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A B S T R A C T

As part of the sustainable future vision, sustainable agriculture has become an essential pillar of the food security
strategies formulated by the Dubai Government. Therefore, the Dubai Emirate began relying on new technology to
increase productivity and efficiency. Agriculture applications also depend on accurate land monitoring for timely
food security control and support actions. However, traditional monitoring requires field surveys to be performed
by experts, which is costly, slow, and rare. Agriculture monitoring systems must be furnished with sustainable
land use monitoring solutions, starting with remote sensing using drone surveys for affordable, efficient, and time-
sensitive agriculture mapping. Hence, the Dubai Municipality is currently using Unmanned Aerial Vehicles
(UAVs) to map the farming areas all over the Emirate, support locating lands conducive to cultivation, and create
an accurate agriculture database contributing to the decision-making process in determining areas suitable for
crop growth. This study used a novel object detection method coupled with geospatial analysis as an integrated
workflow to detect individual crops. The UAV flights were executed using a Trimble UX5 (HP) over twelve
communities across the Dubai Emirate for six months. Detection methods were applied to high-resolution drone
images, consisting of RGB and near-infrared (NIR) bands. Advanced geoprocessing tools were also used to
analyze, evaluate, and enhance the results. The performance of detection of the selected deep learning models are
discussed (vegetation cover accuracy ¼ 85.4%, F1-scores for date palms and ghaf trees ¼ 96.03% and 94.54%
respectively, with respect to visual interpretation ground truth); moreover, sample images from the datasets are
used for demonstrations. The main aim is to offer specialists a solution for measuring and assessing living green
vegetation cover derived from the processed images that is integrated. The results provide insight into using UAS
and deep learning algorithms as a solution for sustainable agricultural mapping on a large scale.
1. Introduction

Agriculture is, without a doubt, one of the most significant factors in
the sustainability of any economy [1, 2]. It plays a key role in long-term
economic growth and structural transformation, though it may vary
considerably by country [3, 4, 5, 6]. In the past, agricultural activities
were limited to food and crop production. Nonetheless, they have
evolved in several countries to the processing, marketing, and distribu-
tion of crops and livestock products. Currently, agricultural activities
constitute the first source of livelihood, improving GDP [7], being a
source of national trade, reducing unemployment, providing raw mate-
rials for production in other industries, and overall developing the
economy [8, 9, 10].
. El Hoummaidi).

September 2021; Accepted 7 Oc
evier Ltd. This is an open access
Remote sensing is used extensively by governments and the private
sector to map soil properties, the classification of crop types, the detec-
tion of crop water stress, the monitoring of crop diseases, and the map-
ping of crop yield [11, 12]. Such technology, which involves using
sensors coupled with geospatial analysis tools, brings data from multiple
sources to support decisions associated with crops. Data can be captured
through Unmanned Aerial Systems (UAS), known as drones, with a more
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sensing platforms [13]. Furthermore, land cover classification based on
remote sensing imagery has been used in change detection monitoring,
agricultural management, green vegetation classification, biodiversity
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significant applications of land cover classification is vegetation
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detection. Hence, several options for generating land cover maps were
investigated by researchers and experts, including digital photo inter-
pretation, supervised and unsupervised classification, classification and
regression trees (CART), and deep learning object detection [16, 17, 18,
19, 20].

Since 2012, deep learning methods have been used extensively for
land cover classification, especially after several advances were reported
in various computer vision tasks, including image classification, object
detection, tracking, and semantic segmentation. Snehal et al. [21] used
convolutional networks for multispectral image classification. Zhang
et al. [22] elaborated a great review of object detection approaches to
land cover classification using high-resolution multispectral imagery.
The authors evaluated and tested the performances of several deep
learning models against the traditional methods and concluded that the
deep learning-based approaches provide an end-to-end solution and
demonstrate better performance than the conventional, pixel-based
methods by utilizing both spatial and spectral information. Several
other works have also demonstrated that artificial intelligence and deep
learning methods are reasonably promising for land cover classification
and vegetation detection in particular [23, 24, 25].

With world commodity prices at an all-time low and supply at an all-
time high due to increasing food consumption and production demands,
the modern farming industry is at a turning point [26]. There is a more
noticeable need than ever before for agronomists and farmers across the
globe to improve resource management in response to tight and fragile
budgets and increasing pressure for enhanced product quality. The Dubai
Emirate is no different. Thus, while Dubai is working to make the most of
its re-export hub and global gateway status in the fresh food sales sector,
which is currently estimated at about 280.5 million tons in volume ac-
cording to a report by the Emirates Authority for Standardization and
Metrology (ESMA), there was a 53% increase in organic farms across
Dubai in 2019. The report also notes an 89% increase in production from
1,240 tons in the last quarter of 2018 to 2,356 tons in the first quarter of
2019. Therefore, the Dubai Municipality has introduced new projects to
survey and map agricultural areas using drones and connected analytics
that can support an automated workflow to assess crop health, make
informed decisions with plant count, access actionable real-time quality
data, assess agriculture-related damage, and prepare plans to mitigate
losses after the spread of a particular disease or an extreme weather
event. These projects have enabled the Dubai Municipality to provide
growers, service providers, and agriculture researchers with a quick and
effective way to scout their crops, identify stress, create treatment plans,
track plant growth, and much more through the utilization of
high-resolution multispectral drones that can detect and quantify crop
health problems. Such valuable insights support the reduction of input
costs and boost yield. Furthermore, the multispectral drone data reveals
field variability invisible to the naked eye, which helps catch diseases
early, allows for a timely response, and improves yields.

