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Spontaneous formation of gold nanoparticles
on MoS2 nanosheets and its impact
on solution-processed optoelectronic devices

Kenneth Lobo,1,2 Vijaya Kumar Gangaiah,1 Harsha Priya,1 and H. S. S. Ramakrishna Matte1,3,*

SUMMARY

Understanding size-dependent properties of 2Dmaterials is crucial for their opti-
mized performance when incorporated through solution routes. In this work, the
chemical nature of MoS2 as a function of nanosheet size is investigated through
the spontaneous reduction of chloroauric acid. Microscopy studies suggest
higher gold nanoparticle decoration density in smaller nanosheet sizes, resulting
from higher extent of reduction. Further corroboration through surface-
enhanced Raman scattering using the gold-decorated MoS2 nanosheets as sub-
strates exhibited an enhancement factor of 1.55 3 106 for smaller nanosheets
which is 7-fold higher as compared to larger nanosheets. These plasmonic-semi-
conductor hybrids are utilized for photodetection, where decoration is found
to impact the photoresponse of smaller nanosheets the most, and is optimized
to achieve responsivity of 367.5 mAW-1 and response times of �17 ms. The
simplistic modification via solution routes and its impact on optoelectronic prop-
erties provides an enabling platform for 2D materials-based applications.

INTRODUCTION

Two-dimensional (2D) materials have been emerging to the forefront for numerous enticing applications.

This large family of materials is found to be versatile and diverse in properties, encompassing interesting

materials such as topological insulators, semiconductors, and superconductors (Choudhary et al., 2017; Lu

et al., 2019; Sun et al., 2011; Teweldebrhan et al., 2010). Semiconducting 2D materials like transition metal

dichalcogenides have shown promise for several applications in memory and computing circuits, and for

optoelectronic devices such as photodetectors, light-emitting devices, and solar cells (Dathbun et al.,

2017; Huh et al., 2020; Jariwala et al., 2014; Tsai et al., 2014; Wang et al., 2012a, 2012b). The vast scope

for their applicability and possible commercialization mandates the need to produce high-quality 2D ma-

terials in large quantities. Among synthetic protocols, solution routes offer significant advantages through

scalability, ambient processability, speedy, and additive manufacturability, and are less demanding

compared to traditional techniques (Bonaccorso et al., 2016; Hassan et al., 2020; Nicolosi et al., 2013; Varrla

et al., 2015). In this regard, the protocol of liquid-phase exfoliation has enabled the processing of numerous

2D materials (Bellani et al., 2021; Bonaccorso et al., 2016; Cao et al., 2016; Coleman et al., 2011; Ma and

Sasaki, 2015). Detailed investigations have probed the underlying aspects of solvent suitability, and sug-

gest a predominant role of Hansen solubility parameters and surface tension components to enable stable

and concentrated nanosheet dispersions (Coleman et al., 2011; O’Neill et al., 2012; Wang et al., 2017; Zhou

et al., 2011). These insights have enabled the production of dispersions in suitable organic solvents and

mixed-solvent systems. Aqueous dispersions have also been produced, most often through the use of ad-

ditives such as surfactants in order to obtain stability (Guardia et al., 2014; Lotya et al., 2009; Maleski et al.,

2017; McManus et al., 2017).

An inherent attribute of liquid-exfoliated nanosheets is the large polydispersity in size, both in lateral di-

mensions and in number of layers. The physiochemical properties of 2D materials have been found to be

highly size dependent, thus making it vital to address the polydispersity in liquid-exfoliated nanosheets.

