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Multiclass prediction remains an obstacle for high-throughput data analysis such as microarray gene expression profiles. Despite
recent advancements in machine learning and bioinformatics, most classification tools were limited to the applications of binary
responses. Our aim was to apply partial least square (PLS) regression for breast cancer intrinsic taxonomy, of which five distinct
molecular subtypes were identified. The PAM50 signature genes were used as predictive variables in PLS analysis, and the latent
gene component scores were used in binary logistic regression for each molecular subtype. The 139 prototypical arrays for PAM50
development were used as training dataset, and three independent microarray studies with Han Chinese origin were used for
independent validation (𝑛 = 535). The agreement between PAM50 centroid-based single sample prediction (SSP) and PLS-
regressionwas excellent (weightedKappa: 0.988)within the training samples, but deteriorated substantially in independent samples,
which could attribute to much more unclassified samples by PLS-regression. If these unclassified samples were removed, the
agreement between PAM50 SSP and PLS-regression improved enormously (weighted Kappa: 0.829 as opposed to 0.541 when
unclassified samples were analyzed). Our study ascertained the feasibility of PLS-regression in multi-class prediction, and distinct
clinical presentations and prognostic discrepancies were observed across breast cancer molecular subtypes.

1. Introduction

Multi-class prediction remains a challenge for high-through-
put bioinformatics such as analysis of microarray gene
expression data. Numerous machine learning algorithms are
readily available for high-throughput data analysis, most
of which, however, are limited to scenarios of the clas-
sification or prediction with only two classes. This diffi-
culty arises not only from the vast data amount produced
by high-throughput microarray or sequencing experiments

but from the highly-correlated and nonstochastic nature of
genetic/gene expression data. For real-world applications,
dichotomous classifications between cancer/normal, alive/
dead, and responsive/resistant status are mostly encountered,
and many machine learning algorithms and bioinformatics
tools perform quite well with sufficient discriminative power
[1–3].

One way to tackle the 𝑛 (experimental samples) < 𝑝
(genomic/gene expression features) problem inherited in
high-throughput microarray or sequencing techniques is to
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reduce the high-dimensional data using gene component
analysis [4–7]. Gene components, which are synthesized
latent factors, and orthogonal transformations of original
high-throughput data are interpreted as the projection of high
dimensional vector space into a few gene component axes,
and the number of gene component (𝑝) is no longer larger
than sample numbers (𝑛), facilitating the usage of classical
statistical tools.

In previous work we demonstrated that gene component
analysis could discriminate estrogen receptor (ER) positive
and negative breast cancers and gene component classifiers
could be projected into independent samples with high
predictive accuracy, as well as an integrated step of automatic
gene selection [8]. We also concluded that principle compo-
nent (PC) regressionwasmore suitable for unsupervised class
discovery while partial least square (PLS) was more efficient
in supervised class prediction.

The aim of the study was to apply PLS-regression for
breast cancer intrinsic taxonomy, of which five distinct
molecular subtypes were identified from microarray exper-
iments. Here we extended the applications of PLS-regression
from two-class (ER positive versus ER negative and Luminal-
A versus Luminal-B subtype) into multiclass prediction of
the full spectrum of breast cancer intrinsic taxonomy [9]. We
hypothesized that PLS-regression could be an alternative and
efficient classification algorithm for breast cancer microarray
experiments pertaining intrinsic signature genes.

