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Abstract: Background: Magnesium (Mg) is commonly used in clinical practice for acute and chronic
pain and has been reported to reduce pain intensity and analgesics consumption in a number of
studies. Results are, however, contested. Objectives: This review aims to investigate randomised
clinical trials (RCTs) on the effectiveness of Mg treatment on pain and analgesics consumption in
situations including post-operative pain, migraine, renal pain, chronic pain, neuropathic pain and
fibromyalgia. Results: The literature search identified 81 RCTs (n = 5447 patients) on Mg treatment
in pain (50 RCTs in post-operative pain, 18 RCTs in migraine, 5 RCTs in renal pain, 6 RCTs in
chronic/neuropathic pain, 2 RCTs in fibromyalgia). Conclusion: The level of evidence for the efficacy
of Mg in reducing pain and analgesics consumption is globally modest and studies are not very
numerous in chronic pain. A number of gaps have been identified in the literature that need to be
addressed especially in methodology, rheumatic disease, and cancer. Additional clinical trials are
needed to achieve a sufficient level of evidence and to better optimize the use of Mg for pain and
pain comorbidities in order to improve the quality of life of patients who are in pain.
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1. Introduction

Pain, acute or chronic, affects a large number of individuals worldwide. The physi-
ology of pain is complex, with activation of nociceptors, transduction of nervous signals,
ascending pathways transmission and modulation of pain in the descending inhibitory
pathways [1–3]. Pain involves not only sensori-discriminative, but also cognitive, emo-
tional, behavioural and social dimensions. Chronic pain [3] affects a large number of
persons, with a prevalence of 33.2% in the general population [4] and is accompanied by a
number of comorbidities like stress that may be amplified in a vicious circle [4,5]. Among
common comorbidities, migraine [6], anxiety and depression [7], sleep disorders [4] and
impaired quality of life [8] are frequently described.

Magnesium (Mg) is often used in the community by healthy persons and patients with
pain [9] as a supplementary drug to improve their well-being [10] and reduce stress [11].
This use is facilitated by its over-the-counter availability and many pharmaceutical presen-
tations are available [12]. It is also commonly used in hospital for pain management, alone,
or in combination with analgesics like morphine [13] or ketamine, an antihyperalgesic
agent and N-methyl-D aspartate receptor (NMDAR) antagonist [14,15], that may also
improve stress and depressive symptoms [16,17].

The frequent use of Mg in painful acute situations like post surgery, or in chronic pain,
relies on the fact that Mg is the physiological blocker of the NMDAR. At a neuronal level
it plays a major role in controlling the excitability of NMDAR [18] as it is a constitutive
antagonist of this receptor [19]. Central sensitisation of pain and long-term potentiation
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(LTP) are related to hyperexcitability at the level of the NMDAR, a ubiquitous receptor that
plays a pivotal role in the chronicisation of pain but also on learning and cognitive processes.
NMDAR is widely localised in the central nervous system, including the hippocampus,
anterior cingulate cortex, insular cortex and dorsal horn of the spinal cord [20]. NMDAR
opening is triggered by the influx of pre-synaptic glutamate, but also by post-synaptic
depolarization (normally caused by the activation of glutamate-sensitive AMPA (α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors). Glutamate binding forces a
conformational change by induced adjustment of the NMDAR that opens the pore and
releases Mg if there is a depolarization that repels it [21]. NMDAR allows the entry of
calcium into the cell and induces modulation of the intensity of the synaptic transmission
force [22]. Furthermore, several intracellular cascades are involved in LTP particularly via
the activation of CAM kinase II by calcium [23]. These molecular cascades are described
in pain but also suggested in the occurrence of sleep disorders [24], anxiety [25] and
fatigue [26].

Considering that the use of Mg for pain treatment has become a fairly common practice
in various acute and chronic pain situations, the objective of this paper aims to review
publications and randomised clinical trials (RCTs) of Mg in pain to identify the impact of
Mg on pain relief and analgesics reduction in painful situations.

2. Materials and Methods

The Medline®, Pubmed®, Google Scholar and Cochrane databases were searched
until March 2021 to identify reviews and RCTs using the keywords “magnesium AND
pain”, “magnesium”, “analgesics AND magnesium”. Several pieces of information were
collected including study design, number of subjects, control group, pain aetiology, Mg
administration protocol, primary endpoint and results. The parameters necessary to retain
these randomised studies were the evaluation of pain following administration of Mg
and/or the analgesics consumption; there was no age limit nor a minimum number for the
population, no specific requirement regarding the years of publication and studies had to
be available in English. RCTs that did not address these parameters were discarded. In
addition, our search included publications on the bioavailability of the different Mg salts
in order to identify specificities among pharmaceutical preparations.