For example, addition of larger nanosheets as fillers has been shown to exhibit enhanced mechanical

properties in polymer nanocomposites when compared to smaller nanosheets (O’Neill et al., 2012). Simi-

larly, the electrocatalytic activity in hydrogen evolution reaction is found to increase with decreasing flake

size (Harvey et al., 2015; Seo et al., 2015; Varrla et al., 2015; Wang et al., 2013). In photodetectors, the
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density of trap states in networks of interconnected nanosheets has been found to be dependent on

nanosheet size, in turn having an impact on the device response time (Alzakia et al., 2020b). Thus, gain-

ing an understanding into size-dependent properties is crucial for the optimal applicability of 2D mate-

rials through solution routes. To narrow down polydispersity, various centrifugation-based separation

protocols have been devised, with liquid cascade centrifugation being simple and high-throughput in

nature (Backes et al., 2014, 2019; Kang et al., 2014; Ogilvie et al., 2019).

Aqueous dispersions offer several obvious advantages in processing, although the use of stabilizing addi-

tives could have detrimental effects on properties such as conductivity (Secor et al., 2013, 2015). In this re-

gard, aqueous additive-free dispersions hold vast potential for a diverse variety of applications, especially

those involving biological systems (Kaur et al., 2018; Lobo et al., 2021). In addition to this,

aqueous dispersions enable suitable modification of nanosheets for application-tailored properties (Ma

et al., 2020). Similarly, modification of 2D materials using other nanomaterials has also been evaluated

and is found to synergistically augment their capabilities. Of special interest are 2D material systems

with noble metal nanoparticles to form hybrids. Such modification could have interesting implications

through the introduction of phenomena, such as enhanced light absorption through plasmonics (Tu and

Wu, 2021; Yin et al., 2014), and better electron transport through efficient charge transfer and increased

conductivity (Goswami et al., 2019). To synthesize such systems, several approaches have beenmade. Phys-

ical deposition approaches such as sputtering have been used, although this method is limited to coating

prefabricated films of 2D materials on substrates (DiStefano et al., 2020; Li et al., 2020b; Rahmati et al.,

2019). Direct addition of nanoparticles is another adopted route, although the process for first growing

such nanoparticles forms a separate synthesis step and involves the use of reducing agents (Pramanik

et al., 2019). In this regard, transition metal dichalcogenides possess a rich chemistry, which enables

them to reduce metal precursors such as HAuCl4, resulting in Au nanoparticle decoration through solu-

tion-processable protocols (Grieger et al., 2020; Kim et al., 2013; Polyakov et al., 2014). The spontaneity

of this reduction reaction arises from the intrinsic chemical nature of the nanosheets and effectively by-

passes the need for additional synthetic processes and associated use of chemicals. For example, the

extent of HAuCl4 reduction has been shown to be influenced by the phase of MoTe2 nanosheets obtained

from chemical vapor deposition with the 1T0 phase being more energetically favorable, while the dechlo-

rination on 2H-MoTe2 occurs favorably only on defect sites (Tao et al., 2021). Other 2D materials such as

GaTe obtained from micromechanical cleavage have also demonstrated spontaneous reducing ability

leading to Au nanoparticle decoration and has been attributed to monoclinic structure and defects (Lu

et al., 2018). Given the tremendous influence Au nanoparticle decoration could have on properties of semi-

conducting transition metal dichalcogenide nanosheets, this simplistic synthetic protocol could have a lot

to offer. The extent of such implications on the properties of 2Dmaterials leverages the need to understand

the factors of control, in order to develop suitable methods to obtain such hybrids. Although a variation in

chemical properties based on nanosheet size is known to occur, its influence on such spontaneous reduc-

tion reactions remains unexplored and draws interest, given the scope for tunability in properties through

optimal modification with noble metal nanoparticles.

