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Abstract

Follicle-stimulating hormone (FSH) has key roles in animal reproduction, including sper-

matogenesis and ovarian maturation. Many factors influence FSH secretion. However,

despite the broad functions of microRNAs (miRNAs) via the regulation of target genes, little

is known about their roles in FSH secretion. Our previous results suggested that miR-186-

5p targets the 30 UTR of FSHb; therefore, we examined whether miR-186-5p could regulate

FSH secretion in rat anterior adenohypophyseal cells. miR-186-5p was transfected into rat

anterior pituitary cells. The expression of FSHb and the secretion of FSH were examined by

RT-qPCR and ELISA. A miR-186-5p mimic decreased the expression of FSHb compared

with expression in the control group and decreased FSH secretion. In contrast, both the

mRNA levels and secretion of FSH increased in response to miR-186-5p inhibitors. Our

results demonstrate that miR-186-5p regulates FSH secretion by directly targeting the

FSHb 30 UTR, providing additional functional evidence for the importance of miRNAs in the

regulation of animal reproduction.

Introduction

FSH, which is synthesized and secreted by the anterior pituitary gland, has important func-

tions in both sexes in mammals. In males, FSH targets testis Sertoli cells to regulate spermato-

genesis [1, 2]. In females, FSH stimulates ovarian follicle growth and maturation and promotes

granulosa cell proliferation and differentiation [1, 3]. It is a heterodimeric glycoprotein com-

posed of a common α subunit (α-GSU) and a unique β subunit (FSHb). FSH plays important

roles in animal reproduction [4, 5] and is regulated by many factors. For example, multiples

studies have shown that FSH is affected by the level of GnRH [6, 7]. In addition, Kiezun et al.

showed that adiponectin plays a major role in FSH secretion during the estrous cycle [8]. How-

ever, little is known about the regulation of FSH secretion at the post-transcriptional level.

A microRNA (miRNA) is an ~22 nucleotide, short, non-coding RNA molecule that func-

tions as a post-transcriptional regulator of gene expression by suppressing transcription or

degrading the protein [9]. miRNAs regulate gene expression in animals, plants, and viruses
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[9]. There is increasing evidence for a role of miRNAs in hormone regulation. Hasuwa et al.

indicated that miR-200b/miR-429 stimulates luteinizing hormone (LH) levels by targeting

ZEB1 [10], and Nemoto et al. showed that miR-325-3p decreases LH secretion [11]. Further-

more, miR-26b is involved in growth hormone (GH) regulation [12] and miRNAs have been

identified as regulators of gonadotropins [13, 14]. Zhang et al. indicated that miR-143 mediates

the proliferative signaling pathway of FSH and further regulates estradiol production [15].

However, the regulatory role of miRNAs in FSH secretion is unclear.

In this study, to verify the interaction between FSHb mRNA and miR-186-5p, we mutated

the target sites of miR-186-5p in the FSHb 30 UTR. To determine whether miR-186-5p regu-

lates FSH secretion, we measured the mRNA expression levels of FSHb and the secretion of

the FSH hormone after the transfection of miR-186-5p into primary rat pituitary cells.

Materials and methods

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of Jilin University. The rats were fed according to the

cleanliness specifications. Animals were provided free access to food. Animal feed, litter, and

drinking water were used after disinfection and sterilization, and the cage and litter were regu-

larly cleaned and replaced. Housing and care procedures were in compliance with the provi-

sions in the general guidelines of Animal Experimentation of Jilin University. Rats were

euthanized by inhaling an anesthetic followed by carbon dioxide and pick the pituitary. Ani-

mal corpses were handled according to Harmless Treatment when the experiments were com-

pleted. The protocol was approved by the Institutional Animal Care and Use Committee of

Jilin University (Permit Number: 20170605).

Animals and cell culture

Ten 4-month-old and five 2-week-old healthy male Wistar rats were obtained from the School

of Medical Science of Jilin University. Five male 4-month-old rats were used for cell culture

and transfection experiments. Pituitaries were obtained from five 2-week-old rats, and seven

tissues, including pituitary, heart, liver, spleen, lung, kidney, and brain tissues, were obtained

from five 4-month-old rats. Pituitaries from rats of different ages were used to measure

miRNA expression levels at various developmental stages. The seven tissues were used to mea-

sure the expression of miR-186-5p in different tissues. Rat primary cell culture was performed

as described in a previous study [16].