3. Results

A total of 315 articles were identified; 226 articles were discarded (not conforming to
the inclusion criteria). Eighty RCTs and 8 systematic reviews [10,13,27–32] were appropriate
for this review (adequacy of the abstract with the review: exploration of the efficacy of Mg
in pain and consumption of analgesics) (Figure 1). Pain reduction was assessed by visual
analogue scale (VAS) (0 no pain—10 (or 100) worst possible), and evaluated at different
times, or with questionnaires specific to the pathology as described further. The effect
of Mg on pain was studied in 75/80 RCTs (n = 4981) and on analgesics consumption in
51/80 RCTs (n = 3656). Analgesics consumption was described as a qualitative increase
or diminution of analgesics. In addition, the review retrieved several articles on Mg salts
bioavailability, assessed by the percentage of absorption of the salts.
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Figure 1. Flow chart of articles on magnesium, pain and analgesics consumption. 

3.1. Magnesium and Pain Diminution 
In post-operative pain, 49 RCTs studied the effectiveness of Mg in reducing pain 

(VAS) and/or on analgesics consumption (40 RCTs explored both parameters, 4 ex-
plored pain evolution only and 5 analgesics use only) [33–81]; 44/49 RCTs explored the 
efficacy of Mg on the evolution of post-operative pain [33–38,41–47,49–59,61–64,66–81] 
(n = 2988). Twenty-nine studies observed a significant decrease of VAS post-operative 
pain following intravenous administration of Mg sulphate (ranging from –2/10 [36] to 
−4/10 [58] at 12 h) compared to placebo or conventional treatment group [33–
37,41,43,45–47,49,51–55,58,59,63,64,67–69,71,74,76,78–80]. Among the RCTs that 
showed a significant pain reduction, 6 different procedures were applied, ranging from 
a simple infusion without bolus to 50 mg/kg with bolus on different types of surgery. 

Sixteen RCTs used Mg sulphate vs. placebo with no bolus and different infusion 
doses. With a 8 mg/kg/h infusion (until the end of the surgical procedure) [35], a sig-
nificant difference, 12 h after surgery in 60 subjects was observed. With an infusion of 
15 mg/kg/h in 40 subjects (for 24 h) [34], a significant pain reduction 12 h after surgery 
was obtained. A 50 mg/kg infusion during surgery in, respectively, 40 [45] and 83 [47] 
subjects (for 24 h [45,47]) showed a decrease in pain at 12 h [47] and 24 h [45]. Likewise, 
during surgery, a 65 mg/kg infusion in 38 subjects (for 12 h) [43] showed a diminution 
of pain at 2 h and at 4 h but not at 8 h or 12 h. 

Thirty-three RCTs used Mg sulphate vs. placebo with a bolus and an infusion. In 
36 subjects with a bolus of 20 mg/kg followed by an infusion of 2 mg/kg/h over the 
total duration of the surgical procedure, a pain decrease at 1 h and 24 h [79] was ob-
served. Nine RCTs used a 30 mg/kg bolus; a 500 mg/h infusion [76] for 24 h showed a 
pain reduction at 15 and 30 min in 40 subjects; an infusion of 9 mg/kg/h in 294 subjects 
(for 1 h) [74] showed a significant decrease in pain; a 10 mg/kg/h infusion [69,71] for 24 
h showed a pain reduction at 12 h in 70 subjects, and at 24 h in 50 subjects; and 20 
mg/kg/h [68] showed a decrease of pain for 24 h in 80 subjects. 

With a bolus of 40 mg/kg followed by an infusion of 10 mg/kg/h over 24 h, a de-
crease of pain at 24 h was observed [67]. Ten RCTs reported a pain decrease for a bolus 
of 50 mg/kg followed by an infusion ranging from 500 mg/h to 25 mg/kg/h [49,51–

Figure 1. Flow chart of articles on magnesium, pain and analgesics consumption.

3.1. Magnesium and Pain Diminution

In post-operative pain, 49 RCTs studied the effectiveness of Mg in reducing pain (VAS)
and/or on analgesics consumption (40 RCTs explored both parameters, 4 explored pain
evolution only and 5 analgesics use only) [33–81]; 44/49 RCTs explored the efficacy of
Mg on the evolution of post-operative pain [33–38,41–47,49–59,61–64,66–81] (n = 2988).
Twenty-nine studies observed a significant decrease of VAS post-operative pain following
intravenous administration of Mg sulphate (ranging from –2/10 [36] to −4/10 [58] at 12 h)
compared to placebo or conventional treatment group [33–37,41,43,45–47,49,51–55,58,59,
63,64,67–69,71,74,76,78–80]. Among the RCTs that showed a significant pain reduction,
6 different procedures were applied, ranging from a simple infusion without bolus to
50 mg/kg with bolus on different types of surgery.

Sixteen RCTs used Mg sulphate vs. placebo with no bolus and different infusion doses.
With a 8 mg/kg/h infusion (until the end of the surgical procedure) [35], a significant
difference, 12 h after surgery in 60 subjects was observed. With an infusion of 15 mg/kg/h
in 40 subjects (for 24 h) [34], a significant pain reduction 12 h after surgery was obtained.
A 50 mg/kg infusion during surgery in, respectively, 40 [45] and 83 [47] subjects (for
24 h [45,47]) showed a decrease in pain at 12 h [47] and 24 h [45]. Likewise, during surgery,
a 65 mg/kg infusion in 38 subjects (for 12 h) [43] showed a diminution of pain at 2 h and at
4 h but not at 8 h or 12 h.