In this work, we explore the ability to suitably modify MoS2 nanosheets by carrying out spontaneous reac-

tions in an aqueous surfactant-free media. The role of nanosheet size on the chemical activity is probed

through the reduction of HAuCl4 to Au nanoparticles by MoS2. Size-selected nanosheets were systemati-

cally reacted with different amounts of Au precursor without the need for additional reducing agents, and

the extent of Au nanoparticle decoration was investigated using transmission electron microscopy. A

higher coverage of the nanosheets with the Au nanoparticles was observed in smaller MoS2 nanosheets,

and could be resulting from their relatively higher defect density. To support these observations, the deco-

rated MoS2 nanosheets have been used as substrates in surface-enhanced Raman scattering and the

enhancement factors were found to increase with decreased nanosheet size reaching 1.55 3 106. In

addition to this, the role of nanoparticle decoration on light-matter interactions in this plasmonic-semicon-

ductor Au-MoS2 system is evaluated in the domain of optoelectronics using solution-processed photode-

tectors. Significant enhancements in photoresponse were observed with increasing Au decoration, espe-

cially in the case of smaller nanosheets. Optimal Au loading was achieved simply by dipping MoS2-coated

devices in HAuCl4, and the fabricated devices exhibited responsivity up to 367.5 mAW-1, with a rise and

decay time of �17 ms. This simplistic protocol powered by the intrinsic size-dependent chemical nature

of liquid-exfoliated nanosheets provides a design factor for precise tailoring of light-matter interactions

in 2D materials.
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RESULTS AND DISCUSSIONS

To investigate the implications of nanosheet dimensions on their chemical reactivity in the spontaneous

reduction of HAuCl4, obtaining nanosheets of well-defined size is crucial. Here, size selection was carried

out by a cascaded centrifugation protocol. The resulting sediments fractionated at successively higher

centrifugation speeds from such protocols are shown to systematically decrease in lateral dimensions

and thickness (Backes et al., 2016a, 2016b, 2016c, 2017).

To determine the dimensions of the size-selected nanosheets, various methods were employed. Figure 1A

shows the x-ray diffractogram of nanosheets obtained at successively progressing sedimentation speeds

from 1.2 krpm to 5 krpm. The intensity of the (002) reflection of MoS2 appearing at�14.4� is found to reduce

relative to other characteristic material peaks and increase in full-width at half maximum (Figure S1), which

further indicates a reduction in nanosheet thickness separated at higher centrifugation speeds. The extinc-

tion spectra of MoS2 as shown in Figure 1B contain characteristic peaks from exciton transitions arising from

splitting of the valence band at the high symmetry point. This, along with the Raman spectra (Figure S2) in-

dicates retention in the chemical nature ofMoS2 after exfoliation and re-dispersion in water. Through exten-

sive experimental corroborations between UV-visible spectroscopy and atomic force microscopy, the
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Figure 1. Characterization of size-selected aqueous MoS2 nanosheet dispersions

(A) X-ray diffractograms of MoS2 nanosheets size-selected at various centrifugation speeds.

(B and C) (B) UV-visible extinction spectra of the size-selected dispersions and (C) the double derivative of the A-exciton peak with Lorentzian peak fitting.

(D) Calculated number of layers, as obtained by the position of the A-exciton peak.

(E and F) (E) Statistical histogram of the lateral dimensions of nanosheets obtained between 1.2 and 2 krpm through FESEM image analysis (as pictured in the

inset, scale bar: 500 nm)) and (F) mean hydrodynamic diameter through dynamic light scattering (inset: correlogram).

(G) Comparison of nanosheet lengths as obtained through FESEM statistics and light scattering.
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position of the A-exciton transition (observed at � 670 nm) has been correlated to the number of layers

through an empirical formula (Backes et al., 2014). To determine the number of layers, the double-derivative

of the A-exciton peak with respect to incident wavelength was fitted with Lorentzian profiles, as shown in