2. Materials and Methods

2.1. Breast Cancer Intrinsic Taxonomy. In the past decade,
microarray experiments have redefined breast cancers as
heterogeneous diseases in terms of molecular aberrations,
and a number of taxonomic classifications based on gene
expression profiles that have been reported have shown
some prognostic significance. One such molecular taxonomy
is the “intrinsic subtype” proposed by the Stanford/UNC
group. Perou identified 476 intrinsic genes from 65 patients
with breast cancers and normal individuals; four subclasses:
basal-like, Erb-B2+, normal breast-like, and luminal epithe-
lial/ER+ were revealed by class discovery through clustering
analysis [10, 11]. The luminal subtype was further divided
into luminal-A and luminal-B, and distant metastases were
strongly associated with the expression patterns of intrin-
sic genes [12]. Independent studies supporting the exis-
tence of breast cancer intrinsic subtypes followed [13, 14].
By definition, intrinsic genes were those genes that show
the highest variation across different subjects and show
the least variation within each individual (i.e., pre-/post-
chemotherapy changes) [12]. The latest version of intrinsic
signature, prediction analysis of microarray 50 gene set
(PAM50), was supposed to provide prognostic and predictive
values independent of traditional prognostic factors such as
hormone receptor, human epidermal growth factor receptor
2 (HER2) status, or proliferation markers [15].

The PAM50 intrinsic signature genes that defined 5
molecular subtypes (luminal-A, luminal-B, normal breast-
like, HER2-enriched, and basal-like) were retrieved. The

expression values of training samples deriving intrinsic sig-
natures were downloaded from UNC Microarray Database
(https://genome.unc.edu/). Centroids were the mean expres-
sion values of intrinsic genes corresponding to each molecu-
lar subtype.The prototypes included 12 normal breast-like, 57
basal-like, 35 HER2-enriched, 23 luminal-A, and 12 luminal-
B tumors.

2.2. PLS-Regression Classifier. Following identification of
intrinsic genes, PLS was used for dimension reduction and
latent X-factors (gene components) construction. The trou-
blesome 𝑛 (sample size) < 𝑝 (gene expression predictors)
problem became tractable since a much smaller 𝑝 (gene
component) was used instead of original microarray gene
expression features. At the same time model over-fitting and
collinearity of original𝑝 genes was avoided due to the limited
number of gene components (𝑝) used in classification
algorithm and the uncorrelated nature between successive
latent factors.

All gene component regressions were essentially the
linear transformations of original gene expression values
and could be viewed as the projection of high dimensional
predictor space into a few orthogonal latent factor axes.
PLS maximized the covariance between the predictor and
response variables. In matrix algebra, let 𝑋

0
and 𝑌

0
be

centered and scaled matrix of predictive and responsive vari-
ables; one dummy variable 𝑌 indicating clinical phenotype
was needed for binary classifications in PLS. PLS maximized
𝑋


0
𝑌
0
for latent factor construction. PLS predicted 𝑋

0
(and

𝑌
0
) with the following formula:

𝑋
0
= 𝑡𝑝

, where 𝑝 = (𝑡𝑡)−1𝑡𝑋

0
,

𝑌
0
= 𝑢𝑐

, where 𝑐 = (𝑢𝑢)−1𝑢𝑌

0
.

(1)

The 𝑥-scores (𝑡 = 𝑋
0
𝑤) and 𝑦-scores (𝑢 = 𝑌

0
𝑞)

were derived to meet the criteria of maximal covariance
of 𝑡𝑢 where 𝑤 and 𝑞 were associated weighted vectors.
The vectors 𝑝 and 𝑐 were 𝑥- and 𝑦-loadings, respectively.
It should be noticed that all latent factor extractions were
under orthogonal constraints; successive latent factors (gene
components) were linearly independent to each other, and
usually the corresponding eigen-vectors were normalized to
unity (standardized linear combinations of original variables
or orthonormal transformations).

The number of latent factors used for PLS-regression
was determined by cross-validation. We used split-sample
cross validation to determine the number of latent factors
that delivered the minimal predicted residual sum of squares
(PRESS) followed by van der Voet’s test; the fewest number of
gene components that was insignificantly different from the
factor number corresponding to the minimal PRESS should
be used in regression [16]. In short, it was a randomization-
based model comparison test performed on each cross-
validation model [17]. Missing values in gene expression
values were handled by imputing the missing ones with the
non-missing values for the corresponding variable first, then
followed by filling in missing values with their predicted
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values based on that fitted model and computed the model
again (expectation-maximization algorithm).