Thirty-three RCTs used Mg sulphate vs. placebo with a bolus and an infusion. In
36 subjects with a bolus of 20 mg/kg followed by an infusion of 2 mg/kg/h over the total
duration of the surgical procedure, a pain decrease at 1 h and 24 h [79] was observed. Nine
RCTs used a 30 mg/kg bolus; a 500 mg/h infusion [76] for 24 h showed a pain reduction
at 15 and 30 min in 40 subjects; an infusion of 9 mg/kg/h in 294 subjects (for 1 h) [74]
showed a significant decrease in pain; a 10 mg/kg/h infusion [69,71] for 24 h showed
a pain reduction at 12 h in 70 subjects, and at 24 h in 50 subjects; and 20 mg/kg/h [68]
showed a decrease of pain for 24 h in 80 subjects.

With a bolus of 40 mg/kg followed by an infusion of 10 mg/kg/h over 24 h, a decrease
of pain at 24 h was observed [67]. Ten RCTs reported a pain decrease for a bolus of 50 mg/kg
followed by an infusion ranging from 500 mg/h to 25 mg/kg/h [49,51–55,58,59,63,64] and
from 24 h [49,52–54,58,59,63,64] to 48 h [51,52,55]. Four RCTs showed a significant decrease
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in pain at 24 h [53,54,58,64], 2 RCTs at 12 h [49,59] and 1 RCT at 30 min [63]. Two RCTs
showed a pain decrease between 0 to 48 h [51,55] and one RCT from 4 to 48 h [52].

A number of RCTs (16) did not show however any efficacy of Mg on pain [36,38,
42,44,50,56,57,61,62,66,70,72,73,75,77,81]. Six intravenous Mg sulphate regimens ranging
from non-bolus infusion to 50 mg/kg bolus followed by infusion showed no efficacy on
pain. Concerning RCTs without bolus administration, four RCTs were negative with an
infusion of 5 mg/kg during surgery in 60 subjects [36], with an infusion of 50 mg/kg during
surgery in 50 subjects [44] and 75 subjects [38], and with an infusion of 150 mg/kg during
surgery [42]. Concerning bolus administration of 50 mg/kg, five RCTs showed no efficacy
on reduction of post-operative pain: two RCTs with an infusion of 8 mg/kg/h in 46 [62]
and 60 subjects [61], one RCT with an infusion of 10 mg/kg/h for 24 h in 40 subjects [57]
and two RCTs with an infusion of 15 mg/kg/h in 58 subjects [50] and 62 subjects [56]
over 24 and 72 h. With a 40 mg/kg bolus followed by a 10 mg/kg/h infusion, no pain
improvement was observed over 24 h in 40 subjects [66]. Furthermore, four RCTs did not
show any difference in the progression of pain: for a bolus administration of 30 mg/kg
of Mg sulphate followed by an infusion of 6 mg/kg/h over 120 min in 42 subjects [75], or
by an infusion of 10 mg/kg/h in 84, 96 or 100 subjects [70,72,73]. Another RCT did not
show efficacy in reducing pain over 5 days of 20 mg/kg Mg sulphate bolus followed by
an infusion of 10 mg/kg/30 min during surgery in 24 subjects [77]. Finally, a 4 g bolus in
200 subjects gave negative results [81] (Table 1).

Table 1. Randomised clinical trials evaluating the effect of intravenous magnesium sulphate on pain and analgesics
consumption compared to controls in different pain situations. Studies are versus (vs.) placebo, double-blind and in parallel
groups unless specified. “ND”: not determined; * not double-blind; CrO: cross-over. The bolus corresponds to the first
post-operative injection, followed by an infusion according to the protocol. Negative studies are with a grey highlight.

Indications Authors n
Mg

Pain Diminution Analgesics Consumption Diminution
Bolus Infusion

Post-surgery
Pain

[33] 100 / 30 mg/kg * p < 0.05 p < 0.05

[34] 40 / 15 mg/kg/h p = 0.0001 p = 0.0001

[35] 60 / 8 mg/kg/h p < 0.01 p < 0.01
/ 7.5 mg/kg * p < 0.05 p < 0.001

[36] 60
/ 5 mg/kg p > 0.05 p > 0.05

[37] 24 / 50 mg/kg–30 min p < 0.05 p < 0.05
[38] 75 / 50 mg/kg–30 min * p > 0.05 p < 0.05
[39] 70 / 50 mg/kg–30 min ND p < 0.001

[40] 30 / 50 mg/kg–20 min ND p < 0.001

[41] 50 / 50 mg/kg–15 min p < 0.05 p < 0.001
[42] 60 / 150 mg * p > 0.05 p > 0.05
[43] 38 / 65 mg/kg p < 0.001 ND
[44] 50 / 50 mg/kg p > 0.05 p < 0.01
[45] 40 / 50 mg/kg p < 0.05 p = 0.0001

[46] 57 / 50 mg/kg p = 0.034 p = 0.043

[47] 83 / 50 mg/kg p < 0.05 p > 0.05

[48] 120 / 30 mg/kg ND p < 0.001

[49] 120 50 mg/kg 25 mg/kg/h p < 0.05 p < 0.001
[50] 58 50 mg/kg 15 mg/kg/h p > 0.05 p > 0.05
[51] 40 50 mg/kg 15 mg/kg/h * p < 0.001 p < 0.001
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Table 1. Cont.