Figure 1C. The number of layers obtained by this metric suggested the separation of thick nanosheets be-

tween 1 and 1.2 krpm to comprise �21 layers, subsequently reducing to �17 layers between 1.2 and 2.5

krpm,�14 layers between 2.5 and 3 krpm, and�8 layers between 3 krpm and 5 krpm, as represented in Fig-

ure 1D. A general trend observed in liquid exfoliation is the production of thicker nanosheets with larger

lateral dimensions, which reduce in size as they get thinner. Todetermine the lateral dimensions of the nano-

sheets, field emission scanning electron microscopy (FESEM) image analysis, as well as dynamic light scat-

tering (DLS) were carried out. FESEM images of the size-selected nanosheets were analyzed using ImageJ

software to obtain distribution histograms. For the sample obtained between 1.2 and 2 krpm, the obtained

distribution is as shown in Figure 1E, along with a lognormal fitting. The hydrodynamic diameter inferred

from DLS for this sample is as shown in Figure 1F. Respective plots for the other sizes are represented in

the supporting information (Figure S3). The lateral sizes as determined by FESEM statistics were found to

be 290 G 95 nm (1–1.2 krpm), 217 G 70 nm (1.2–2.5 krpm), 178 G 56 nm (2.5–3 krpm), and 137 G 31 nm

(3–5 krpm). Similarly, by DLS, the hydrodynamic diameters were determined to be 352 nm (1–1.2 krpm),

219 nm (1.2–2.5 krpm), 198 nm (2.5–3 krpm), and 161 nm (3–5 krpm). Shown in Figure 1G are the lateral di-

mensions of the four samples, showing good agreement between both techniques. Thus by using centrifu-

gation based separation protocols in a cascaded sequence, well size-separated dispersions can be ob-

tained with reduced polydispersity. For ease, the samples are hereby referred to as extra-large (XL-MoS2,

1–1.2 krpm), large (L-MoS2, 1.2–2.5 krpm), medium (M�MoS2, 2.5–3 krpm), and small (S-MoS2, 3–5 krpm)

accordingly. In addition to probing size, the zeta potentials of the nanosheets were obtained in aqueous

media (Figure S4). The nanosheets in all samples were found to bear a negative charge which could be

arising from the dangling bonds along the edges, resulting in dispersion stability (Coleman, 2009).

Upon obtaining dispersions with controlled and well-characterized nanosheet size, we carried out Au nano-

particle decoration through a spontaneous reduction of HAuCl4 using MoS2. This reaction is enabled

through a suitable alignment of the energy levels between MoS2 and AuCl4
�, which results in a sponta-

neous electron transfer (Grieger et al., 2020; Kim et al., 2013; Polyakov et al., 2014; Song et al., 2018;

Yuan et al., 2019). As also observed for other 2D materials, the reduction occurs preferably at defect sites

owing to favorable energetics (Lu et al., 2015, 2018; Tao et al., 2021), and results in the growth of Au nano-

particles. Here, we show extensive characterization for the size-selected MoS2 nanosheets. The UV-visible

extinction spectra of MoS2 dispersions when mixed with increasing amounts of HAuCl4 are as shown in Fig-

ure S5, showing a heightening intensity of the Au plasmonic peak around 550 nm, which is red-shifted with

increasing Au concentration. By tuning the reaction concentrations, the plasmonic activity of Au nanopar-

ticles prepared using this method can be suitably tuned (Lin et al., 2020). In order to probe the effect of

nanosheet dimensions on HAuCl4 reduction, the size-selected MoS2 nanosheets were reacted with 2

and 4 equivalents of HAuCl4, taken in equal volumes of 1 mL. The x-ray diffractogram of the decorated

MoS2 nanosheets (obtained by reacting with 4 equivalents of HAuCl4) are as shown in Figure S6, suggesting

crystallinity of the nanoparticles. In the case of XL-MoS2 and L-MoS2, the (002) peak from MoS2 presents

itself along with reflections from the Au lattice. These observations of reducing agent-free crystalline nano-

particle growth on MoS2 nanosheets occur at room temperature and without the use of demanding syn-

thetic conditions, thus strengthening the capabilities of aqueous dispersions in performing modifications.