After the number of gene componentwas determined and
each gene component score was calculated for all samples,
binary logistic regression (LR) was applied for classifica-
tion/prediction. For binary LR, the predicted probability was
estimated by

(1 + exp−(𝛽0+𝛽1×1+⋅⋅⋅+𝛽𝑘×𝑘))
−1

, (2)

where 𝑘 was the number of gene component used, and 𝑥
𝑘

was the 𝑘th gene component score. To evaluate classifier
performance, leave-one-out cross validation was used to
prevent model over-fitting. The threshold of a positive pre-
diction was defined to have amore than 0.5 of cross-validated
predicted probability.The process of PLS scores construction
and LR prediction was repeated for each of the 5 molecular
subtypes. Bonferroni corrections with a reduced 𝛼 level of
0.01 were applied for all PLS-regression classifiers formultiple
comparisons. All samples were categorized into one of the
5 molecular subtypes with the highest predicted probability,
assuming that probability exceeding the threshold of 0.5. An
ambiguous classification was claimed when more than one
predicted probability was higher than 0.5 among all subtypes.
A sample was designated as unclassifiable if none of the
predicted probabilities of 5 molecular subtypes exceeded the
threshold of 0.5.

In each classifier, a binary PLS-regression was fit, with the
most relevant genes associated with the subtype enrolled as
predictive variables. Each classifier compromised 10 out of
the 50 PAM50 signature genes, and this class-specific gene
selection avoided using all 50 genes into the PLS regression
at the same time.

2.3. Validation Dataset. Our microarray experiments and
two publicly availablemicroarray studies fulfilled the purpose
of external validation [18–20]. Our study material included
83 breast cancers from Taiwan (GSE48391); sporadic breast
cancer samples were collected consecutively during surgery,
snapped frozen in liquid nitrogen, and then stored at −80∘C.
The frozen samples were dissected into slices of 1-2mm
thickness, and more than 90% of cancerous content was a
pre-requisite for microarray experiments. Written consent
was obtained for all subjects before sample collection with
the protocol approved by Institute Review Board of Cathay
General Hospital. The criteria of enrolment included inci-
dent/invasive breast cancers without neo-adjuvant therapy,
no systemic spread (clinical stage I to III), no concurrent
secondarymalignancy, and less than 70 years of age. Enrolled
patients were managed according to standard guidelines with
regular follow-up.

For relevant pathological features, ER positivity was
defined as the presence of at least 10% of nuclei with
positive results by immunohistochemical (IHC) analysis,
and breast samples displaying low ER positivity (<10% of
nuclei with positive stains) were not assayed in the current
study. For HER2 status, the ASCO and CAP guidelines
were followed: IHC3+ and IHC2+ with fluorescence in

situ (FISH) hybridization amplification were considered to
indicate HER2 overexpression.

Total RNA from cancerous breast tissues was extracted
by TRIzol reagent (Invitrogen, Carlsbad, CA) and RNA was
purified using RNeasymini kits (Qiagen, Germantown,MD).
RNA integrationwas tested by gel electrophoresis. Affymetrix
(Affymetrix, Santa Clara, CA) GeneChip Human Genome
U133 plus 2.0 was used for the microarray experiment.
Hybridization and scanning were performed according to the
Affymetrix standard protocol. Images were scanned using
GeneChip Scanner 3000, and the scanned images were pro-
cessed with GeneChip Operating Software (GCOS). Robust
multi-array average (RMA) algorithm was used to normalize
83 array chips [21].