Flow cytometry analysis of rat anterior adenohypophysis cell apoptosis

Rat anterior adenohypophysis cell apoptosis was detected using the Annexin V-FITC/PI

Apoptosis Kit following the manufacturer’s instructions (Multi Sciences, Hangzhou, China).

After 24 h of transfection, cells were digested with trypsin without EDTA, centrifuged at

200 × g for 5 min, and 1–5 × 105 cells were collected. Then, 5× Binding Buffer was diluted in

double distilled water to obtain a 1× working fluid, and 500 μL was added to each tube. A

blank control tube, Annexin V-FITC single-dye tube, PI single-dye tube, and sample tubes

were established. Annexin V-FITC (5 μL) and PI (10 μL) were added to the two single-dye

tubes. Sample tubes were supplemented with both 5 μL of Annexin V-FITC and 10 μL of PI.

The apoptotic cells and dead cells were stained by PI and Annexin V-FITC and analyzed by

flow cytometry in 2 h.
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Transfection and qRT-PCR

Rat pituitary cell transfection was performed according to the methods of our previous study

[16]. Total RNA was extracted using the RNAprep Pure Cell/Bacteria Kit (Tiangen, Beijing,

China) according to the manufacturer’s recommended protocol. RT-PCR and qRT-PCR were

performed using the FastQuant RT Kit (with gDNase) and SuperReal PreMix Plus (SYBR

Green) (Tiangen), respectively. The mRNA and miRNA primers are listed in Table 1.

Construction of the reporter plasmids

According to the genome sequence information for the rat FSHb 30 UTR (GenBank Accession

No. NM_001007597.2), PCR primers were designed to amplify the full length of the FSHb 30

UTR. The forward primer was GCGCTCGAGGGAACAATGGACATTGCC and the reverse primer

was AATGCGGCCGCTTCATCAGTAGCACTTTTA. The amplified fragment was cloned between

the XhoI and NotI sites of the pmiR-RB-REPORTTM plasmid to construct the pmiR-FSHb-

30UTR-WT plasmid. Two target sites of miR-186-5p and the FSHb 30 UTR were mutated, i.e.,

TTCTTTA to AAGAAAT and ATTCTTT to TAAGAAA, to obtain pmiR-FSHb-30UTR-MUT

(S1 File). Reporter plasmid construction and the confirmation of construct products were per-

formed by Guangzhou Ribobio Biotech Co., Ltd. (Guangzhou, China).

FSH detection

After transfection for 24 h, 50 μL of the cell supernatant was collected to detect FSH levels

using the Rat FSH ELISA Kit (Haling Biotech Co., Ltd., Shanghai, China).

Statistical analysis

Data are presented as the means ± SD from three independent experiments. Data were ana-

lyzed using SPSS 19.0. One-way ANOVA was used to determine significant differences;

p< 0.05 was considered significant.

Results

MiR-186-5p targets the 30 UTR of FSHb mRNA

In our previous study, a luciferase reporter assay indicated that miR-186-5p mimics reduce lucif-

erase activity by 32% compared with that of a negative control group [16]. To further verify the

interaction between miR-186-5p and FSHb, we predicted the target site of miR-186-5p in the

FSHb 30 UTR using TargetScan (Fig 1A), and mutated the target site TTCTTTA to AAGAAAT

Table 1. Primers used for RT-qPCR.

Primer name Sequence (50–30)

U6 RT CGCTTCACGAATTTGCGTGTCAT

miR-186-5p RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGCCCAAA

U6 F GCTTCGGCAGCACATATACTAAAAT

U6 R CGCTTCACGAATTTGCGTGTCAT

miR-186-5p F ACACTCCAGCTGGGCAAAGAATTCTCCTTT

universal reverse CTCAAGTGTCGTGGAGTCGGCAA

GAPDH F GGAAACCCATCACCATCTTC

GAPDH R GTGGTTCACACCCATCACAA

FSHb F ATACCACTTGGTGTGAGGGC

FSHb R TAGAGGGAGTCTGAGTGGCG

https://doi.org/10.1371/journal.pone.0194300.t001
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and ATTCTTT to TAAGAAA (Fig 1B). Next, we constructed pmiR-FSHb-30UTR-MUT

and co-transfected miR-186-5p mimics and pmiR-FSHb-30UTR-MUT into 293T cells. Co-

transfection of miR-186-5p mimics and pmiR-FSHb-30UTR-WT into 293T cells led to a greater

than 40% reduction in luciferase activity; moreover, when the miR-186-5p binding site of the

FSHb 30 UTR was replaced with a mutant sequence (pmiR-FSHb-30UTR-MUT), there was an

increase in luciferase activity compared with that of the control group (Fig 1C). Therefore, miR-

186-5p and FSHb had a direct interaction, indicating that miR-186-5p could regulate FSHb

expression.