Transmission electronmicroscopy (TEM) was used to evaluate the decoration density and crystallinity of the

Au nanoparticles grown on the nanosheets. The nucleation and growth of the Au nanoparticles is depen-

dent on the chemical activity of the nanosheets and by the amount of Au precursor available for reaction. In

order to probe the effect of nanosheet size on these aspects, we have analyzed micrographs obtained us-

ing TEM. Shown in Figures 2A and 2B are representative TEM images of the XL-MoS2 nanosheets reacted

with 2 and 4 equivalents of HAuCl4, respectively. Similarly, shown in Figures 2C and 2D are representative

images of S-MoS2 nanosheets decorated under similar concentrations. An increased decoration density

was observed at 4 equivalents as compared to 2 equivalents, which could be due to the higher availability

of Au precursor for the reaction. Similar observations can be made for both XL-MoS2 and S-MoS2 with

respect to the reaction concentrations. On comparing the decoration based on nanosheet size, a much

higher decoration density is found to have occurred in S-MoS2 as compared to XL-MoS2 for both 2 and

4 equivalents of HAuCl4. As HAuCl4 reduction is observed to occur preferentially along edges and defects

(Kim et al., 2013; Polyakov et al., 2014), its higher density in smaller nanosheets could be the driving factor
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for the reaction and subsequent Au nanoparticle decoration. In addition to the decoration density of Au

nanoparticles populating the nanosheets, a further evaluation of the effect of nanosheet dimensions on

nanoparticle size was performed by comparing the statistical histograms of�350 nanoparticles (Figure S7).

The Au nanoparticles grown on XL-MoS2 were found to have a slight increase as reaction concentrations

increased from 2 to 4 equivalents, with mean diameters of 2.35 and 2.67 nm, respectively. As for the

case of S-MoS2, slightly larger Au nanoparticles with a mean diameter of 3.35 nm for 2 equivalents and

3.69 nm for 4 equivalents were found, respectively. In the case of S-MoS2, some large as well as free Au par-

ticles were also observed (Figure S8). Thus, Au nanoparticle decoration on MoS2 nanosheets through the

spontaneous reduction of HAuCl4 is found to be dependent not only on the precursor concentration but

also on the MoS2 nanosheet dimensions, suggesting their size-dependent reducing ability.

Figure 2E shows a representative high-resolution TEM image of Au-decorated MoS2. The crystallinity of Au

nanoparticles (circled in yellow) can be inferred from the periodic spacing which was found to be 0.24 nm, and

can be indexed to the (111) plane. The periodicity in the supportingMoS2 nanosheet can also be seen (as shown

in red)witha spacingof 0.27nm,which canbe indexed to the (100) plane. Thisperiodicity for bothMoS2 andAu is

also observed in the Fourier transformed image (inset) aswell. A processedmagnified inset of the regionmarked

by a square shows the hexagonal lattice formed by the Mo and S atoms. The lattice spacing observed through

high-resolution TEM images is in agreement with the selected area electron diffraction (SAED) and x-ray diffrac-

tion patterns, thereby confirming the crystalline nature of bothMoS2 and the Au nanoparticles. Similar observa-

tions on nanosheet and nanoparticle crystallinity were observed for both investigated nanosheet sizes.

In order to further investigate the extent of Au decoration on the size-selected nanosheets and their impact

on light-matter interactions, we explored the use of the decorated nanosheets as substrates for surface-

enhanced Raman scattering. Plasmonic nanoparticles have been shown to enhance the intensity of Raman

signals, even down to single molecule level by enhancing the local electromagnetic field, while non-plas-

monic semiconducting platforms can also result in enhancements through transitions occurring via charge

transfer (Camden et al., 2008; Lee et al., 2016; Lombardi and Birke, 2012, 2014; Sun et al., 2014). A depen-

dence of phase of the transition metal dichalcogenide has also been shown to dictate the extent of deco-

ration, and also affect the contributions of chemical enhancement (Tao et al., 2021). To investigate the

A B E

C D

Figure 2. Transmission electron microscopy of Au-decorated MoS2 nanosheets

(A–D) Low magnification TEM image of XL-MoS2 nanosheets reacted with (A) 2 equivalents and (B) 4 equivalents, and S-MoS2 nanosheets reacted with (C) 2

equivalents and (D) 4 equivalents of HAuCl4 (Scale bar: 10 nm) respectively along with their electron diffraction patterns (scale bar: 2 nm�1).