Two publicly available breast cancer microarray deposi-
tories, one from Lu et al. and another from Kao et al., were
merged with our microarrays to form the validation dataset
[18–20]. Both datasets used the same Affymetrix U133 plus
2.0 microarrays as used in our experiments, and all assayed
subjects were Han Chinese ethnically. RMA was used for
normalization within each dataset [21]. Details of microarray
experiments and the demography of the study populations
had been described elsewhere [19, 20]. The Lu et al. dataset
comprised 125 Chinese breast cancers with known clinical
ER and HER2 status, and original Affymetrix CEL files
were downloaded from NCBI Gene Expression Omnibus
(GSE5460); clinical ER and HER2 status was provided. For
the Kao et al. dataset, 327 Taiwanese breast cancers were
assayed, and corresponding disease-free survival and overall
survival data were available (GSE 20685).Themedian follow-
up time of our 83 breast cancer patients was 3.7 years (range:
0.1 to 5.8 years) with 13 events of recurrence, metastasis,
or breast cancer-specific mortality (16%) and 11 deaths (all-
cause mortality). For 327 breast cancers from Kao et al.
(GSE20685), the median follow-up was 7.7 years with 94
events of recurrence, metastasis, or breast cancer-specific
mortality (29%), and 83 deaths (all-cause mortality).

All intrinsic genes were mapped to the Affymetrix gene
annotation file, and only themost variable probesetmeasured
by inter-quartile range (IQR) across all arrays was used
when multiple probesets per gene were encountered.The 535
breast cancer specimens of the Han Chinese patients were
assigned to 1 of the 5 molecular subtypes with the nearest
centroid method (single sample prediction, SSP). Spearman’s
rank correlation coefficients were used, and samples were
designated as unclassified if correlation coefficients to all 5
centroids were less than 0.1. To enhance the comparability
between the original studies deriving intrinsic genes and
independent samples in current study, mean-centering of
genes was applied to the expression data of Han Chinese
breast cancers, as suggested by the investigators of the
Stanford group [22]. All arrays within each study were scaled
and centered (mean=0 and standard deviation= 1) on a gene-
by-gene basis before PLS-regression was performed in order
to overcome the discrepancies and enhance comparability
across microarray studies.
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3. Results

3.1. PLS-Regression in Prototypical Arrays. PLS-regression
classifiers based on latent gene component scores were built
for eachmolecular subtype from training dataset of 139 proto-
typical arrays. Table 1 showed the performance of individual
classifiers. The number of gene component chosen for PLS
regression ranged from 1 to 2. Table 2 tabulated PAM50
prototypes with class labels predicted by PLS- regression.
The agreement between PAM50 prototypes and predicted
subtype by PLS-regression was excellent (weighted Kappa:
0.988, 95% CI: 0.965–1) after excluding 16 unclassified cases.
It should be noted that six cases were ambiguously predicted
into luminal-A (𝑛 = 4), luminal-B, and normal breast-like
subtype since these cases were positively predicted by two
classifiers.

3.2. PLS-Regression in Validation Arrays. PLS-regression was
performed for independent Han Chinese breast cancers
including our series and two publicly available microarray
depositories. To derive the “gold standard” for intrinsic
subtype, centroid-based method (SSP) was used to designate
each individual of the three studies into 1 of the 5 molecular
subtypes.

Since no missing value was found in Affymetrix microar-
rays used for validation, there was no need of missing value
imputations. Table 3 showed the results of PLS-regression
classifiers with centroid-based SSP as the gold standard. At
most two gene components were adopted by PLS-regression.
Table 4 compared the results of PLS-regression and sub-
types designated by SSP. A much compromised agreement
between SSP and PLS-regression was observed, with only
a fair weighted Kappa statistic of 0.541 (95% CI: 0.486–
0.597) reported. The number of ambiguous cases raised to
55. Around one-fourth (𝑛 = 125) of tested samples were
categorized as unclassified by PLS-regression.

3.3. Clinical Presentations and Prognostic Discrepancies among
Intrinsic Taxonomy. Clinical and follow up data were avail-
able for 208 of Han Chinese breast cancers and we compared
ER andHER2 phenotypes between distinct intrinsic subtypes
designated by PAM50 SSP and PLS-regression (Table 5).
Despite fewer cases analyzed by PLS-regression due to more
unclassified samples, characteristics of molecular subtypes
were similar between predictive results of PAM50 SSP and
PLS-regression.

