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Glycogen synthase kinase 3 (GSK3) has been implicated in neurological disorders; therefore, it is not surprising that there has
been an increased focus towards developing therapies directed to this kinase. Unfortunately, these current therapies have not taken
into consideration the physiological role of GSK3 in crucial events like synaptic plasticity. With this in mind we will discuss the
relationship of synaptic plasticity with GSK3 and tau protein and their role as potential targets for the development of therapeutic
strategies. Finally, we will provide perspectives in developing a cocktail therapy for Alzheimer’s treatment.

1. Introduction

Glycogen synthase kinase 3 (GSK3) is an evolutionarily con-
served protein that is active in resting cells and is inhibited
in response to activation of several distinct pathways such as
the Wnt, insulin, and the growth factor pathway [1–7]. GSK3
activity is regulated by different mechanisms, including (a)
phosphorylation at an N-terminal serine [7, 8], (b) through
phosphorylation of a tyrosine residue [9], (c) through
phosphorylation of a C-terminal serine residue [10], and
(d) through disruption of the axin-β-catenin multiprotein
complex [4, 11, 12]. The other requirement of GSK3 is
that most of its substrates require prior phosphorylation at
residue 4 or 5 amino acids C-terminal to the target residue
[13].

GSK3 has two isoforms GSK3α and GSK3β, which are
encoded by different genes [14]. In mouse, rat, and human,
an alternative isoform (GSK3β2) that contains a 13-amino-
acid insert near the catalytic domain was reported [15]. In
opposition to GSK3α and GSK3β, GSK3β2 is specifically

found in the nervous system and has been strongly linked
to neurodevelopment [15].

In order to participate in all these events, GSK3 has a
broad range of substrates: cyclic AMP response element-
binding protein (CREB), neurogenin 2, SMAD1, NFkappaB,
Myc, heat shock factor-1, cyclin D1, nuclear factor of
activated T-cells and CCAAT/enhancer-binding proteins, c-
Jun, β-catenin, and microtubule-associated proteins like
MAP2 and tau [16–18]. GSK3 regulates some of these factors
by controlling their protein levels. However, changes in
GSK3 activity have been associated with neurodegenera-
tive diseases, such as bipolar disorder, schizophrenia, and
Alzheimer’s disease (AD) [19]. Indeed, in AD the active form
of GSK3β was found to be directly related to the hyperphos-
phorylation of tau present in paired helical filament (PHF)-
tau of neurofibrillary tangles (NFTs) [20]. Importantly and
due to the fact that most drugs bind and compete with
ATP, there appears to be only a single amino acid difference
(Glu196 in GSK3α, Asp133 in GSK3β) making it difficult to
identify an inhibitor that can distinguish the two isoforms.
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Overall, it is clear that GSK3 is related to AD devel-
opment, and, more importantly, current data suggest that
both isoforms (GSK3α and GSK3β) contribute to AD
pathogenesis.

2. Tau Pathology and GSK3

Tau is an axonal protein that regulates microtubule stability
[21]; however, during AD tau is abnormally phosphory-
lated and aggregates into NFTs [22, 23]. Tau has at least
45 phosphorylation sites, mostly located in the proline-
rich region (P-region) (residues 172–251) and the C-
terminal tail region (C-region) (residues 368–441) [24].
Tau phosphorylation at both of these regions affects its
capacity to interact with microtubules [25]. In terms of
AD pathology, the phosphorylation sites located in the C-
terminal region seem to cause (a) abnormal folding and
(b) protein cleavage, which together could lead to tau
deposition [26–28]. Phosphorylation at some sites (Ser262)
selectively impairs binding of tau to microtubules [29],
whereas phosphorylation at other sites (Ser202) enhances
tau polymerization [30]. Crucially, GSK3β has been linked
to many of these sites [15, 31]. Therefore, emphasis has
been placed particularly on GSK3β, rather than GSK3α.
However, due to the lack of inhibitor’s specificity, GSK3α has
not been ruled out. Indeed, some studies have shown that
GSK3α through Wnt signalling pathway is also related to tau
pathology [32]. Furthermore, by specifically knocking down
GSK3β, GSK3α was found to be related to AD pathology
[33].

In sum, the current data shows that both isoforms GSK3α
and GSK3β could be involved in tau phosphorylation.

3. GSK3 as the Therapeutic Target for AD

GSK3 is strongly implicated in neurodegeneration [34], and,
not surprisingly, it has been postulated as a therapeutic
target in the treatment of AD. Indeed, lithium which is a
direct inhibitor of both GSK3β and GSK3α has been used
in humans [35, 36]. The direct regulation of GSK3 also
modifies cell survival as it is known for facilitating a variety
of apoptotic mechanisms [35]. Similarly, in an attempt to
reduce tau pathology, the GSK3 inhibitor [Tideglusib/NP-12
(Nypta)] is currently in clinical trial [37]. NP-12 has been
designated as an orphan drug by the EU and US authorities
and has been granted Fast Track status by the FDA (see
http://www.noscira.com).

