhanelli et al.
(2015)
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specificity of the LAMP assay, a positive DNA sample of
B. canis vogeli was also used as a DNA template for the
LAMP assay to validate its specificity and cross reactivity.
In order to assess the usefulness of the optimized
smartphone-enabled LAMP assay in a BOX as a smart and a
rapid diagnostic tool, representative samples from the previ-
ously collected, identified (positive and negative), and extract-
ed genomic DNA from the dogs (unpublished data) were test-
ed using this platform. The diagnostic performance of the
smartphone-assisted LAMP box was evaluated using a total
number of 226 DNA samples of dogs (unpublished data).

Smartphone-assisted portable LAMP box

A 5V isothermal heating pad (COM-11288; 5VDC), UV LED
light (Lite-On Inc.; Part# LTPL-C034UVH385), and white
LED light (Panasonic Electronic components; Part
LNJ03004BDD1) were maneuvered via an Arduino esp8266
microcontroller (ESP8266 ESP-01 Wi-Fi Arduino) which
could wirelessly connect to a smartphone. Here, we used the
iPhone 7 model (R-62000612). A hard cardboard box was
used to assemble all the components. The inner and the outer
dimensions of the box were approximately 32.5*23*17.5 cm
and 34*25*18.2 cm, respectively (Fig. 1).The entire box was
covered by a black film to facilitate smooth and uninterrupted

visualization of results under UV light (Fig. 2). The highly
detailed description about the LAMP box has been mentioned
in the Supplementary Information section (Supplementary
Text 1: Smartphone-assisted portable LAMP box).

Statistical analysis

The sensitivity of the LAMP assay was calculated at 95%
confidence intervals (CI) for using the SPSS V.17.0 program.

Results

The optimal results and appropriate reaction conditions, which
were represented by a characteristic ladder-like pattern gener-
ally observed for LAMP products, were accomplished suc-
cessfully at 64°C for a time period of 45 min. A series of serial
dilutions of the template DNA from the amplified LAMP
products of E. canis p30 gene and H. canis 18S rRNA gene,
when subjected to agarose gel electrophoresis, demonstrated
similar ladder-like patterns for the same. The amplified PCR
product from the 18S PCR assay was purified and consequent-
ly quantified and was further 10-fold diluted to achieve the
sensitivity of the LAMP assay (Fig. S1a). The sensitivity of
the LAMP assay was estimated to be up to 10−6 dilution limit
using the amplified and purified DNA having average concen-
tration of 648.6 ng/ul and 550.2 ng/ul for H. canis and
E. canis, respectively. 10−6 dilution limit of the dilution series
(Fig. S1b) was observed to be the limit of detection for the
LAMP assay on the basis of the ladder-like pattern observed
in the agarose gel electrophoresis images. The same tubes

Fig. 1 Raw image of the portable LAMP box displaying the components
of the box in an open form. a Arduino esp8266, b power source, c heat
sensor, d isothermal heating pad, e UV LED light, and f white LED light

Fig. 2 White LED light (a) and ultraviolet (UV) LED light, (b) for view-
ing the sample results after the LAMP assay
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were observed under UV and showed the same results with
detection limit of 10−6 dilution (Fig. S1b).

Moreover, no cross amplification was seen after the addi-
tion of the positive DNA templates of B. canis vogeli, as
evident from the agarose gel electrophoresis (Fig. S2a) and
simultaneously observed under UV light (Fig. S2b).

Following the incubation step of the LAMP assay, the am-
plified DNA contained in a reaction tube resulting from the
LAMP assay was visualized by two observers by naked eyes,
who were alternatively blinded to the setup of the assay, dur-
ing and after the entire experiment (Fig. S3). Pinkish purple
(dark blue to light blue on long-term/short-term storage of the
LAMP products) corresponded to a positive reaction (pres-
ence of amplification) and no color change or transparent as
a negative reaction.

The diagnostic capacity of the smartphone-assisted portable
LAMP box as a rapid and efficient diagnostic tool was addressed
by testing the previously collected and identified genomic DNA
(unpublished data) using the LAMP box, which revealed that
5.3% (12/226) and 15.0% (34/226) of samples were positive
for H. canis and E. canis, respectively, which clearly matched
with the previously collected data for the same samples. The
results were in agreement with the observed results. The
LAMP assay was statistically checked for its sensitivity, and
the corresponding values were represented at 95% confidence
intervals (CI), and the observed sensitivity was around 96.4%
falling within a range of 89.5–100.0% using the SPSS V.17.0
program. All the data of the LAMP assay was found to be sta-
tistically significant at p < 0.01.