Figures 1(a) and 1(b) showed disease-free survival of 410
Han Chinese breast cancers with follow up data, classified by
PAM50 SSP and PLS-regression, respectively. As expected,
luminal-A subtype reported more optimistic results of breast
cancer therapy. The prognoses of molecular subtypes other
than luminal-A were much more intertwined and compro-
mised.

4. Discussion

In the current study, PLS-regression was used for microarray
multiclass predictions. Latent gene component scores were

used in binary LR, each time with one molecular subtype
tested. For breast cancer intrinsic taxonomy, PLS-regression
classifiers were built for five mutually exclusive molecular
subtypes. Bonferroni corrections were applied for multiple
comparisons (5 times of classifications per each case). If the
cross-validated predicted probability was higher than 0.5, a
positive prediction was recognized. For most instances, there
was only one classifier reported a positive prediction and the
sample was categorized into the corresponding subtype. If
two classifiers reported a higher than 0.5 predicted probabil-
ity, the case was classified into the subtype with the highest
probability but an ambiguous prediction was identified. If
all classifiers failed to deliver a prediction higher than the
threshold of 0.5 cross-validated probability, an unclassified
sample was claimed.

Applications of gene component methodology for
microarray studies had been reported in literature. West
et al. demonstrated the “metagene” model, which used
principle component (PC) scores from the top 100 genes
showing the highest absolute correlations with clinical
ER status of breast cancers and used these PC scores as
predictive variables in binary regression [23]. Following
studies adopting “metagene” concept, which was PC
approach in nature, utilized the gene component scores
in Bayesian classification tree [24]. On the other hand,
Nguyen and Rocke performed binary and polychotomous
LR and linear/quadratic discriminative analysis from PLS
scores for two-class and multi-class microarray tumor
classification problems [5, 6]. The main difference between
PC and PLS is that PC extracts latent factors accounting for
most of gene expression variations regardless of outcome
variables and is unsupervised while PLS maximizes the
covariance between latent explanatory and latent dependent
variables and is supervised in nature. For this reason, it
was postulated that PLS might perform better than PC in
microarray classification problem and indeed, successful
results of microarray gene component classification with
PLS had been reported for several human cancers in past
few years [25, 26]. Our previous studies compared predictive
performance of gene component approaches, and concluded
that PC regression was more suitable for unsupervised class
discovery while PLS was more efficient in supervised class
prediction [8].

Since PLS automatically produced (predicted) response
variable (tumor class label), one-step PLS regression, which
predicted tumor class directly from latent 𝑦-scores was
reported by Pérez-Enciso and Tenenhaus [7]. However, for
breast cancer intrinsic taxonomy comprising five molecular
subtypes, at least four dummy variables were required, and
the mutual exclusive relationships between these responsive
variables were not constrained. For these reasons, direct PLS
modeling of five molecular subtypes was not practical.

Multi-class prediction of PLS-regression was the exten-
sion of the regression for binary responses. The strategy
of latent score construction remained the same. It was
quite intuitive that polychotomous (ordinal or nominal) LR
could fill the task of prediction with multiple responsive
levels. However, neither ordinal (with one baseline class) nor
nominal LR resulted in a converged model in the training
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Table 1: Performance of PLS-regression classifiers for prototypical arrays.

Intrinsic subtype Basal-like HER2-enriched Luminal-A Luminal-B Normal breast-like
Number of samples 57 35 23 12 12
PLS-regression

Number of gene component 1 1 2 1 2
𝑋-variance explained 57.0% 37.1% 74.5% 25.8% 60.2%
𝑌-variance explained 86.7% 56.2% 64.6% 24.6% 66.5%

Binary LR
Adjusted 𝑅-square 0.99 0.73 0.9 0.63 0.99
AUC 1 0.96 0.99 0.96 1
Accuracy 98.6% 89.9% 97.1% 95.0% 100.0%
Sensitivity 98.2% 74.3% 91.3% 50.0% 100.0%
Specificity 98.8% 95.2% 98.3% 99.2% 100.0%

PLS: partial least square, LR: logistic regression, AUC: area under the curve.