Throughout this paper, we evaluate the suitability of UAS-based
remote sensing to monitor crops in Dubai using a novel object-based
vegetation detection method, which utilizes the Normalized Difference
Vegetation Index (NDVI) and deep learning techniques. This paper has
the following contributions:

� Introduction of a novel object-based vegetation and tree detection
method that utilizes NDVI and deep learning techniques, yet the
method is simple; it outperforms the two other investigated methods
(supervised classification and photo interpretation) in performance
and accuracy detection.

� Demonstrating the potential use of an NDVI image as a replacement to
a standard RGB to get improved results.

� Discussion of the underlying reasons why our deep learning model
could perform better than other methods and potential strategies to
use deep learning in many further applications.
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2. Materials and methods

2.1. Study area

The Dubai Emirate is the second largest of the seven emirates that
constitute the United Arab Emirates. Positioned on the southeast coast of
the Arabian Gulf between 55�180East and 25�160North, Dubai has a total
area of 3,900 square kilometers and stretches along the Arabian Gulf
coast for 72 km. The Emirate of Dubai shares borders with Sharjah in the
northeast, the capital Abu Dhabi in the south, and the Sultanate of Oman
in the southeast. Figure 1 shows the administrative boundaries of the
Dubai Emirate, which accounts for 5% of the United Arab Emirates total
area.

Dubai's landscape is a combination of shallow shores, sandy desert,
and coral reefs. Dubai's waters are the living environment of more than
300 species of fish, and such rich marine life has provided Dubai's in-
habitants with a significant source of income for thousands of years. Most
of Dubai's cultivated land consists of date palms and is cultivated in the
arc of small oases that constitute the Hatta Area. The Dubai Municipality
provides incentives to farmers. For example, it offers a 50% subsidy on
fertilizers, seeds, and pesticides. It also provides loans for machinery and
technical assistance [27, 28].

Table 1 demonstrates that 13% of cultivated land in the Dubai
Emirate is used to grow vegetables, 32% fruit, 14% feed crops, and 43%
for other uses. The most productive region is Hatta, which has under-
ground water supplies from the nearbymountains of Oman, which enjoys
high rainfall. The main crops are tomatoes, melons, and dates. At the
same time, vegetable growers in Dubai overcame the desert challenges,
and more than 27 tons were produced in 2019, as shown in Table 2.

The major vegetable crops supplying most of the Emirate's needs
during the season are tomato, cabbage, eggplant, squash, and cauli-
flower. In addition to dates, the key fruit crops are citrus and mangoes
[29], as shown in Table 3.

While obstacles such as severe environmental conditions, scarcity of
water resources, and soil salinity have affected development, Dubai has
engineered innovative solutions to overcome these challenges. These
solutions are widely connected with underground aquifers or under-
ground water supplies from the mountains. According to Table 4, agri-
culture in Dubai is carried out on a total, cultivable area of around 8,000
dunums, most of which are taken up by Rhode grass and alfalfa.

2.2. Overall study workflow

The workflow as described in Figure 2 shows the steps followed,
namely acquiring high resolution, multispectral imagery, labeling, pre-
paring the input datasets, training the models, detecting the objects,
analyzing the results, and validating the outputs using field mobility
monitoring through field visits. In this study, the exported training data
and the training of the deep learning models that were used across the
area of interest were done using the ArcGIS API for Python.

The deep learning workflows discussed later in this section had been
enhanced for deploying trained models for tree feature extraction and
vegetation cover classification, while PyTorch and fast.ai deep learning
libraries were used for the data preparation, augmentation, and model
training workflows. The object detection models used accepted training
samples in the PASCAL_VOC_rectangle (pattern analysis, computational
learning, statistical modeling, and visual object classes) format. For
instance, the PASCAL VOC dataset is considered a standardized image
dataset for object class recognition. On the other hand, the created label
files are in XML format containing detailed information about image
name, class value, and bounding boxes.

Once the training samples were exported, we fed them into the model
for training. Data preparation was a time-consuming process involving
massaging and collating the training labels into the specific format



Figure 1. Location Map of Dubai Emirate and major cities in the United Arab Emirates.

Table 1. Distribution of Land Use (Area in Donums-d�unum) - Emirate of Dubai (2017–2019).

Years Fruit Trees
(in d�unum)

Feed Crops
(in d�unum)

Vegetables
(in d�unum)

Forest Trees
(in d�unum)

Temporary Fallow
(in d�unum)

Other Lands
(in d�unum)

Total
(in d�unum)

2017 15,810 3,177 1,765 760 1,725 21,645 44,882

2018 15,903 3,218 1,660 784 1,664 18,464 41,693

2019 20,409 8,108 7,529 784 1,917 23,168 61,914

Area % 32% 14% 13% 1% 3% 37% 100%

Table 2. Vegetables by Crop - Emirate of Dubai (2019).

Crop Value
(in 000 AED)

Average of production
(in Tons/D�unum)

Quantity
(in Tons)

Area
(in D�unum)

Tomatoes 18,030.9 6.2 6,297.9 1,010.8

Cucumber 8,166.9 9.4 2,946.7 313.9

Pepper 1,637.1 4.9 403.3 82.5

Squash 8,517.3 2.3 2,793.9 1,219.8

Eggplants 4,575.6 3.3 2,333.8 716.6

Cauliflower 7,216.0 3.5 2,590.3 740.1

Cabbage 7,488.8 6.0 4,082.0 680.3

Watermelon 474.9 3.0 391.9 130.3

Leafy Vegetables 1,740.7 1.3 579.9 447.1

Other 10,567.6 2.3 4,970.5 2,187.3

Total 68,415.8 3.6 27,390.3 7,528.8
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needed by each deep learning model. Typical data processing pipelines
involved splitting the data into validation and training sets, applying
multiple data augmentation techniques, creating the required data
structures for loading data into the model, and setting the appropriate
batch size. In our study, we automated all these time-consuming tasks
using ArcGIS Pro. We could directly read the training samples exported
by ArcGIS and construct the appropriate fast.ai DataBunch from it. This
DataBunch consisted of training and validation DataLoaders with the
specified transformations for data augmentation, chip size, batch size,
and split percentage for the train validation split.