In this study, we developed a lucid, comprehensible, econom-
ic, competitive, and a mobile LAMP detection system that uti-
lizes the rigorous and robust LAMP assay for canine parasitic
vector-borne infectious diseases and the flexibility and adaptabil-
ity of smartphones to facilitate in-field POC diagnostics (Fig. 3).

The comprehensive NAAT device comprised the following
primary modules: (A) isothermal heating pad, (B) LED white
light, (C) LED UV light, (D) heat sensor, (E) Arduino
esp8266, and (F) a smartphone (Fig. 3). The isothermal heating
pad could accommodate 5–6 0.5 ml Eppendorf reaction tubes,
and hence, 5–6 samples can be processed at a time. Thermal
parameters provided in the thermal cyclers or PCR machines
which are sold by high-end reputed companies and brands are
often tricky and intricate due to their bulky nature and huge
thermal blocks. Distinctively, the isothermal nucleic acid ampli-
fication devices use less complicated thermal platforms. For in-
stance, in this platform, we employed a small isothermal heating
pad that was operated by using an externally available power
source of 5 V. The heater that we used utilized comparatively
lesser energy which was fulfilling its need to provide and main-
tain a consistent surface temperature profile for 45 min.
Currently, most of the thermal cyclers are using silver blocks to
facilitate heat resistant and uninterrupted fluctuations in the tem-
peratures. Here, we used a very simple and handy miniature

aluminum block with grooves which could easily withstand high
temperatures and fluctuations. Also, isothermal heaters often re-
quire modified PCR tubes. We tried to keep the experimental
profile simple and easily available by using the conventionally
used PCR tubes used in laboratory to process the LAMP tests.
The isothermal heating pad, LED lights (UV andwhite), and heat
sensor were initialized wirelessly through the webpage opened in
the smartphone (router: 192.168.4.1). This was done through the
Arduino esp8266 (Fig. 4a), whichwhen connected, permitted the
user end to recognize and set up a Wi-Fi connection named
HanVet through the control screen panel (Fig. 4b). It directed it
to a screen which had three tabs on the main screen (i) Run test
tab, (ii) UV On tab, and (iii) UV Off tab (Fig. 4c).

Once the router or the webpage was launched, the control
panel screen permitted the end-point user to set up a connection
with the LAMP box, managed the heater temperature, and mon-
itored the thermal profile on real-time basis as an ongoing pro-
cess which could be easily viewed on the screen of the
smartphone. The LAMP box was covered using a printed black
paper to facilitate unblocked viewing of the end-point results and
to provide consistent LED illumination. The unique features of
this smartphone-enabled LAMP box are its portability and its
usage in field applications.

Fig. 3 Schematic representation of the portable LAMP box settings. A
Isothermal heating pad, B LED white light, C UV LED light, D heat
sensor, E Arduino esp8266, and F camera of any smartphone
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Discussion

Here, we demonstrate the idea of a point-of-care testing system
for canine parasitic vector-borne diseases, utilizing any conven-
tional smartphone that couples with the LAMP assay to facilitate
mobile detection of diseases of zoonotic concern. The nucleic
acid tests (NAT) serve as a valuable, much reliable, and ad-
vanced diagnostic tool for the detection and identification of
pathogens, in combination with clinical findings and serological
tests. This smartphone-enabled LAMP box contains the entire
setup for processing the LAMP reaction and further visualizing
the results. This entire setup is connected to our smartphone via
Wi-Fi. All the software programming has been done using C
language. This LAMP box is a portable, cost-effective diagnostic
platform for diagnosis of several vector-borne diseases of the
canine populations.

Although many technologies using the smartphone and
LAMP assay have been previously developed, like the
smartphone-based detection assay for Zika, chikungunya, and
dengue viruses using a multiplex platform and quenching tech-
niques for accurate detection in a multiplex system (Teoh et al.
2013; Priye et al. 2017), but these involve an expensive setup and
quenching dyes for differentiating between different targets in a
closed system. On the contrary, our smartphone-enabled portable
LAMP assay is an economical, user-friendly, and specific assay
for the detection of canine infectious diseases. It does not require