Detection of differential miR-186-5p expression at various developmental

stages in the pituitary and in other rat tissues

We detected miR-186-5p expression in 2-week- and 4-month-old rats to examine expression

differences among developmental stages in the rat pituitary. We detected miR-186-5p expres-

sion in both stages, and we found that compared with levels in the non-sexual maturity period,

miR-186-5p was down-regulated in the sexual maturity period (Fig 2A). We examined the

expression of miR-186-5p in seven tissues of 4-month-old rats, including the pituitary, heart,

liver, spleen, lung, kidney, and brain. miR-186-5p was expressed in all of these tissue types,

and was particularly highly expressed in the lung, kidney, and brain (Fig 2B).

Fig 1. MiR-186-5p targets the 30 UTR of FSHb mRNA. (A) The seed match regions predicted by TargetScan for the FSHb 30 UTR and miR-186-5p are shown in red.

(B) Mutations in the target sites for miR-186-5p. The sequence was identified using a sequencing map. (C) After 48-h of the co-transfection of pmiR-FSHb-30UTR-WT

and pmiR-FSHb-30UTR-MUT with the miR-186-5p negative control and mimic, the relative luciferase activity was measured. The normalized luciferase activity for the

controls was set to 1. All experiments were repeated at least three times. Data are shown as means ± SD. Statistical significance was analyzed by one-way ANOVA,

p< 0.05 was considered significant and differences are marked with different letters.

https://doi.org/10.1371/journal.pone.0194300.g001
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Effect of miR-186-5p transfection into rat primary pituitary cells

For quality control, we used flow cytometry to detect rat anterior pituitary cell apoptosis after

transfection with 100 nM miR-186-5p negative control, inhibitor negative control, mimic, and

inhibitor for 24 h. We did not detect significant differences among the negative control groups

and transfection groups (Fig 3A–3D). We then examined the expression of miR-186-5p after

transfecting cells with 100 nM miR-186-5p negative control, inhibitor negative control, mimic,

and inhibitor. The overexpression of miR-186-5p significantly increased the expression of

miR-186-5p (5653.605-fold, p< 0.01) compared with expression in the negative control group

(Fig 3E). When we inhibited the expression of miR-186-5p, the level of miR-186-5p decreased

(0.382-fold, p< 0.01) compared with levels in the inhibitor negative control group (Fig 3F).

Accordingly, the over-expression or inhibition of miR-186-5p was successful.

FSHb expression and FSH secretion after the overexpression or inhibition

of miR-186-5p

We further verified the interaction between miR-186-5p and FSHb in rat anterior pituitary

cells and examined the role of this interaction in the regulation of animal reproduction. Specif-

ically, rat primary pituitary cells were transfected using 100 nM negative control (NC), miR-

186-5p mimic, inhibitor negative control (I-NC), and miR-186-5p inhibitor; after 24 h, the

level of FSHb was examined by quantitative RT-PCR. FSHb mRNA levels decreased signifi-

cantly (0.66-fold, p< 0.05; Fig 4A) after the overexpression of miR-186-5p compared with the

levels in the NC group. FSHb expression levels were significantly higher in the miR-186-5p

inhibitor group than in the I-NC group (1.29-fold, p< 0.05; Fig 4A). Since the over-expression

and inhibition of miR-186-5p led to a significant reduction and increase in FSHb levels, respec-

tively, we examined whether the same trends were observed for FSH secretion by ELISA after

transfection for 24 h. FSH secretion and FSHb expression exhibited similar patterns in the four

groups. The overexpression of miR-186-5p significantly decreased FSH secretion (6.19 ± 0.62

Fig 2. Detection of the differential expression of miR-186-5p at various developmental stages of the pituitary and in various tissues in rats. (A) The relative

expression level of miR-186-5p was detected in 2-week-old and 4-month-old rats, and U6 was used as an internal standard for qRT-PCR. (B) The relative expression of

miR-186-5p was detected by qRT-PCR with U6 as an internal control in seven tissue types from 4-month-old rats, i.e., the pituitary, heart, liver, spleen, lung, kidney, and

brain. All experiments were repeated at least three times. Data are shown as means ± SD. Statistical significance was analyzed by one-way ANOVA, p< 0.05 was

considered significant, and differences are marked with different letters.

https://doi.org/10.1371/journal.pone.0194300.g002
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IU/L vs. 4.27 ± 0.45 IU/L, p< 0.05; Fig 4B). The inhibition of mir-186-5p significantly

increased FSH secretion (6.02 ± 0.55 IU/L vs. 9.45 ± 0.72 IU/L, p< 0.05; Fig 4B).