Indications Authors n
Mg

Pain Diminution Analgesics Consumption Diminution
Bolus Infusion

[52] 50 50 mg/kg 15 mg/kg/h p = 0.011 p = 0.005

[53] 74 50 mg/kg 15 mg/kg/h p = 0.009 ND

[54] 50 50 mg/kg 15 mg/kg/h p < 0.05 p = 0.07

[55] 44 50 mg/kg 15 mg/kg/h p = 0.001 p = 0.014
[56] 62 50 mg/kg 15 mg/kg/h p > 0.05 p = 0.042
[57] 40 50 mg/kg 10 mg/kg/h p > 0.05 p > 0.05
[58] 60 50 mg/kg 10 mg/kg/h p < 0.05 p < 0.006

[59] 30 50 mg/kg 8 mg/kg/h p < 0.0001 p < 0.05

[60] 120 50 mg/kg 8 mg/kg/h ND p < 0.05
[61] 60 50 mg/kg 8 mg/kg/h p > 0.05 p < 0.05
[62] 46 50 mg/kg 8 mg/kg/h p > 0.05 p < 0.05
[63] 50 50 mg/kg 8 mg/kg/h p < 0.05 ND

[64] 48 50 mg/kg 500 mg/h p < 0.05 p = 0.0002

[65] 80 40 mg/kg
20 mg/k/h ND p < 0.001

10 mg/kg/h ND p < 0.001
[66] 40 40 mg/kg 10 mg/kg/h p > 0.05 p = 0.52
[67] 60 40 mg/kg 10 mg/kg/h p = 0.024 p = 0.048

[68] 80 30 mg/kg 20 mg/kg/24 h p = 0.001 p = 0.001

[69] 50 30 mg/kg 10 mg/kg/h * p < 0.05 p < 0.05
[70] 96 30 mg/kg 10 mg/kg/h p > 0.05 p > 0.05
[71] 70 30 mg/kg 10 mg/kg/h p < 0.001 p < 0.001
[72] 100 30 mg/kg 10 mg/kg/h p = 0.29 ND
[73] 84 30 mg/kg 10 mg/kg/h p > 0.05 p > 0.05
[74] 294 30 mg/kg 9 mg/kg/h p < 0.0001 p < 0.0001
[75] 42 30 mg/kg 6 mg/kg/h p > 0.05 p < 0.05
[76] 40 30 mg/kg 500 mg/h p < 0.05 p < 0.05

[77] 45 20 mg/kg
10 mg/kg–30 min *

vs. fentanyl and
ketamine

p > 0.05 p > 0.05

[78] 74 20 mg/kg 20 mg/kg/h p = 0.005 p = 0.001

[79] 36 20 mg/kg 2 mg/kg/h p < 0.01 p = 0.001

[80] 108 250 mg 20 mg/kg/h p = 0.001 p = 0.033

[81] 200 4 g / p > 0.05 p > 0.05

Renal Pain

[82] 87 / 50 mg/kg p = 0.232 ND

[83] 80 / 50 mg/kg–20 min
vs. morphine p > 0.05 ND

[84] 96 /
15 mg/kg–15 min

vs. standard
treatment

p < 0.05 ND

[85] 100 / 15 mg/kg–15 min p = 0.001 p = 0.043

[86] 90 / 2 cc–15 min
vs. morphine p = 0.799 ND



Nutrients 2021, 13, 1397 6 of 16

Table 1. Cont.

Indications Authors n
Mg

Pain Diminution Analgesics Consumption Diminution
Bolus Infusion

Migraine

[87] 70 / 2 g–10 min *
vs. caffeine p < 0.05 ND

[88] 157 /

2 g–20 min
vs.

prochlorperazine/
metoclopramide

p > 0.05 p > 0.05

[89] 42 / 2 g–10 min p = 0.63 ND

[90] 36 /
2 g–10 min

vs.
prochlorperazine

p > 0.05 p > 0.05

[91] 113 / 2 g–10 min p > 0.05 p < 0.05

[92] 70 /
1 g–15 min

vs. dexamethasone/
metoclopramide

p < 0.0001 ND

[93] 30 / 1 g–15 min * p < 0.0001 ND
[94] 44 2 g / p > 0.05 p > 0.05
[95] 60 1 g / p < 0.05 p < 0.05