(E) High-resolution TEM image of Au nanoparticle (yellow circles)-decorated MoS2 nanosheet (Scale bar: 2 nm), with insets of a magnified processed region

and fast Fourier transform (scale bar: 2 nm�1).
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contrasting decoration densities observed by TEM, the decorated size-selected nanosheets were used as

substrates for SERS with methylene blue dye as a reporter molecule.

The SERS activity of the substrates was evaluated by determining the enhancement factors (EF), and a com-

parison was made between the size-selected nanosheets decorated to different densities. The EF for an

SERS substrate is calculated using the formula,

EF = (ISERS/IRaman) 3 (NRaman/NSERS)

where, ISERS and IRaman represent the intensity of the SERS signal from the reporter molecule on the Au-

MoS2 substrate (taken at a concentration of 10 mM), and the intensity of the reporter molecule powder,

respectively. NRaman and NSERS represent the number of molecules in the powder, and on the SERS sub-

strate under illumination, respectively. Here, the Raman peak at 1624 cm�1 was considered for calculations,

which arise from the stretching of the C-C bonds in the aromatic ring (Nicolai and Rubim, 2003; Xiao and

Man, 2007). Further details regarding the calculation of the EF are provided in the supporting information.

The spectra of methylene blue on various sample substrates are presented in Figure 3A. It was observed

XL L M S
0.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

1.2x106

1.4x106

1.6x106

1.8x106

En
ha

nc
em

en
t F

ac
to

r

Sample

 2 eq.
 4 eq.

400 800 1200 1600

10-9 M
10-8 M

10-7 M

10-6 M

In
te

ns
ity

 (a
.u

.)

Raman shift (cm-1)

10-5 M

10000

1E-9 1E-8 1E-7 1E-6 1E-5
100

1000

10000

In
te

ns
ity

 (a
.u

.)

Concentration (M)

0 10 20 30 40

0.5

1.0

1.5

2.0

0.0

N
or

m
al

iz
ed

 in
te

ns
ity

 (a
.u

)

Site number

RSD = 17.2%

Avg
20%

A B

C D

Figure 3. Au-decorated MoS2 nanosheets as SERS substrates

(A and B) (A) SERS spectra of methylene blue molecule (inset) on substrates of size-selected MoS2 nanosheets reacted with different amounts of HAuCl4, and

the (B) calculated enhancement factors of the respective SERS substrates.

(C) Spectra for different concentrations of the dye on the S-MoS2 (4 eq.) substrates and the calibration plot in the inset.

(D) Normalized intensity plot with the relative standard deviation of the Au-MoS2 substrates in detection of methylene blue.
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that with denser Au nanoparticle decoration, the intensity of the Raman signals was found to be increased.

In addition to this, smaller nanosheets reacted under similar conditions to that of larger nanosheets were

found to have higher intensities. The enhancement factors were calculated, and are as represented in Fig-

ure 3B. For XL-MoS2 (2 eq.), the enhancement factor was calculated to be 2.153 105 (G13 104), while for S-

MoS2 (4eq.) the value was found to be approximately 7 times higher at 1.55 3 106 (G26.9 3 104). S-MoS2
reacted with 2 equivalents had an enhancement factor which is �2.2 times higher than that of XL-MoS2 re-

acted with 4 equivalents. Such enhancement in EF is a result of optimized Au precursor concentration and

the size of MoS2 nanosheets. The EF calculated here through size-selection of MoS2 nanosheets is in par

with previously reported protocols, although to note that it is achieved via an all solution route without

the need for demanding synthetic conditions or chemicals (Chen et al., 2020; Lv et al., 2020; Su et al.,

2014; Tegegne et al., 2020).