2.3. Drone data

Figure 3 describes the different components of the Trimble UX5 HP
UAS as the primary device used for capturing field data. It is an easy-to-
use, fully automated, high resolution device capable of capturing aerial
photography with resolutions down to one centimeter. It also provides an



Table 3. Fruit Trees by Crop - Emirate of Dubai (2019).

Crop Value
(in 000 AED)

Average of production
(in Tons/D�unum)

Quantity
(in Tons)

Area
(in Donum)

Palm Tree 97,034.9 0.8 15,172.4 19,124.9

Lime 1,623.0 3.2 516.0 161.0

Lemon Adalia 294.0 3.2 93.0 29.0

Grapefruit 146.0 2.4 59.0 25.0

Other Citrus 768.0 2.0 260.0 130.0

Mango 520.0 2.4 94.0 39.5

Guava 388.0 2.4 90.0 38.0

Chico 1,882.0 1.0 538.0 538.0

Lotus Jujube 1,824.0 3.2 608.0 190.0

Pomegranate 91.0 1.6 16.0 9.9

Fig 1,097.0 1.0 58.0 57.8

Almond 499.0 2.4 125.0 51.8

Other 129.0 2.5 35.0 14.0

Total 106,295.9 0.9 17,664.4 20,408.9

Table 4. Field Crops by Crop - Emirate of Dubai (2019).

Crop Value
(in 000 AED)

Average of production
(in Tons/D�unum)

Quantity
(in Tons)

Area
(in D�unum)

Alfalfa 20,056.8 6.0 12,535.5 2,089.2

Rhode grass 32,362.3 6.0 21,574.9 3,595.8

Sorghum 11,953.0 6.0 7,470.6 1,245.1

Maize 2,059.4 2.8 2,059.4 748.9

Other 3,343.1 6.0 2,571.6 428.6

Total 69,774.6 5.7 46,212.0 8,107.6

Figure 3. Trimble Drone used for data collection.

Table 5. Acquisition Performance (Trimble UX5 Drone).

Resolution (GSD) 1 cm–25 cm (4–99 in)

Height above take-off location (AGL) 75 m–750 m (246–2,460 feet)

Absolute accuracy XY/Z (no ground control points) down to 2–5 cm

Relative orthomosaic/3D model accuracy (1–2x/1–5x GSD)

Resolution (GSD) 1 cm–25 cm (4–99 in)
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intuitive workflow that quickly creates the highest quality orthomosaics
and 3D models for agriculture mapping, field leveling, progress moni-
toring, and asset mapping [30].

The multispectral drone imagery captured by the field team helps
generate NDVI maps that can segregate soil from forest or grass, differ-
entiate between crops at different crop stages, and detect plants that are
under stress. Strong correlations have been proven between NDVI data
measured at certain crop stages and crop yield. Hence, tracking crop
growth at crucial stages helps provide an accurate estimate of the crop
yield and addresses issues early [31, 32]. Table 5 lists the different levels
of acquisition performance of the Trimble UX5 Drone.

The drone used by the Dubai Municipality is equipped with photo-
grammetric and navigation equipment with a ground resolution of up to
three centimeters. It is programmed to detect details such as NDVI, water
stress, and a lack of specific nutrients in crops. The drone-supporting
mapping efforts of the GISC are now being mainstreamed under the
Emirate's disaster risk reduction and management (DRRM) and climate
change adaptation (CCA) strategies. The Trimble UX5 HP drone used
during the field survey is equipped with a modified color-infrared (CIR)
Sony NEX5R fitted with a 16 mm lens. On each flight day, roughly 100
ground-based NDVI measurements were collected with the Trimble
Figure 2. End-to-end from raw imagery to structured
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Green Seeker Handheld at a constant height of 80 cm above the target, of
which the center point was georeferenced to two centimeters accuracy
using a Trimble R8RTK GNSS system [33]. Figure 4 shows examples of
the drone output such as an orthorectified image with elevation contours,
the three-dimensional surface which is processed using the collected
point clouds, and the generated three-dimensional surface using the
processed contour lines.

The aerial survey mission is highly critical as the drone is flying in real
airspace along with civil aircraft, commercial flights, VIP helicopters,
private helicopters, etc. Before planning any mission, some of the most
essential requirements are to provide proof of safe operation, ultimate
coordination, and clear communication between the flight operators. In
the Dubai Municipality, the first step consists of preparing a flight plan
showing the range, mission type, overlap setting, and predicted operating
location. After this, based on the plan and the geographical boundaries of
the area to cover, an estimate of the adequate number of Ground Control
Points (GCP) required is calculated. Finally, a detailed risk assessment
document is elaborated along with a safety case plan which is shared
with the drone operators.

Figure 5 summarizes the process of capturing aerial data with
downward-facing multispectral cameras and LIDAR payloads using a
Trimble UX5. During such a survey, the ground is photographed several
times from different angles, and each image is tagged with coordinates.
The field survey takes four days to cover the entire Hatta site (two square
kilometers). In contrast, it takes only one day only for the Data Elevation
information about vegetation cover feature layers.



Figure 4. Drone Mapping Outputs (a: Corrected image showing contours, b: Three-dimensional surface built from point clouds, c: three-dimensional surface built from
contour lines for the same area).
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Model (DEM) and rectified orthophoto of the area to be automatically
produced.

To cover the twelve areas in the scope of this study with a total area of
770 square kilometers, five teams of four were dedicated to coordinate
the flying process throughout the year, and with proper planning, all
missions were successfully completed within 139 days, while the pro-
cessing took around 78 days overall. Some areas were more accessible
than others, such as AL WOHOOCH and SAIH SHUAIB, due to the
absence of variety in surface features and the dominance of flat sand
dunes. Table 6 elaborates, in detail, the flying and processing time in days
for each community, along with the number of flights and number of
repetitions during 2019.