Chronic Pain

[96] 7 / 30 mg/kg–30 min;
CrO p = 0.016 ND

[15] 60 / 3 g–30 min; CrO p = 0.296 ND
[97] 80 / 1 g–4 h p = 0.034 ND

[18] 10 0.16
mmol/kg 0.16 mmol/kg/h p = 0.084 ND

In renal pain, 5 double-blind RCTs [82–86] included patients receiving an infusion of
15 mg/kg of Mg sulphate versus NSAIDs (Non-steroidal anti-inflammatory) [84] or versus
a reference treatment (0.1 mg/kg of morphine + 30 mg of ketorolac [85]); patients receiving
50 mg/kg Mg sulphate during surgery [82] or 50 mg/kg Mg sulphate during 30 min [83];
and those receiving 2 cc of Mg sulphate during 15 min [86] (n = 453). Among these studies,
two RCTs showed the efficacy of Mg on pain reduction using VAS at 30 and 60 min [84,85]
(Table 1).

In migraine, 18 RCTs explored pain evolution with Mg: nine RCTs studied the effective-
ness of the intravenous (IV) Mg sulphate [87–95] and nine RCTs studied the effectiveness of
oral Mg on headaches [98–106] (n = 1248). Nine RCTs studied the effects of IV Mg sulphate
on pain reduction in migraine (n = 622). Four RCTs showed a positive effect of Mg in reduc-
ing pain. A significant reduction in pain after 2 h (VAS baseline: 8; VAS 2 h: 0) in 70 subjects
following IV administration of 2 g Mg sulphate versus 60 mg IV caffeine [87] was observed.
Shahrami et al. showed a significant pain reduction over 2 h after IV administration of
Mg sulphate dosed at 1 g in 100 mL saline, in 70 subjects (VAS baseline: 8/10; VAS at 2 h:
0.66) [92]. A significant pain diminution for subjects with migraine and aura at 1 h follow-
ing administration of 1 g Mg sulphate in 60 subjects (VAS Mg: 4/10; placebo: 6/10) [95]
was observed. Demirkaya et al. showed using a qualitative pain scale the beneficial effects
of IV supplementation of 1 g Mg sulphate versus placebo in 30 subjects over 2 h [93]. Five
RCTs did not show a decrease in pain following IV Mg sulphate administration in migraine
headaches [88–91,94]. No reduction in pain was obtained following administration of 2 g
IV Mg sulphate in 42 subjects [83]. Ginder et al. showed no significant effect of 2 g Mg
sulphate IV in 36 subjects over 4 h [90]. Corbo et al. did not show any beneficial effect of
2 g IV Mg sulphate associated with metoclopramide versus metoclopramide and placebo
in 44 subjects over a 24-month follow-up (mean change VAS from baseline to final: VAS
Mg: 55/100 ± 32 versus VAS Placebo: 71/100 ± 27) [94]. Cete et al. showed no significant
effect of 2 g Mg sulphate on pain reduction measured with VAS at 0, 15 and 30 min in
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113 subjects [91]. Furthermore, Kandil et al. reported no significant difference in pain
reduction between magnesium, metoclopramide and prochlorperazine [88].

Concerning the nine RCTs evaluating the effect of oral magnesium on headache
(n = 626), three double-blind RCTs in crossover [98] or parallel arms [99,100] (n = 148)
showed a reduction in migraine pain intensity as measured by the Total Bread Index (TBI)
(−55 points at 2 months) [99], Headache Impact Test-6 (HIT-6) (−16 points at 24 weeks) [98],
and VAS (−3.57 at 12 weeks and −4.5 at 24 weeks) [99,100]. These studies used 500 mg of
Mg oxide over 24 weeks [98], 360 mg of Mg pyrrolidone carboxylic acid over 2 months [100]
and 600 mg of Mg citrate over 3 months [99]. Five double-blind RCTs (out of 9) in
crossover [98], parallel arms [99–101] or open label design [102] (n = 279) showed a decrease
in migraine frequency in the Mg-treated groups (−4.4 ± 1.7 days on 6 months) [98–102] for
360 mg of Mg pyrrolidone carboxylic acid over 2 months [100], 4500 mg of Mg pidolate [102]
and 600 mg of Mg citrate [99] over 3 months, 9 mg/kg of Mg oxide over 16 weeks [101]
and 500 mg of Mg oxide over 24 weeks [98]. A single-blind clinical trial in parallel groups
showed a significant reduction in migraine frequency per day with magnesium oxide
500 mg supplementation in 139 subjects over 12 weeks [103]. Two double-blind RCTs
(out of 9) in crossover [98] or parallel arms [99] (n = 103) showed a decrease in migraine
duration in the Mg group from 49 h to 16 h over 24 weeks [98,99] with 600 mg of Mg citrate
over 3 months [99] and 500 mg of Mg oxide over 24 weeks [98]. Three RCTs (out of 9)
gave negative results on the effect of oral magnesium on headaches [104–106] (n = 208).
Among these three RCTs, two did not show any significant effect of Mg in reducing pain
at 12 weeks [104,105] (n = 109) with a supplementation of 600 mg of Mg dicitrate over
12 weeks [104] and 242 mg of Mg u-aspartate-hydrochloride-trihydrate over 12 weeks [105].
Maizels et al. showed no effect on the number of migraine days following magnesium
oxide 300 mg supplementation in 99 subjects over 3 months [106] (Figure 2).