The peak intensity for lower concentrations of methylene blue was investigated on the S-MoS2 (4 equiva-

lents) substrates as shown in Figure 3C, and were found to detect concentrations as low as 1 nM. The

dependence of peak intensity on analyte concentration is as shown in the inset of Figure 3C. In order to

find the variation in intensity across various positions on the substrate, multiple areas were probed (40

points). The normalized peak intensity at 1624 cm�1 for all points is as represented in Figure 3D, demon-

strating a relative standard deviation (RSD) of only about 17.2%. In addition, the stability of the Au-MoS2
substrates was also investigated. By comparing freshly prepared substrates to 5-month-old substrates

stored in ambient conditions, the signal intensities were found to be highly reproducible and showcase

the stability of the decorated nanosheets (Figure S9). These observations suggest the plausible usage of

these substrates in analyte detection.

To evaluate the influence of plasmonic noble metal nanoparticles on the semiconducting MoS2 platform,

their applicability in photodetection was studied. The Au decoration was carried out as depicted in the

schematic in Figure 4A. MoS2 dispersions were spray coated onto Au gap electrodes on glass substrates,

which were then dipped into HAuCl4 solution for different intervals of time in order to carry out nanoparticle

decoration. The interest is to obtain high-performance photodetectors with as low Aumetal loading. Opti-

mization of the dipping time is essential to prevent a direct pathway for conduction through interconnected

Au nanoparticles that could result in electrical shorting, while also ensuring as minimal Au metal content as

possible. Presented in Figure S11 are the photoresponses of devices comparing bare MoS2 to those

decorated for 1 and 2 min, for both XL-MoS2 and S-MoS2. Higher dark currents were observed in XL-

MoS2 nanosheet films as compared to S-MoS2 nanosheet films and could possibly be due to the lesser

number of inter-nanosheet junctions in larger nanosheets films (Kelly et al., 2021). Upon illumination, higher

photocurrents were observed in bare XL-MoS2 (18.5 pA) as compared to bare S-MoS2 (3.8 pA). After 1 min

of dipping the XL-MoS2 and S-MoS2 devices, the photocurrent was found to be significantly enhanced to

600 and 352 pA, respectively. However, after 2 min of dipping, XL-MoS2 shows a marginal rise to 619 pA,

whereas S-MoS2 further increased to 676 pA. The improvement in photocurrents seen in S-MoS2
as compared to XL-MoS2 could be a result of the higher reducing ability which leads to denser Au nano-

particle decoration. Therefore, further optimizations with respect to dipping time were carried out with

S-MoS2 alone. It was found that a dipping time of 5 min produced a significant improvement in photocur-

rents, beyond which the performance reduced and could be coming from electron-hole recombination in

the films. The I-V characteristics for S-MoS2 decorated by dipping for 5 min are as shown in Figure 4B.

Significantly higher currents were observed under illuminated conditions. Compared to the bare MoS2 de-

vice (inset), the dark currents were also considerably higher, suggesting decreased resistance from the Au

nanoparticle decoration. Photocurrent responses obtained under increasing bias potentials are shown in

Figure 4C. The photocurrent response as a function of incident optical power was evaluated at a bias

potential of 15 V and the figures of merit for photodetectors calculated. The photocurrent exhibited a

dependence on optical power with a factor of 0.31. The responsivity and photocurrents at different incident

optical power are as represented in Figure 4D. The responsivity was found to vary exponentially with the

incident power by a factor of �0.68. At an optical input of 1.46 mW mm�2, the device exhibited a respon-

sivity of 367.5 mA W�1, and a specific detectivity of 2.95*108 Jones. The response time of the photodetec-

tors was also probed (Figure S12). The rise time was found to be 17.8ms and the decay time was found to be

16.8 ms. A comparison of the figures of merit for our photodetectors and literature reported photodetec-

tors are provided in the supporting information (Table S1). The devices demonstrated here perform supe-

rior to reported MoS2 based photodetectors with Au nanoparticles in terms of responsivity and response

time (Guo et al., 2019; Lin et al., 2020; McManus et al., 2018; Rahmati et al., 2019; Selamneni et al., 2021).
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Comparisons with reports on solution-processed transition metal dichalcogenide-based photodetectors

have also been made (Abid et al., 2019; Alzakia et al., 2020a, 2020b; Kim et al., 2021; Li et al., 2020a; Liu

et al., 2019; McManus et al., 2017; Pulikodan et al., 2020; Seo et al., 2019).