The Sony NEX5Rwas modified to get 3-band R-G-NIR imagery. In this
configuration, pixels covered by a blue filter receive only NIR, while
Figure 5. Process of drone mappin
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pixels covered by green and red filters receivemostly visible green or red,
together with some of the red edge and NIR. The camera was set to
simultaneously store 16.1 MP 3-band 14 bit per band linear lossy com-
pressed RAW files (35 MB each, in Sony's proprietary ARW format) with
16.1MP 3-band 8 bit per band gamma-compressed JPEG files, roughly 15
MB each [34]. Figure 6 demonstrates the true color (RGB) spectral re-
sponses of the Trimble UX5 device.

2.4. Processing and analysis

The processing methodology developed during this study comprised
four steps: photogrammetric pre-processing, object detection using deep
learning algorithms, data analysis, and evaluation of results. The first
step was about pre-processing the UAS derived imagery using digital
g field mission – Hatta region.



Table 6. UAS missions' details for areas scope of the study.

Community Sq. km Flying
time in
days

Processing
time in days

Number
of flights

Repetitions
per year
(2019)

SAIH SHUAIB 41.61 5 4 5 1

HADAEQ SHEIKH
MOHAMMED
BIN RASHID

38.68 19 3 38 2

ALEYAS 10.52 5 8 5 1

AL KHEERAN 7.33 4 6 12 3

AL LESAILY 112.69 13 10 13 1

MARGHAM 152.59 25 12 25 1

AL WOHOOSH 26.51 3 2 3 1

AL MAHA 41.73 21 4 42 2

REMAH 82.87 5 7 5 1

GRAYTEESAH 91.83 12 8 12 1

AL FAGAA 140.53 15 13 15 1

HESSYAN 23.85 12 1 12 1

Total 770.75 139 78 187

Figure 6. Spectral response of the Trimble UX5 HP Sony NEX-5N.

Figure 7. Generated contour map- Hatta region.
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photogrammetry. Second, deep learning algorithms were selected and
executed to detect the vegetation cover and identify related diseases,
then template matching was performed to segment the main crop
covered area and detect individual crops, respectively, on the orthophoto
mosaic. Third, data analysis was performed using advanced geo-
processing tools. Finally, the detection accuracy threshold was deter-
mined, and a comparison between crop volume, crop pest estimates, and
field samples was undertaken [35].

2.4.1. Pre-processing
We imported all data layers into ESRI ArcGIS for Desktop 10.5, and

pixel-level alignment of all data layers, including ground measurements,
was ensured before analysis. The resulting orthomosaics were initially
shifted in relation to the UX5 HP orthomosaics and ground measurement
data. Therefore, prior to analysis, an automatic registration to the UX5
HP data using a second-order transformation was applied to the resultant
orthomosaics in ArcGIS Pro 2.4. To analyze the reliability of each data
type in multitemporal monitoring, UAS-based NDVI values and spectral
profiles for three vegetation types (palms, ghafs, and grassland) were
plotted over time for the available data acquisitions. The raster datasets
were converted to point features using an Extract, Transform and Load
(ETL) script, of which 0.1% was randomly selected before interpolation.
The natural neighbor interpolation technique was selected as it is
appropriate for point features with an irregular distribution and density;
it limits overshoots of local high values and undershoots of local low
values. The digital terrain model was generated from the digital surface
model to calculate the crop height model.
6

Topographic maps are critical for agriculture and vegetation mapping
[36]. For example, some vegetation species may only grow in areas with
an elevation higher than a certain level. Therefore, it is essential to use
drones to capture data as aligned by aerial triangulation, then orthor-
ectify and geo-reference it using the GCP information. Figure 7 shows the
final DEM and contour lines generated for the Hatta region from
orthorectified drone imagery.

2.4.2. Object detection algorithms (deep learning)
With the existing capabilities in ArcGIS, the model of classifying

points representing trees in point cloud datasets was evaluated along
with over a dozen deep learning models on geospatial datasets. However,
the models selected and then enhanced during this study were "the tree
Point Classification model" and "the Landcover Classification model."
Both these models were modified using Python scripts to adapt them to
the arid nature of Dubai, then were successfully processed to detect the
classified vegetation cover and individual trees from the corrected input
images through integration with TensorFlow, a third-party training
software. Figure 8 summarizes the overall workflow from preparing the
training data to consuming the deep learning models. It also shows how
the ArcGIS.learn module in the ArcGIS API for Python is used to train
deep learning models, which is an iterative process and can enhance the
outputs significantly. The final models are deployed as deep learning
packages (DLPKs) and are archived, documented, and shared with the
project team. All the algorithms and tools described in the paper were
implemented using the Python programming language. All experiments
were run in a workstation using a Windows Server 2012 R2 operating
system with 16 dual-core 3GHz processors and an NVIDIA GPU graphics
board.

The most onerous tasks of the work to extract features from the im-
agery were preparing the data, creating training samples, and training
the model. At this stage of the process, these steps have been completed,
and a trained model to detect different types of crops is used throughout
the processed drone imagery. Object detection requires multiple tests to
achieve the best results. We adjusted many parameters to ensure the
model performed at its best. To test these parameters, the detection was
tested in a small section of the image until the results were satisfactory,
then the detection tools were extended to the covered areas by the drones
[37]. Figure 9 demonstrates some of the training samples labeled for the
palm trees, along with the generated results of the object detection al-
gorithm used during this study.