Table 2: PAM50 prototypes and predicted subtypes by PLS-regression for prototypical arrays.

PAM50 prototype
(sample number)

Predicted subtype
Basal-like HER2-enriched Luminal-A Luminal-B Normal breast-like Unclassified

Basal-like (57) 57 0 0 0 0 0
HER2-enriched (35) 0 26 0 0 0 9
Luminal-A (23) 0 0 21 0 0 2
Luminal-B (12) 0 1 0 6 0 5
Normal breast-like (12) 0 0 0 0 12 0

Table 3: Performance of PLS-regression classifiers for independent validation dataset.

Intrinsic subtype Basal-like HER2-enriched Luminal-A Luminal-B Normal breast-like
Number of samples 97 94 165 121 56
PLS-regression

Number of gene component 2 1 2 2 1
𝑋-variance explained 71.1% 25.5% 79.9% 61.7% 38.1%
𝑌-variance explained 56.9% 41.6% 34.5% 30.9% 18.1%

Binary LR
Adjusted 𝑅-square 0.86 0.66 0.73 0.61 0.39
AUC 0.98 0.95 0.95 0.93 0.89
Accuracy 96.6% 90.7% 88.2% 86.2% 90.5%
Sensitivity 85.6% 68.1% 81.8% 63.6% 23.2%
Specificity 99.1% 95.5% 91.1% 92.8% 98.3%

PLS: partial least square, LR: logistic regression, AUC: area under the curve.

Table 4: Single sample prediction by PAM50 centroids and predicted subtypes by PLS-regression for independent validation dataset.

PAM50 SSP
(sample number)

Predicted subtype
Basal-like HER2-enriched Luminal-A Luminal-B Normal breast-like Unclassified

Basal-like (97) 83 1 0 1 0 12
HER2-enriched (94) 0 63 0 3 0 28
Luminal-A (165) 0 3 130 8 0 24
Luminal-B (121) 0 5 10 73 0 33
Normal breast-like (56) 1 3 17 1 8 26
Unclassified (2) 0 0 0 0 0 2
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Table 5: Association of clinical ER and HER2 status with intrinsic taxonomy, classified by either PAM50 single sample prediction or PLS-
regression.

Basal HER2 LumA LumB Norm
ER PAM50 SSP

Negative 40 28 0 3 9
Positive 0 7 67 46 7

HER2
Normal 37 5 63 30 8
Over-expression 3 30 4 19 8

ER PLS-regression
Negative 38 19 1 1 3
Positive 0 5 59 33 2

HER2
Normal 35 0 56 21 4
Over-expression 3 24 4 13 1

SSP: single sample prediction, Basal: basal-like, HER2: Her2-enriched, LumA: luminal-A, LumB: luminal-B, Norm: normal breast-like subtype.
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Figure 1: Breast cancer disease-free survival stratified by intrinsic subtypes, classified by either PAM50 single sample prediction (a) or PLS-
regression (b). dfs, disease-free survival; Basal, basal-like; HER2, Her2-enriched; LumA, luminal-A; LumB, luminal-B; Norm, normal breast-
like subtype.

or validation dataset. Multi-class prediction remained a
challenge for high-throughput gene expression data analysis
with classical statistical tools.

To overcome aforementioned difficulties, our strategy
started with the development of PLS-regression for each
of the molecular subtypes individually. In each classifier a
binary PLS-regression was fit, with the most relevant genes
associated with the subtype enrolled as predictive variables.
Table 6 showed the compositions and weight vectors of PLS
regressions for each intrinsic subtype. It deserved notice
that each classifier compromised 10 out of the 50 PAM50
signature genes, and this class-specific gene selection avoided
using all 50 genes into the PLS regression at the same
time. These class-specific predictors for PLS-regression were

not a coincidence but were revealed in tFhe intermediate
step when PAM50 signature genes were selected. It was the
ClaNC (classification to nearest centroids) algorithm which
determined the composition of these class-specific genes [27].
More details could be disclosed from Figure 2(a) from the
original publication of PAM50 [15].