In chronic pain (Neuropathic Pain and Complex Regional Pain Syndrome (CRPS)), six
double-blind RCTs in crossover [15,96] or parallel arms [18,97,107,108] studied the impact
of Mg (n = 232). They used different Mg dosages (30 mg/kg Mg sulphate for 30 min [96];
bolus of 0,16 mmol/kg of Mg chloride followed by an infusion of 0,16 mmol/kg/h of
Mg chloride [18]; 1 g Mg sulphate in 250 mL saline 0.9% over 4 h every day for 2 week
and then 400 mg Mg oxide + 100 mg Mg gluconate orally twice daily during 4 weeks [97];
6 × 419 mg Mg chloride per day for one month [108]; 0.5 mg/kg ketamine + 3 g of Mg
sulphate over 30 min once [15] and 1000 mg of intramuscular Mg sulphate in week 1,
1500 mg in week 2 and 2000 mg in week 3 [107]). Two studies showed a reduction of
pain using VAS at 20, 30 min [96] and at 6 weeks [97] after intravenous [96,97] or oral [97]
administration of Mg (n = 87). Four studies did not show any pain reduction [15,18,107,108]
(n = 145).

In fibromyalgia, 2 RCTs explored the effectiveness of oral magnesium (n = 60) [109,110]:
the first RCT was a randomized, double-blind, placebo-controlled, crossover study for
a 2-month period with a low fixed dosage, and subsequent trial was a 6-month open-
label, escalated dosage trial. The patients took three tablets of Mg malate twice daily
and increased their dosage every 3–5 days until they experienced acceptable outcomes
or related side effects for a 6-month period (n = 20) [109]. In the second RCT, 3 parallel
groups of treatment have been compared: Magnesium citrate (300 mg/day), amitriptyline
(10 mg/day) and amitriptyline (10 mg/day) + magnesium citrate (300 mg/day) for 8 weeks.
This trial showed a reduction of the number of tender points (from 15.2 to 11.7 points), the
tender point index (from 27 to 19.4 points), depression level (from 12.9 to 8 points) and
fibromyalgia impact questionnaire score (from 35.4 to 23.6 points) with Mg treatment for
8 weeks (n = 40) [110] (Figure 2).
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Figure 2. Oral magnesium in several pain situations. In green, significant reduction of pain; in
orange: no significant improvement of pain. NP: Neuropathic Pain; F: Fibromyalgia; M: Migraine.

3.2. Magnesium and Analgesics Consumption

Concerning the impact of Mg on analgesics consumption, 45 RCTs out of 49 in post-
operative pain reported the analgesics required during the study after surgery [33–42,44–
52,54–62,64–71,73–81], (n = 3146); 36/45 RCTs showed a significant decrease in analgesics
consumption in post-operative pain after Mg treatment compared to placebo or conven-
tional treatment group with a large panel of drugs: (morphine [35,41,42,49,51,52,54,56–
58,61,64–70,76–79,81] fentanyl [44,46,50,62,73,75,81], tramadol [36,38–40,46,47,73,80] pethi-
dine [34,45,59,71,74] diclofenac [33,36,81], desflurane [67], piritramide [37], metamizol [36],
propofol [48,67] and ketorolac [46,51,52]). However, 11 RCTs showed no significant dif-
ference in analgesics consumption after treatment with Mg (morphine [54,57,66,70,77,81]
fentanyl [50], tramadol [36,47,73], coproxomal [81] and meperidine [63]) (Table 1). In mi-
graine, two RCTs showed the impact of Mg supplementation on the reduction of analgesics
consumption [91,95] (n = 173). In renal colic, only one RCT reported a significant decrease
of morphine consumption in the Mg group compared to placebo [85].

3.3. Bioavailability of Magnesium Salts

This review explored also publications on the bioavailability of the different Mg
salts in order to identify specificities among pharmaceutical preparations. A number
of publications have studied 17 Mg salts in preclinical and clinical conditions [111–118].
Comparison of the oral bioavailability and absorption of different pharmaceutical forms
of inorganic and organic Mg salts has been explored in 5 RCTs [113–117] (Table 2). These
publications show that Mg citrate is more bioavailable than Mg oxide [113,114], and that
Mg oxide or chloride with a specific matrix [115,116] or when combined with other salts
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has a better bioavailability [117]. Apart from these 5 RCTs, there is, however, no large scale
trial comparing organic and inorganic salts. Furthermore, no study compared head to head
Mg pharmaceutical forms on efficacy and safety in pain conditions.

Table 2. Magnesium bioavailability in randomised clinical trials comparing inorganic and organic salts in healthy volunteers
(n = number). DB: double-blind; P: parallel; CrO: cross-over.