When training deep learning or image classification models, creating
good training samples is critical. It is also often the most challenging and
time-consuming step in the process. To provide our deep learning model
with the information it needed to extract all the crop types in the image,
we created features for several palm trees and other field crops to teach
the model what size, shape, and spectral signature these objects may
have. The deep learning class training samples are based on small sub-
images, called image chips, containing the feature or class of interest.
Figure 10 shows a subset of the image chips used for this study [38, 39].

The ArcGIS.learn module in ArcGIS API for Python was used to apply
our deep learning model in the workflows selected for this study (U-net)



Figure 8. General Deep Learning Packages (DLPKs) usage workflow.

Figure 9. a: Training samples recorded for the palm trees, b: Generated results for a bigger area through object detection algorithm.
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[40, 41]. Its architecture can be considered as an encoder network fol-
lowed by a decoder network. Unlike the concept of classification, where
the result of the deep network is the only important element, semantic
Figure 10. Training samples
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segmentation requires discrimination at pixel level along with a protocol
to project the detected features that were learned at different stages of
the encoder onto the assigned pixel space. The encoder is the first part of
recorded for field crops.
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the architecture diagram. It is a pre-trained classification network like
VGG/ResNet where convolution blocks are applied, followed by down-
sampling (maxpool) to encode the input image into feature representa-
tions at different levels. As shown in Figure 11, the decoder is the second
part of the architecture. The main goal is to semantically project the
detected features at a lower resolution as learned by the encoder onto the
pixel space at a higher resolution to get the best dense classification. The
decoder focuses on regular convolution operations after processing the
upsampling and concatenation functions.

In computer vision tasks, tree detection tends to be the concept of
human experience rather than a purely mathematical definition [42].
Compared with other image recognition methods, object detection based
on deep learning doesn't go through feature extraction first, rather it goes
through iterative learning that can find appropriate features that acquire
contextual and global features of images and are more robust with higher
recognition accuracy. In this study, Convolutional Neural Networks
(CNN) as a complex network structure is used to extract such information
from the processed high resolution imagery. As shown in Figure 12, the
CNN model is composed of an input layer, a convolution layer, a pooling
layer, a full connection layer, and an output layer. In our model
consumed by ArcGIS Pro, the pooling and convolution layers alternate
several times. When the neurons of the pooling layer are connected to the
neurons of the convolution layer, no full connection is required. In the
real natural environment, the significant differences in texture, shape,
color, size, background, and imaging reflectance of plant diseases and
pests make this stage of recognition a challenging task. Thanks to CNN's
advanced feature extraction capability, choosing a CNN-based classifi-
cation network over other options has become the most common pattern
vegetation cover detection method [43].

2.4.3. Data analysis
This study's primary analysis focuses on estimating vegetation health,

as extracted from the same images used for deep learning extraction by
calculating a vegetation health index. To assess vegetation health, the
Visible Atmospherically Resistant Index (VARI) should be calculated
[44], which was designed as an indirect measure of leaf area index (LAI)
Figure 11. U-net architecture. Blue boxes represent multi-channel feature maps, w
different operations.
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and vegetation fraction (VF) using only reflectance values from the
visible wavelength:

ðRg�RrÞ = ðRgþRr�RðRg�RbÞÞ (1)

Where Rr, Rg, and Rb are reflectance values for the red, green, and blue
bands respectively [44]. The reflectance values in both the visible and
near-infrared (NIR) wavelength bands were used to estimate vegetation
health, as was the NDVI. Figure 13 shows the generated result of NDVI for
the communities of both Hessyan and Jabal Ali.

2.4.4. Data evaluation (QA/QC)
To evaluate the results of vegetation cover extraction from multi-

spectral drone imagery along with plant disease and pest detection across
the Dubai Emirate, the following measures were identified: omission
called false negatives and commission errors called false positives,
detection rate, and accuracy index (AI) [45]. The AI that quantifies the
trade-off between omission and commission error was calculated as:

AI¼ 100 ð1� FPþ FNÞ = REF (2)

FP and FN stand for false positives and false negatives, respectively,
and REF is the number of reference crops in the study area. Other eval-
uation indices were calculated for this study, including Precision, mean
Average Precision (mAP), Recall, and the harmonic Mean F1 score. The
F1 score is computed using both Precision and Recall. Precision and
Recall are defined as:

Precision¼TP = ðTPþ FPÞ100% (3)

Recall¼TP = ðTPþ FNÞ100% (4)

In Formula (3) and Formula (4), TP (True Positives) represent true
positives that are predicted to be 1 and that actually are 1, which in-
dicates the number of lesions accurately identified by the algorithm. FP
(False Positives) represent false positives that are predicted to be 1 and
that are, eventually, 0, which indicates the number of lesions inaccu-
rately identified by the algorithm. On the other hand, FN (False Nega-
tives) represent false negatives predicted to be 0 but that are, in reality, 1.
hile white boxes represent copied feature maps. The colored arrows represent



Figure 12. CNN Network layers.
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False negatives refer to the number of unrecognized lesions. Detection
accuracy is assessed the using mAP (Formula (6)). The average accuracy
for each category in the dataset is calculated first as described in formula
(5).