In 139 prototypical arrays, the agreement between PAM50
SSP and PLS-regression was excellent (weighted Kappa:
0.988), indicating the robustness and feasibility of PLS-
regression as an alternative classification method to PAM50
SSP. In validation dataset of 535 Han Chinese breast cancer
microarrays, the agreement between PAM50 SSP and PLS-
regression deteriorated substantially. If we took a close look
at Table 4, the compromised performance of PLS-regression
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Figure 2: Predicted probabilities and 95% confidence interval as a function of the 1st PLS score or 1st/2nd PLS scores for HER2-enriched and
basal-like subtype (a and b) and corresponding ROC curves (c and d). (𝑥scr her21: the 1st 𝑥-score for HER2-enriched subtype, 𝑥scr basal1:
the 1st 𝑥-score for basal-like subtype, 𝑥scr basal2: the 2nd 𝑥-score for basal-like subtype).

Table 6: Compositions and weight vectors of five PLS-regressions for each molecular subtype.

Basal-like HER2-enriched Luminal-A Luminal-B Normal breast-like
ANLN 0.271 ACTR3B −0.316 BIRC5 −0.299 BCL2 −0.325 CCNB1 −0.272
CEP55 0.271 BAG1 −0.083 CDCA1 −0.294 CDH3 −0.667 CDC6 −0.241
ESR1 −0.319 BLVRA 0.317 CENPF −0.288 CXXC5 0.484 KRT14 0.350
FOXA1 −0.417 CCNE1 −0.067 EXO1 −0.293 EGFR −0.316 KRT17 0.241
FOXC1 0.370 CDC20 −0.069 MAPT 0.352 KIF2C −0.050 KRT5 0.276
GPR160 −0.297 ERBB2 0.452 MYBL2 −0.328 MDM2 0.027 MLPH 0.376
KNTC2 0.303 FGFR4 0.365 NAT1 0.421 MKI67 −0.136 MMP11 −0.404
MELK 0.270 GRB7 0.470 PTTG1 −0.299 ORC6L −0.049 RRM2 −0.359
MIA 0.296 MYC −0.390 SLC39A6 0.339 PR −0.143 TYMS −0.286
TMEM45B −0.323 SFRP1 −0.343 UBE2C −0.296 PHGDH −0.529 UBE2T −0.374
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in independent samples largely resulted from increased
number of unclassified cases. If these unclassified samples
were removed, the agreement between PAM50 SSP and PLS-
regression improved enormously (weighted Kappa: 0.829 as
opposed to 0.541 when unclassified samples were analyzed).
Another clue came from the fact that if we forced all samples
to be categorized into the subtype with the highest predicted
probability (given that the highest probability was more than
0.1 aswas in PAM50 SSP), the agreement betweenPAM50 SSP
and PLS-regression was ameliorated with a weighted Kappa
of 0.704 (95% CI: 0.649–0.758). The unclassified samples
reduced to 9 (2% of 535 assayed samples).

An apparent benefit of PLS-regression rather than
centroid-based SSP proposed by PAM50 investigators was
that the predictive probability was reported. In our study
we used the 0.5 of (cross-validated) predicted probability as
the threshold of a positive prediction. If the threshold was
relaxed to a lower level, the number of unclassified cases
decreased but was with the expense of increased ambiguous
classifications (two or more than two classifiers reported a
positive prediction). Although we could designate samples
into the class with the highest predictive probability, there
remained a doubt about the validity of molecular taxon-
omy when more than one classifier passed the predefined
threshold and reported a positive prediction. With current
threshold of 0.5, there were fewer than 10% of cases with
ambiguous classifications.