These results demonstrated that miR-186-5p can regulate FSHb by inhibiting the expres-

sion of FSHb and by decreasing the secretion of FSH via direct binding to the FSHb 30 UTR.

Discussion

Analyzing changes in the relative luciferase activity of a reporter gene after co-transfection of a

candidate miRNA with a mutant reporter gene vector is an important strategy to understand

interactions between miRNAs and target genes. In some cases, mutations in miRNAs and tar-

get sites in genes do not affect luciferase activity compared with co-transfection with a reporter

construct containing a wild-type 30 UTR for the target gene [16–18]. However, in our study,

when we co-transfected miR-186-5p mimics and pmiR-FSHb-30UTR-WT into 293T cells, the

luciferase activity was reduced by more than 40%; after mutating two target sites, luciferase

activity was slightly higher, but still significantly different from wild-type levels. Interestingly,

in 2014, Fu et al. reported that let-7a, miR-9, and miR-129-5p each had two target sites in

FOXP2, and three mutant luciferase reporter constructs with mutations in one or two target

sites were made. When only one binding site was mutated, luciferase activity was repressed by

miRNAs, while mutations in both target sites led to the abolishment of regulatory effects [19].

Our results indicated that there are additional target sites that were not predicted using Tar-

getScan. However, the increase in luciferase activity indicated that the predicted target sites

were correct and miR-186-5p and FSHb had a direct interaction.

miRNAs act as regulators in many biological processes, including developmental timing,

cell death, cell proliferation, and hematopoiesis [20]. miRNAs function in a tissue-specific and

Fig 3. Effect of miR-186-5p transfection into rat primary pituitary cells. After transfection for 24 h, rat anterior adenohypophyseal cells were stained with Annexin

V-FITC/PI to observe apoptosis by flow cytometry. (A) miR-186-5p mimic negative control group (NC). (B) miR-186-5p mimic group. (C) miR-186-5p inhibitor

negative control group (I-NC). (D) miR-186-5p inhibitor group. (E) The apoptosis rate of anterior pituitary cells after transfection with miR-186-5p mimic NC, mimic,

I-NC and inhibitor. (F) The relative expression of miR-186-5p with miR-186-5p mimics/inhibitor transfection. All experiments were repeated at least three times. Data

are shown as means ± SD. Statistical significance was analyzed by one-way ANOVA, p< 0.05 was considered significant, and differences are marked with different

letters.

https://doi.org/10.1371/journal.pone.0194300.g003

Fig 4. mRNA expression levels of FSHb and the level of FSH secretion after the overexpression or inhibition of miR-186-5p. (A) The relative expression of FSHb in

miR-186 NC, mimic, I-NC, and inhibitor groups. (B) ELISA was used to examine the supernatant from pituitary cells after transfection for 24 h with miR-186 NC,

mimic, I-NC, and inhibitor. All experiments were repeated at least three times. Data are presented as means ± SD. Statistical significance was analyzed by one-way

ANOVA, p< 0.05 was considered significant, and differences are marked with different letters.

https://doi.org/10.1371/journal.pone.0194300.g004
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time-dependent manner [21]. They have effects in the pituitary, a critical endocrine organ.