The rationale is simple; blocking GSK3 will lead to non-
phosphorylated tau and, consequently, less tau deposition
according to the current hypothesis. However, the impor-
tance of GSK3 for normal physiological cell functioning must
be taken into consideration. In this regard, we recently found
that phosphorylation of tau protein is critical in order for
the protein to function as a negative feedback mechanism to
prevent NMDA-receptor overexcitation (unpublished data).
This data becomes crucial in this debate since NMDA dereg-
ulation plays a vital role in synaptic plasticity. Therefore,
by simple blockade of GSK3 we could alter the homeostasis
of synaptic plasticity among other important physiological

functions. Furthermore, blocking GSK3 also raises the
possibility of affecting gene expression and cell survival [17].
So, is GKS3 the desired therapeutic target for AD? Although
the answer is far from being simplistic, normal physiological
functions for the cell, together with the complexity of the
phenomena [38], need to be taken into consideration before
selecting AD pharmacological targets.

4. GSK3 as Crucial Node for
Synaptic Plasticity

Synaptic plasticity has been proposed to play a central
role in brain capacity to incorporate transient experiences
into persistent memory traces. Synaptic transmission can
be enhanced (long-term potentiation, LTP) or depressed
(long-term depression, LTD) by activity, and these changes
can persist from seconds to hours and days [39, 40].
Importantly, the affected intracellular pathways leading to
LTP or LTD activation involve primarily GSK3 [41, 42].
Indeed, it has been shown that enhanced GSK3 signalling
impairs hippocampal memory formation [43]. Specifically,
GSK3 activity blocks synaptic LTP and induces LTD [43].
Furthermore, it was found that GSK3 during LTP involves
activation of NMDA receptors and the PI3K-Akt pathway
consequently disrupting the ability of synapses to undergo
LTD [43]. Clearly, the data claims that GSK3 is a crucial node
mediating the LTP to LTD transition. Therefore, the simple
idea of blocking GSK3 in order to prevent the progression of
AD seems to be overly simplistic.

5. Conclusion and Perspectives

The hypothesis that GSK3 plays a role in the aetiology of
brain disorders is further nurtured by the fact that several
genetic susceptibility factors for psychiatric disorders have
key roles in neurodevelopment. Importantly, many of the
genes are involved in GSK3 signaling [44, 45]. Furthermore,
GSK3 is directly related to the pathogenesis of AD as tau
kinase [31]. Overall, it seems clear that GSK3 has an integral
role in the pathogenesis of AD. Therefore, GSK3 remains
as therapeutic target. However, the secondary effects caused
by GSK3 blockade should also be taken into consideration,
especially knowing that synaptic dysfunction in addition to
neuronal death can lead to cognitive failure associated with
AD. With this in mind, therapies that focus on rescuing
events like LTP rather than single blocking strategy could
bring needed results.

In conclusion, we suggest that downstream targets of
GSK3 are an interesting option. In other words, we proposed
the use of cocktail drugs that could enhance LTP and
reduce induction of LTD. For instance, drugs like memantine
(NMDA receptor antagonist) [46], in combination with
other drugs like okadaic acid (PP1 activator) [47] and/or
pseudosubstrate for Akt [43], could be used in order to
balance the activity of GSK3 and therefore tau phosphoryla-
tion (Figure 1). Together, this combinatorial approach may
result in LTP promotion and synaptic improvement. After
all, if the current strategies for AD treatment have shown
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Figure 1: Cocktail drugs could balance the activity of GSK3 during
AD. The role of PP1 and Akt in GSK3 activation, in combination
with NMDA receptor, makes them important therapeutic targets.
Calcium (Ca2+) enters via NMDA receptors, and this leads to
activation of protein phosphatase 1 (PP1), a key enzyme in synapti-
cally induced LTD. PP1 can dephosphorylate GSK3 that determines
whether NMDA receptor activation induces LTD or inhibits LTD.
PP1 can dephosphorylate Akt, resulting in GSK3 activation. GSK3,
under the control of Akt and PP1, is a critical determinant of the
direction of NMDA receptor-dependent plasticity. The active GSK3
isoforms contribute to phosphorylation of tau protein which is
essential in order for the protein to function as a negative feedback
mechanism to prevent NMDA-receptor overexcitation and synaptic
failure.

little benefits, it is tempting to consider new therapeutic
approaches that are aimed to improve memory formation.
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