In centroid-based SSP, since samples were categorized
into the subtype with the highest correlation coefficient, and
the unclassified threshold was set to a much lower level (less
than 0.1 of correlation coefficients to all five centroids), the
higher proportion of unclassified cases of PLS-regression
in independent dataset was not a drawback of purposed
algorithm but indicated a more precise and sophisticated
statistical rationale. In our opinion, the threshold of 0.1
correlation coefficient in PAM50 SSP was too loose as the
proportion of unclassified cases was erroneously reduced
with the expense of compromised reproducibility and robust-
ness.The threshold of positive predicted probability could be
viewed as a tuning parameter of PLS-regression, as suggested
by high area under the curve (AUC) values of most classifiers
(Tables 1 and 3). In the current study, the threshold of 0.5
implied an uninformative prior and an unprejudiced belief in
individual classifier of each molecular subtype. Figures 2(a)
and 2(b) showed the predicted probability as a function of
the latent PLS scores, with one and two gene components
incorporated into regression for HER2-enriched and basal-
like subtype classifier, respectively. Figures 2(c) and 2(d)
showed the corresponding receiver operating characteristic
(ROC) curves.

The clinical ER and HER2 status for 208 Han Chinese
breast cancers were presented in Table 5; no basal-like breast
tumors were ER positive, and most HER2-enriched breast
tumors (around four-fifths) were clinically ER negative,
whereas most of luminal-A and luminal-B subtypes were
ER positive. For clinical HER2 status, most basal-like breast
tumors were HER2-normal, most HER2-enriched subtype
cases were with HER2 over-expression, and the luminal-B
tended to report a higher propensity ofHER2over-expression

than the luminal-A subtype, regardless of predictive methods
(PLS-regression or PAM50 SSP). Thesse findings, in general,
were in agreement of what we learnt from previous studies
about intrinsic taxonomy and further evidenced the validity
of current study [20]. Disease-free survival from 410 cases
of validation dataset was displayed in Figures 1(a) and 1(b).
The luminal-A subtypewas associatedwith the best prognosis
during the follow-up for Han Chinese breast cancers.

Tables 3 and 4 showed that the agreement between
PAM50 SSP and PLS-regression for normal breast-like sub-
type was extremely low, also indicated by the unsatisfactory
adjust 𝑅-square as well as compromised sensitivity. Notably,
normal breast-like centroid in PAM50 was derived from 29
normal breast samples; in 2009 Parker et al. clained that
normal breast-like category of PAM50 should be treated as an
internal quality control rather than a breast cancer intrinsic
subtype such as normal breast-like subtype in Hu 306 and
Sørlie 500 intrinsic signatures [15]. In this sense, none of our
samples should be predicted as normal breast-like subtype
with PAM50. In our study, the number of samples categorized
as the normal breast-like subtype by PLS-regression (𝑛 = 8)
was less than the number designated as normal breast-like
by PAM50 SSP (𝑛 = 56), indicating a more precious and
valid prediction of the purposed gene component algorithm.
The dubious clinical meaning and doubtful existence of
normal breast-like subtype, also reflected in its heterogeneous
clinical presentations of ER andHER2 phenotypes, remained
unsolved and demanded further evaluations. Perhaps directly
assaying true normal breast tissues might shed light on this
issue.

5. Conclusion

Our study extended the applications of PLS-regression for
gene expression data tomulti-class taxonomy such as PAM50
intrinsic subtypes purposed by the Stanford/UNC group.
With gene component classifiers and class-specific genes
for each molecular subtype, the purposed algorithm was
validated in original cohort deriving the PAM50 signature
as well as in independent Han Chinese breast cancers with
modest sample size. PLS-regression was evidenced to be
a feasible and efficient alternative to centroid-based SSP
when more than two classes were discerned. The increased
proportion of unclassifiable cases in independent samples
deserved meticulous evaluation. Whether inconsistency in
classification threshold or unrecognized patterns in full spec-
trum of intrinsic taxonomy resulted in these undetermined
cases was speculated; further gene expression studies might
be directed to answer these questions in an effort to derive a
more sophisticated signature for human breasts cancer.
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