Authors n Type of
Study

Inorganic
mg Salts

Organic
mg Salts

Combination
of mg Salts Conclusions

[113] 17 P
mg oxide (60% mg

element:
15 mmol)

mg citrate
(16% mg element:

4 mmol)
/

mg citrate is more soluble
than mg Oxide in water (55%

vs. 0.8%, p < 0.05), less
ph-dependent with lesser

ionic concentrations.

[114] 46 DBP mg oxide (60% mg
element: 180 mg)

mg citrate (16% mg
element: 48 mg); mg
amino-acid chelate:

300 mg
(% mg element: ND)

/
mg citrate then amino-acid

chelate are more bioavailable
than mg oxide (p < 0.02).

[115] 10 DBCrO

mg oxide
(60% mg element:

210 mg)/Mg oxide with a
sucrester matrix (210 mg)

mg citrate (16% mg
element: 56 mg); mg
bisglycinate (20% mg

element: 70 mg)

/
mg oxide with a sucrester
matrix has a higher mg

bioavailability (p < 0.05).

[117] 20 DBCrO

mg oxide (60% mg
element: 241.3, 300, 400,

450, 500 mg); mg
carbonate (40% mg

element: 100 mg); mg
chloride (12% mg element:

71.5 mg)

mg citrate (16% mg
element: 19 mg; 100

and 200 mg)

mg oxide (60% mg
element: 149 mg) +
glycerophosphate

(12.37% mg element:
47 mg); mg citrate

(16% mg element) + mg
bis hydrogen-L-glutamate

(Mg element: ND):
40 mg; mg orotate

dihydrate: 32.8 mg (% mg
element: ND); mg

glycinate lysinate chelate
(20% mg element: 100 mg)

Higher bioavailability
when mg oxide is combined

(p < 0.005)

[116] 20 CrO

mg chloride with a novel
matrix: 100 mg mg

element) vs. mg carbonate
(3 × 100 mg mg element)

/ /
mg chloride with a novel

matrix has a better
bioavailability

4. Discussion

This literature review aimed at evaluating how Mg may relieve pain. Pain is a
complex phenomenon and different types of pain have been described, including somatic,
complex, or psychogenic, idiopathic, or acute, chronic, or nociceptive, neuropathic and
nociplastic [119]. All types of pain have been selected in this review according to an
adequate RCT methodology. Hence, RCTs on somatic (post-operative pain) and complex
pain (renal colic, chronic pain, migraine and fibromyalgia) have been explored. The
number of RCTs amounts only to 81, 45 RCTs for effectiveness on pain and 40 for analgesics
diminution. Collective results show a modest effect of Mg in a majority of studies and this
review stresses a number of gaps.

First, there is a large heterogeneity concerning the methodologies used in the different
trials. Different pathologies, missing information on patients disease, different Mg chemical
forms or different settings have been chosen. Several routes of administration have been
used, intravenous or oral intake, making comparisons difficult. Several pathologies have
been treated and evaluation tools differed between studies and across the same pathology.
A total of 8 chemical forms out of the 17 forms tested for bioavailability have been used
and numerous intravenous (28) and oral (11) Mg dosages have been administered.

Concerning the management of post-operative pain, no universal dosage has been
defined for the use of Mg sulphate. The 39 different Mg dosages used for pain alleviation
in the RCTs of this review are far above the dosage of Mg sulphate commonly used in
current practice (the most frequent in RCTs being 30 mg/kg bolus followed by an infusion
of 10 mg/kg/hour). The wide variety of dosage regimens in the administration of Mg
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sulphate in post-operative pain and the controversial results in terms of its effectiveness in
reducing pain (66% of RCTs show a reduction in pain) and in the consumption of analgesics
(73% of RCTs show a reduction in analgesics) do not allow us to draw conclusions about a
universal reference dosage for this indication. Clinical trials aimed at defining an optimal
dosage of Mg sulphate in post-operative pain are needed.

In post-surgery, opioids are largely used and have adverse effects well described in the
literature such as nausea, vomiting, constipation and addiction [120]. In addition to these
adverse events, paradoxical hyperalgesia may be triggered and NMDAR antagonists may
have a beneficial role to play in this situation [121]. A decrease in analgesics consumption
with Mg-based treatment in post-operative pain has been observed in many trials. Mg
appears to be a good non-drug alternative for reducing post-operative pain by limiting the
side-effects of commonly prescribed opioids, but this aspect needs to be explored further.

A recurrent question concerns the best choice of Mg pharmaceutical form and Mg
dosage for pain alleviation. While Mg sulphate is commonly used intravenously, bioavail-
ability studies recommend the use of second- (e.g., gluconate, citrate, lactate, pidolate,
L-aspartate) and third-generation (e.g., glycerophosphate and bisglycinate) Mg salts com-
pared to the first generation (e.g., carbonate, chloride and oxide), but RCTs vary in Mg
dosages and duration, making it difficult to identify a reference salt and an optimal duration
of Mg supplementation.