Paverage¼
XN ðClassÞ

j¼0

Precision ðjÞ:RecallðjÞ:100% (5)

mAP¼ Paverage =NðclassÞ (6)

In the formula mentioned above, N (class) represents the number of
all categories, Precision(j) and Recall(j) represent the Precision and
Recall of class j respectively. The Average accuracy for each category is
defined as mAP. The higher the value of the mAP, the greater the
recognition accuracy of the algorithm and, conversely, the lower the
algorithm's accuracy. On the other hand, the F1 score as one of the most
significant indicators, is also introduced to measure the accuracy of the
deep learning model. The F1 score takes into consideration both the
accuracy and recall of the model as described in Formula (7), thus:

F1¼ðð2 *Precision *RecallÞ = ðPrecisionþRecallÞÞ*100% (7)

Frames per second (FPS) is an indicator used to evaluate the recog-
nition speed of the deep learning model. The higher the value of FPS, the
faster the algorithm recognition speed and, conversely, the slower the
algorithm recognition speed.
Figure 13. NDVI results generated from drone imagery (HESSYAN and JABAL
ALI communities).
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3. Results

This section presents experiments using actual data corresponding to
twelve communities across the Dubai Emirate, covering a total area of
770.75 sq. km. All types of crops were well covered by the selected deep
learning models discussed throughout this paper, with an overall accu-
racy of 85.4%. Furthermore, date palm and ghaf tree detection results
were very promising with F1scores of 96.03% and 94.54%, respectively.
3.1. Vegetation cover

The results indicate that the deep learning models outperformed the
machine learning technique by at least 11% when using only RGB color
images, and more than 28% when using NDVI source images. Accord-
ingly, around 43% of the supervised classification results matched the
deep learning output features using NDVI, while the matching between
the deep learning results and the photo interpretation method reached
96%. The deep learningmodel using NDVI produced a fewmore positives
than both the deep learning models using RGB and the manual digiti-
zation. When verified through field visits, these were, in fact, plants
affected by long-term drought that were challenging to classify through
photo interpretation. Table 7 summarizes the confusion matrix results
generated for the twelve communities as an overall average and provides
a summary of the predicted vegetation cover results using both tech-
niques: deep learning (with NDVI and standard RGB) along with machine
learning (supervised classification). Where Sensitivity (SN), called also
recall (REC) or true positive rate (TPR), reached 0.89 for deep learning
using NDVI, which is interestingly suitable for the study area [46]. The
best SN is 1.0, whereas the worst is 0.0. On the other hand, specificity
(SP) refers to the number of correct negative predictions, also called the
true negative rate (TNR). As indicated in the confusion matrix results, the
TNR reached 0.95 overall for the deep learning using NDVI, which is
relatively high [47].

The vegetation cover was well covered by the land use classification
and object-detection deep learning algorithms, with an overall detection
and accuracy rate of 89.7% for NDVI and 72.8% for RGB [48]. The
commission error was significantly low, the inclusion of bare soil or grass
Table 7. Confusion Matrix Results- Overall Results for the twelve community scope of
the study (Average Values).

Accuracy criteria Deep learning
using NDVI

Deep learning
using RGB

Supervised
classification

Sensitivity (Recall) 0.89 0.73 0.54

Specificity 0.95 0.82 0.61

Positive Predicted
Value

0.9 0.83 0.7

Negative Predicted
Value

0.6 0.5 0.3

Prevalence 0.7 0.7 0.5

Detection Rate 0.982 0.7 0.6

Detection
Prevalence

0.9 0.8 0.4

Balanced Accuracy 0.897 0.7283 0.6154



Table 8. Results of vegetation cover area as generated by deep learning algorithm using
NDVI (Hessyan community).

Metric Deep learning algorithm
using NDVI

Reference data
(manual digitization)

True Positives 3,520 crops 3,521 crops

False Positives 6 crops 1 crop

False Negatives 12 crops 6 crops

Detection Rate 98.2% 99.9%

Accuracy Index 87.8% 99.9%

Table 9. Results of Deep Learning using NDVI extraction from multispectral
drone imagery.

Community Number of
crops

Area sq.
km.

Accuracy
AI

SAIH SHUAIB 3,117 0.31 97.80%

HADAEQ SHEIKH MOHAMMED BIN
RASHID

4,841 1.28 89.70%

ALEYAS 17,435 1.19 86.60%

AL KHEERAN 3,007 1.33 83.90%

AL LESAILY 44,433 2.06 97.40%

MARGHAM 32,379 1.33 85.90%

AL WOHOOSH 4,667 0.03 93.80%

AL MAHA 8,674 0.84 88.90%

REMAH 27,770 0.47 87.50%

GRAYTEESAH 16,049 0.69 84.80%

AL FAGAA 10,298 0.39 92.70%

HESSYAN 3,520 0.60 87.80%

Total/Overall 176,190 10.53 89.73%

L. El Hoummaidi et al. Heliyon 7 (2021) e08154
between the crops in the segmentation results was scarce. An individual
vector object represented every crop surrounded by around 3–6 cm of
grass or bare soil [49]. Table 8 demonstrates the recorded true positives
and negatives and false positives and negatives for both deep learning
results and the manual digitization layer for the Hessyan community,
which shows an overall accuracy index of 87.8%.

Table 9 records the detailed deep learning using NDVI extraction
results, including the number of crops, the area covered in square kilo-
meters, and the overall Accuracy Index for the communities selected for
the scope of this study. The highest number of crops were recorded in Al
Lesaily, Margham, and Remah respectively. These areas also recorded the
largest vegetation cover across the Dubai Emirate.

Figure 14 illustrates examples of the results obtained using the deep
learning land use classification model based on NDVI images. As dis-
cussed throughout this paper, each source image was carefully prepared
and a vector layer representing the vegetation cover was generated by
applying a comprehensive methodology that couples deep learning
techniques and advanced geospatial analysis. In these results, green color
pixels correspond to trees, shrubs, or grass, the silver color corresponds to
barren land, while the blue shades correspond to urban land. Interest-
ingly, the highest accuracy is noticed in Seih Shuaib with a 97.8% AI,
where several farms utilize hydroponic technology to grow in-demand
micro-greens and herbs. In comparison, Al Kheeran has the lowest AI
(83.9%). The overall average of the AI calculated for all the communities
in the scope of this study is 89.73%.