In pituitary adenomas, increasing studies have provided evidence for the roles of miRNAs in

various cellular processes; they have pathobiological significance [22]. For example, miR-145

and miR-15a are down-regulated in GH and pituitary adenomas, respectively [23, 24]. Gentilin

et al. found that miR-26a could directly target PRKCD and is involved in cell cycle regulation

in ACTH-secreting pituitary adenomas [25]. They indicated that miRNA-mediated regulation

has complex cellular outcomes and miRNAs can also mediate the regulation of cell cycle, cell

growth, and apoptosis pathways. Furthermore, miRNAs also have a regulatory role in the nor-

mal pituitary. For instance, miR-26b is involved in the development of the pituitary in mice

[12]. In 2013, Zhang et al. found that miR-7 might function in the pituitary in pigs, thereby

influencing body growth [26]. miRNAs can also regulate hormone secretion. For example,

miR-325-3p is associated with the immobilization-induced suppression of LH secretion [11],

and miR-375 is involved in ATCH secretion [27]. In our previous study, miR-186-5p ex-

pression was significantly differentially expressed (0.45-fold difference) between the non-sex-

ual maturity developmental stage and the sexual maturity developmental stage in the rat

pituitary [16]. Accordingly, miR-186-5p is a potential regulator of pituitary development and

reproduction.

Most miRNAs are expressed in a highly tissue-specific manner in the late stages of division,

but not in early development [21]. According to previous studies, miR-1 is highly expressed in

the heart, but not in the brain or liver in human adults and mice [28, 29]. In 2014, miR-1,

miR-133a, miR-133b, and miR-206 were validated as muscle-specific miRNAs in rat [30]. In

2015, Alessandro et al. identified 10 novel and 4 known heart-specific miRNAs in the left ven-

tricle in sheep [31]. Moreover, in our study, miR-186-5p exhibited different degrees of expres-

sion in the rat heart, pituitary, liver, spleen, lung, kidney, and brain. Its expression tended to

be high in the kidney and brain, but low in the pituitary and liver. Although miR-186-5p was

not a tissue-specific miRNA in these rat tissues, its differential expression suggests that it is a

candidate for further research.

The miRNA miR-186-5p is an important tumor suppressor and has been observed in many

types of human cancers, including gastric cancer, hepatocellular cancer, and glioblastoma mul-

tiforme [32–34]. In 2016, Huang et al. indicated that miR-186 suppresses cell proliferation and

metastasis by targeting MAP3K2 in non-small cell lung cancer [35]. In addition, in nonmela-

noma skin cancer, miR-186-5p could be a novel noninvasive biomarker for detection [36].

Thananya et al. showed that miR-186-5p might be a specific hepatic miRNA that responds to

hepatitis B virus and predicts the response to pegylated-interferon alpha-2a [37]. When E6/E7

is silenced, miR-186-5p is down-regulated in HPV18-positive HeLa cells [38]. These studies

demonstrated that miR-186-5p acts as an anti-oncogenic marker and is involved in the control

of cell proliferation, senescence, and apoptosis. Despite a number of studies indicating that

miR-186-5p is associated with human cancers, its role in hormone secretion is unclear. Our

results showed that the overexpression of miR-186-5p down-regulates FSHb expression and

decreases FSH secretion in rat anterior pituitary cells, providing evidence that hormone secre-

tion in the pituitary is regulated by miRNAs.

FSH, as a pituitary hormone, is critical for the regulation of reproduction in mammals [39].

Therefore, it is essential to determine the mechanism and timing of FSH regulation. Many fac-

tors determine FSHb expression and FSH secretion, including hormones, follistatin, and single

nucleotide polymorphisms [40–42]. A novel single nucleotide polymorphism influences the

FSH beta-subunit and the quality and fertility of bull semen [43]. Additionally, a cis-regulatory

element influences FSHb expression levels in bovine cells [44]. FSH secretion is strongly asso-

ciated with GnRH, bio-available activin, and steroid hormones [45–47]. However, few studies

have reported a role of miRNAs in the regulation of FSH secretion. In 2015, Lannes et al.

miRNA regulation of FSH in the pituitary
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reported that the miR-132/212 pathway is associated with the stimulation of FSH secretion by

GnRH [48]. Ye et al. identified 10 up-regulated and 3 down-regulated miRNAs that are likely

to directly target the porcine FSHb 30 UTR after GnRH treatment [49]. In 2016, miR-361-3p

was found to regulate FSH by directly interacting with FSHb in porcine anterior pituitary cells

[4]. Furthermore, we previously found that miR-21-3p and miR-433 both decrease FSH secre-

tion by regulating FSHb [16]. In this study, the overexpression of miR-186-5p inhibited FSH

secretion. Our results provide additional evidence for the regulatory role of miRNAs in FSH

secretion.

Taken together, our results showed that miR-186-5p down-regulates the expression of

FSHb and inhibits the secretion of FSH. These findings provide additional support for the reg-

ulatory functions of miRNAs in reproduction.
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