In the case of other pathologies, 44% of RCTs in migraine, 40% in renal pain and 50%
in chronic pain observed significant reductions in pain following Mg treatment. Despite
encouraging results in migraine and renal colic pain, RCTs exploring the efficacy of Mg
on such different pain situations are still seldom. Moreover, the use of different dosages
and treatment durations of oral Mg in migraine and of intravenous Mg in renal colic pain
do not allow us to conclude on a reference dosage. Additional clinical trials are needed to
support the efficacy of Mg in these types of pain.

The Food and Drug Administration (FDA) recommends a daily oral Mg intake of
around 400 mg for a man and 310 mg for a woman between 19 and 30 years old [122].
Oral Mg supplements used in the management of pain such as migraine, fibromyalgia,
chronic pain and neuropathic pain are in accordance with minimum FDA recommendations
with the exception of 2 RCTs [105,109]. Indeed, while studies on the bioavailability of the
different generations of Mg salts recommend second and third generation salts, results show
the good efficacy of Mg oxide [98,99,101,109] but failure in pain alleviation with second
generation salts [104,105]. Our review on bioavailability, focused on RCTs, identified
5 RCTs that stress the superiority of Mg citrate or Mg oxide with novel matrices. The
superiority of a pharmaceutical form would need further studies, as there are no head to
head studies evaluating the efficacy of Mg. All the more that improved bioavailability
does not allow to extrapolate to an improved efficacy unless it is demonstrated. For oral
administration, as for intravenous administration, there are contested results, and only 9
RCTs with 7 different pharmaceutical forms. Clinical trials testing different generations of
Mg salts at recommended FDA dosages are necessary to determine whether differences in
efficacy occur depending on the generation used.

There are also gaps in the literature concerning the use of Mg in major public health
diseases that commonly generate pain. More information is needed on cancer pain, fi-
bromyalgia, CRPS and rheumatic diseases. For example, osteoporosis mainly affects
postmenopausal women and concerns 40 millions in the USA [123]. It is a pathology that
reduces bone mass, resulting in an increased risk of fracture frequently associated with
significant pain and suffering [124]. In addition, the literature describes a link between
low plasma Mg levels and the onset of osteoporosis [125]. Due to its involvement in tissue
structure at the level of hydroxyapatite crystals, Mg seems to be effective in reducing the
onset of osteoporosis [126]. To date, there is no randomised clinical trial evaluating the link
between Mg supplementation and osteoporosis in the literature.

Another observation is that Mg may have different modes of action in acute and
chronic pain situations. LTP follows two stages after a nociceptive stimulus: an initial
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and a later stage, and the NMDAR is fully involved [127] as a modulator of LTP devel-
opment [128]. The inhibition of NMDAR is one of the keys to blocking LTP. NMDAR
antagonists like Mg may not only cure but also prevent the development of central sensiti-
zation [129,130], a very important aspect of 4P Medicine. However, available RCTs do not
include a long follow-up period after surgery to identify if Mg could have an impact on the
prevention of central sensitization. This needs to be addressed in future studies.

Finally, there is also a need to focus on comorbidities that always accompany pain,
like fatigue, stress, anxiety and depression. Studies conducted on the use of Mg in chronic
stress have shown satisfactory results [5]. Stressed subjects show a decrease in their level
of stress following various oral supplements (192 mg Mg lactate over 3 and 6 weeks [7];
300 mg Mg oxide over 4 and 8 weeks [11] and 75 mg Mg over 12 weeks [131]). In addition,
Mg supplementation of 400 mg promotes a better physiological regulation of sympathetic
and parasympathetic efferent as measured by a heart rate variability test in stressed
subjects [132]. Several ongoing clinical trials tackle pain alleviation by addressing the
impact of Mg on stress in painful patients. An ongoing RCT, Semafor (NCT0388700)
explores stress, pain and sleep in fibromyalgia patients, focusing on the central role of Mg
in the vicious circle of stress and pain [5]. Another ongoing RCT, Magritte (NCT04391452),
is studying the impact of a Mg-based dietary supplement on stress, pain and comorbidities
with a double approach, clinical and mechanistic with functional magnetic resonance
imaging (fMRI) neuroimaging. These studies aim at deciphering the ubiquitous mode of
action of Mg in pain and stress, and its pivotal position in improving, beyond pain, the
quality of life of vulnerable patients.

5. Conclusions

Collective data on the management of pain with Mg are modest and controversial,
and underline the need for recommendations on Mg dosages in post-surgery, in chronic
pain, intravenously or orally, for patients in hospital or in the community wishing to
start supplementation. Additional clinical trials are needed to achieve a sufficient level of
evidence about the efficacy of the different available Mg pharmaceutical forms. Beyond
pain, Mg with its physiological NMDAR antagonism, with its pivotal place as a mediator
in pain comorbidities, and complex mechanism of action, appears as a valuable non-drug
approach to be explored further in order to optimise the quality of life of patients in pain.
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