3.2. Detection of date palms and ghaf trees

The accuracy of the tree detection model was evaluated by comparing
the results with the actual data derived from the photo interpretation of
high resolution drone images. Therefore, this assessment emphasizes
counting the number of palm and ghaf trees as the main tree types
available across the Dubai Emirate. Table 10 indicates that the deep
learning algorithm detects date palm and ghaf trees better when
compared with the machine learning method. Once the training phase
was successfully completed, the results were tested using a test dataset
prepared to be approximately 20% of the training set. The deep learning
model predicted 177 date palms and 159 ghaf trees. Thus, this model
detected a total of 336 trees on 12 images. The supervised classification
algorithm predicted 150 date palms and 139 ghaf trees.

In summary, this algorithm detected a total of 289 trees on 12 images.
Table 10 illustrates overall results covering 100% of the area of interest
[50]. Figure 15 shows an example of the detected date palm and ghaf
trees in two different locations. As mentioned in the methodology sec-
tion, the effectiveness is measured using Precision, Recall, and F1 scores,
after comparison with visual interpretation. Each method's performance
was evaluated by dividing the prediction results into date palm tree and
ghaf tree detection. Overall, the deep learning object detection model
showed superior performance when comparing F1 scores. However, the
precision percentage for date palm detection is higher than the one
calculated for ghaf trees.

Notably, both methods successfully classified ghaf trees and date
palms with relatively acceptable accuracies beyond 79%. However, the
deep learning object-based method was the most accurate approach for
detecting the target trees with an overall accuracy exceeding 95% and
97%, respectively. Figure 16 demonstrates the differences captured
during the detection processes and highlights a higher precision of about
16% for ghafs and 13% for palms.

The initial assessment results indicated that some of the errors
occurred due to the trees being obstructed by other tree canopies.
Trees with physical characteristics like those of palm trees were
another cause of errors. However, these errors were minor and limited
to areas where coconut trees are planted. The number of detectable
and undetectable palm trees was affected by palms located on the
edges of an image, where some parts of the crown area extended across
two images. Moreover, the crown size, especially in young palms
10
where it is small, was another cause of detection error. This was due to
the small number of young palm samples with small crowns, as the
study focused on many mature palms that appear in the target area.
However, the errors related to crown size could be addressed to
improve performance by increasing the number of young palms in the
training data.

3.3. Performance comparisons

Tables 7 and 10 summarize the resultant performance metrics of deep
learning models using NDVI and RGB imagery versus supervised classi-
fication as a conventional way of extracting features in the study area. In
the recorded metrics, NDVI deep learning performs better than RGB deep
learning. However, the two PyTorch deep learningmodels perform better
than supervised classification (machine learning). This is applicable for
both cases of vegetation cover classification and tree object detection.
Moreover, the deep learning results with NDVI input channels are found
to be slightly better than the deep learning results with RGB input
channels only. Among the three methods, object detection using the
NDVI deep learning model performs the best. However, in some remote
areas like AL WHOHOOCH, REMAH, and AL FAGGA, supervised classi-
fication results were satisfactory since the vegetation cover and tree
count are not significant in these areas.

Both machine learning and deep learning need enough time to let the
algorithms learn and develop enough to fulfill their objectives with an
acceptable threshold of accuracy and relevancy. Both also need massive
resources to function. This can mean additional computer power re-
quirements. However, machine learning is highly susceptible to errors.
Therefore, in some areas, we ended up with biased predictions coming
from a biased training set.

Nonetheless, the advantage of the artificial neural networks used by the
deep learning models supported this study by providing more accurate



Figure 14. Results of NDVI based deep learning model for vegetation extraction from UAS multispectral imagery.

Table 10. Comparison of total tree detections by type and method (12
communities).

Metric Date palms
(deep
learning)

Date palms
(supervised
classification)

Ghaf trees
(deep
learning)

Ghaf trees
(supervised
classification)

True
Positives

10,663 9,238 9,592 7,983

Precision 97.3% 84.3% 95.4% 79.4%

Recall 94.8% 86.8% 93.7% 77.2%

F1 score 96.03% 85.5% 94.54% 78.28%
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results. As mentioned above, the supervised classification offered accept-
able results when compared with deep learning in the areas with a smaller
vegetation cover ratio.However,whenever this ratio increases, themachine
learning accuracy declines significantly. We also noticed that the deep
learning models take much more time when compared with machine
learning to train amagnitude of a fewweeks. Themain reason behind this is
that many parameters in deep learning algorithms should be identified. In
contrast, supervised classification, i.e., machine learning, takes much less
time to train, just a few hours. Therefore, we recommend using supervised
classification as an alternative to deep learning in situations when the area
of interest doesn't have complex or overlapping physical features to save
time and unlock high hardware dependency [51].
Figure 15. (a): Detected date palm trees along Al KIFAF road; (b): De
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4. Discussion

Dubai is in an arid zone where the desert accounts for more than
three-quarters of the Emirate's total area. Its environment is charac-
terized by high temperatures, poor soil, low rainfall, and a lack of
natural waterways, which significantly impact the agricultural sector.
Although these factors pose significant challenges, the Dubai govern-
ment has made outstanding efforts over the past few years to build a
farming industry capable of contributing to food diversity and the
national economy by implementing policies that limit the impact of
these factors. In general, the policies are based on innovative tech-
nologies and solutions such as hydroponics, aquaponics, and organic
agriculture, in addition to strengthening agricultural pest control
programs, reducing loss and waste throughout the food chain, and an
expanding interest in scientific studies and research in the agricultural
field. Table 11 highlights such growth from 2001 to 2019 and dem-
onstrates the efficiency of the policies implemented by the Dubai
government to support the agriculture sector in the Emirate. This in-
crease is not a subsidiary event but part of a planned strategy to
diversify the economy. The numbers prove this, showing that the
average annual growth rate of farms reached 9.3 percent for the past
18 years. While it's not easy to maintain food sustainably in deserts,
the agricultural sector in Dubai has witnessed rapid developments in
recent years driven by science, innovation, and technology.
tected ghaf trees in HADAEQ SHEIKH MOHAMMED BIN RASHID.