the need of additional quenching dyes; it just requires the addi-
tion of a fluorescent detection dye for the viewing of a positive
sample. Our developed assay serves as a qualitative detection
platform, which definitely has a scope for modifications and
further studies in terms of advancing the technology. In a similar
such study, a research group developed a uncomplicated, reason-
able, water-activated, chemically heated,minimally instrumented
smart cup for nucleic acid amplification and detection targeting
the herpes simplex virus type 2 (HSV-2) (Liao et al. 2016).
While the routine PCR tests rely on dedicated and special need
specialized equipment or machinery, LAMP assays can be car-
ried out in a simple heating block/water bath, knocking out the
specific requirements for thermocyclers, and they are validated
and standardized for direct visualization of results by naked eye,
getting rid of the need for agarose gel electrophoresis (Notomi
et al. 2000). This can ultimately lead to the reduced cost and ease
for setting up a budget NAT diagnostic test for a veterinary clinic
and related services. More importantly, with fewer modifications
and validations in the LAMP assay, the overall turnaround time
of the test can be drastically reduced without compromising on
the quality of the experiment and results (Parida et al. 2008).
Microscopy is a classical technique which has been continuously
used since long time, for the identification and detection of
hemoparasites. Conveniently, detection and visualizing of the
circulating gamonts in stained blood smears is the most common
approach used to check the presence of H. canis infection. The
absence of infection is not always indicated by the absence of
parasitemia, because there is a possibility of false-negative results
in dogs having tissue infectionwithHepatozoon spp. irrespective
of the lower or a temporary state of parasitemia. PCR tests and
similar amplification methods are considered to be a gold stan-
dard for the detection of even smaller amounts of the parasitic
DNA and pathogens, since it becomes difficult to detect the
lower parasitemia by the traditional microcopy techniques. In
the present study, a specific LAMP assay on the basis of the
partial 18S rRNA gene and p30 gene of H. canis and E. canis
was optimized for the rapid detection of these infections in canine
populations. The LAMP assay was found to be specific and did
not amplify theDNAofB. canis vogeli, negative sample, and no-
template controls displaying a characteristic ladder-like patterns.
The developed LAMP assay can be conveniently used field for
regular testing, when the high-end and state-of-the-art equipment
are not accessible.

The rising canine population on a global scenario can be threat-
eningwith respect to the animal welfare and public health, as dogs
serve as significant reservoirs of many zoonotic parasites and dis-
eases. Doxycycline is one of the antibiotic drugs that is popularly
been used to treat dogs suffering from E. canis infections and
related pathogens (Bowman 2011). Profound and large-scale us-
age of this particular antibiotic for treating the infections in dogs
can give rise to an alarming situation, by giving rise to the resistant
strains (Harrus and Waner 2011). The clinical signs observed in
the canine diseases are very much inter-related and overlapping

Fig. 4 a Mobile screen showing the router address for launching the
webpage for the LAMP set up, bWi-Fi connection HanVet establishment
through the control screen panel, and c GUI page for the LAMP setup
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with the symptoms of several other diseases occurring in dogs, and
it becomes very crucial and important to use both serological tests
and NAT to reach a definite conclusion related to the diagnosis of
a particular canine disease (Harrus and Waner 2011). This con-
structive approach towards the diagnosis of canine parasitic dis-
eases will not only allow the veterinary practitioners to suggest
appropriate treatments but will also help them to modify the
existing treatment systems (Harrus and Waner 2011). LAMP as-
say has been popularly and effectively used for the diagnosis of a
wide range of pathogens and infectious diseases, including canine
pathogens and diseases (Stich et al. 2002; Harrus et al., 2011;
Faggion et al. 2013). In this respect, LAMP assay and technique
can be very helpful for the overall management and treatment of
the canine infectious diseases, specifically in tropical and sub-
tropical areas where such diseases occur more prevalently and
where the veterinary laboratories often have negligible or limited
access to advanced and modern equipment. Isothermal amplifica-
tion techniques have a great potential over the traditional gold
standard methods like PCR. An important point to be considered
for the existing LAMP-based POC platforms in resource-limited
settings is ultimately the final cost of the test and the reaction
components. Indeed, the existing and the upcoming molecular
technologies come with a higher turnaround time, sophisticated
and power-consuming modern equipment, and undoubtedly the
need for skilled labor. Smarter amalgamation by using smart and
mobile devices is a key to themodifications in the existingLAMP-
based devices.

Conclusion

Isothermal amplification techniques especially LAMP is a trust-
worthy and reliable alternative to the traditional gold standard,
PCR for the diagnosis and detection of pathogens in the canine
populations. We have developed an economical and easy to
handle smartphone-assisted portable LAMP box altogether con-
nected to each other wirelessly which facilitates the diagnosis of
the parasitic diseases in canine population powered by a 5 V
power bank or power source eliminating the need of any external
electricity source. The sensitivity limit of the LAMP assay was
found to be up to 10−6 dilution limit using the amplified specific
DNA templates, and around 5–6 samples could be tested at one
time. The use of this diagnostic tool is not only limited to the
diagnosis of various important canine vector-borne diseases like
E. canis andH. canis but can also have awide applicability in the
field of other parasitic vector-borne infectious diseases diagnosis
including those of zoonotic origin.
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