Figure 16. The confusion matrix obtained from different scenarios for both date palm trees and ghaf trees (a) Deep Learning and (b) Supervised classification.

Table 11. Agriculture lands variation in d�unums from 2001 to 2019.

Year Agriculture land area in D�unums Growth (18 years)

2001 2,602 -

2019 61,914 59,312
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In this study, with a 10 cm resolution test dataset, the deep learning
model for detecting vegetation cover delivered an overall accuracy of
89.7% for NDVI and 72.8% for RGB. In contrast, the deep learning object
detection model produced an average accuracy of 96.03% for date palms
and 94.54% for ghaf trees. These results outperform the supervised
classification models with an average accuracy of 61.54% for detecting
vegetation cover, 85.5% detection rate for date palms, and 78.28% for
ghaf trees. Nonetheless, the deep learning method performed consider-
ably better than the investigated machine learning method for vegetation
and tree object detection; it needs immense effort to create and maintain
training data. Moreover, supervised classification consists of several rules
and thresholds that need to be appropriately selected by the user. The
parameters and thresholds used in these rules will most likely need to be
revisited for another test image beyond Dubai test data. Supervised
classification also focuses on vegetation detection as a binary classifica-
tion problem (vegetation vs. non-vegetation) since it depends on NDVI
for detecting candidate vegetation pixels in its first step, whereas there is
the flexibility to classify different vegetation types (such as a tree, shrub,
and grass) in the deep learning-based methods. Between the two inputs
for the deep learning methods, PyTorch provided good detection per-
formance using both RGB images and images with NIR band showing
that, for low-budget land cover classification applications, drones with
low cost onboard RGB cameras PyTorch deep learning models could
certainly be a viable method. Comparing the deep learning using NDVI-
based approaches and supervised classification, we observe that the deep
learning methods provided significantly better results.

However, one of the considerable limitations of deep learning is that
it needs to have a significant number of training images that contain
classes to be detected. Such a process might not be practical in cases
when time is a project constraint. Our customized deep learning method
can handle more than three channels; however, the training was redone
from scratch since no pre-trained models were available for the NIR
band. One other challenge with deep learning methods is when the
dataset is out of balance. With heavily imbalanced datasets, the error
from the overrepresented classes contributes much more to the loss value
than the error contribution from the underrepresented classes. This
makes the deep learning method's loss function biased toward the
overrepresented classes resulting in poor classification performance for
the underrepresented classes. We didn't encounter this case since Dubai's
topography is primarily flat, and the contrast between vegetation and
non-vegetation is clear on the images [52].

One of the most critical aspects we carefully attended to during this
study was to make sure we created a vast amount of training data.
Moreover, the training data needed to have similar characteristics to the
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testing data. Otherwise, deep learning methods may not have yielded
acceptable performance. Augmenting the training dataset using different
brightness levels, adding vertically and horizontally flipped versions,
shifting, rotating, or adding noisy versions of the training images could
be potential strategies to mitigate the issues when test data characteris-
tics differ from the training data.

Taking the results from Table 9 into consideration in this manuscript,
the performance of our model is maximal in SAIH SHUAIB (97.8%) fol-
lowed by AL LESAILY (97.4%), then AL WOHOOSH (93.8%). These are
barren areas where living conditions are hostile for both plant and animal
life. Consequently, vegetation detection is uncomplicated for our deep
learning model since its reflectance is easy to distinguish from other
features on the ground. Overall, the advantage of Dubai's nature boosted
the performance of our deep learning model in terms of the AI, unlike
other countries around the world [53].

The derived maps from the UAV sensors in Dubai using advanced
geoprocessing tools coupled with applied deep learning models are
currently used in many agricultural applications, including the calcula-
tion of the KPIs relevant to the Dubai Urban Plan of 2040 due to their
effectiveness in providing high-quality vector datasets and control over
the data acquisitions. However, limitations such as the constraint flight
time of UAVs and lower coverage make it less affordable than satellite
imagery. Therefore, the methodology discussed in this study should also
be tested for high resolution satellite imagery to identify if the AI is
acceptable for the different purposes where the agriculture and vegeta-
tion datasets are used.

5. Conclusions

UAS, in combination with deep learning object detection methods,
facilitates crop identification and productivity analysis with an overall
accuracy of 89.7%, 96.03% detection rate for date palm trees, and
94.54% detection accuracy for ghaf trees. In the Dubai Municipality, such
an approach has been proven to have great potential to address and
support the most pressing challenges faced by agriculture in terms of
access to actionable, up-to-date quality data. Additionally, precision
farming combines sensor data and imaging with real-time data analytics
to improve farm productivity through the mapping of spatial variability
in the field. During this work, the data collected by using drones provided
the much-needed wealth of raw data to activate analytical models for
agriculture. In supporting precision farming, UAS also help to analyze
soil health in the same way that it monitors crop health, assist in planning
irrigation schedules, estimate yield data, apply fertilizers, and provide
valuable data for weather analysis. Therefore, spatial data collected
through drones, combined with other data sources and analytic solutions,
provides actionable information. There is a robust correlation between
crop yield and the NDVI measured at different crop stages. Hence,
tracking the crop growth at critical stages will help provide an accurate
estimate of the crop yield and address issues early. The multispectral
drone imagery captured during the field missions is one of the best and
most effective methods used to detect plants under stress and
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differentiate between crops and crop stages. Drones fitted with multi-
spectral, infrared, and hyperspectral sensors can accurately analyze soil
conditions and crop health. NDVI maps, combined with other indexes
such as the Crop-Water Stress Index (CWSI) and Canopy-Chlorophyll
Content Index (CCCI) in agricultural mapping tools, provide valuable
insights into crop health.
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