A few of the plausible mechanisms through which enhancement in device performance is observed through Au

nanoparticle decoration are as outlined in Figure 4E. The plasmonic resonance from the Au nanoparticles could

be increasing the optical absorbance as compared to bare MoS2, as suggested by the UV-visible absorbance

spectra (Figure S5). Additionally, the fields generated between plasmonic nanoparticles that produce an

electromagnetic enhancement in SERS could be operating in an analogous fashion by greatly amplifying the

localized electric fields in the semiconducting MoS2 nanosheets, thereby enhancing the photogeneration of

electrons upon irradiation (Lin et al., 2013; Miao et al., 2015). Besides these plasmonic-induced effects, the

Au nanoparticles that are rooted to the underlying nanosheet substrates form a good interface for charge trans-

fer from the optically active MoS2 nanosheets (Singha et al., 2018; Sreeprasad et al., 2013). This is supported by

observations of shifted (and enhanced) Raman peaks after decoration as shown in Figures S5 and S10. This was

found to be more prominent in the case of S-MoS2 as compared to XL-MoS2. The presence of the metal nano-

particles also substantially increases the electrical conductivity of the film, when compared to bare MoS2 nano-

sheets as observed from the I-V characteristics. The photoresponse ofMoS2 photodetectors was thus improved

by a great margin through Au nanoparticle decoration through a facile process of dipping the device in HAuCl4
solution. The synthetic protocol reported here for Au nanoparticle decoration was also found to be applicable

to other aqueously dispersed transition metal dichalcogenides such as MoSe2, WS2, andWSe2, suggesting the

broad scope for modifying 2D materials (Figures S13 and S14). Crystalline nanoparticles were found to grow

spontaneously on the nanosheet surfaces as inferred from x-ray diffractograms as shown in Figure S13A. The

absorption characteristics are similar to that of MoS2 and the presence of the plasmonic nature is attributed

to the formation of the Au nanoparticles (Figures S13B and S13D). The Raman spectra of the decorated nano-

sheets also suggested a retention in their chemical nature (Figures S13E–S13G). Transmission electron micro-

scopy further confirms the decoration of the nanosheets with crystalline Au nanoparticles (Figure S14).

A B C

D E

Figure 4. Device characterization of Au-decorated MoS2 nanosheets

(A) Protocol for fabrication of solution-processed photodetectors by spray coating MoS2 and Au nanoparticle decoration by dipping in HAuCl4.

(B) Current versus voltage characteristics of a device prepared after a 5 min dip in HAuCl4.

(C) Variation in photocurrents with bias potential.

(D) Responsivity and specific detectivity as a function of incident optical power on the device biased at 15 V.

(E) Schematic representing the possible influence of the Au nanoparticles on the MoS2 nanosheets in photodetection.
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Conclusions

The investigations presented here focus on the scope for modification of MoS2 nanosheets for optoelec-

tronic applications. By utilizing size-selected nanosheets for the spontaneous chemical reduction of chlor-

oauric acid, Au nanoparticle decoration on the nanosheets was obtained in aqueous medium under

ambient conditions without the use of reducing agents. Crystalline nanoparticle growth with varying deco-

ration densities was observed through investigations by electron microscopy and SERS, suggesting a size

dependent chemical nature of MoS2 nanosheets. Smaller decorated nanosheets were found to exhibit

7-fold higher enhancement factors as compared to the larger nanosheets, reaching as high as

1.55 3 106. The implications of Au nanoparticle decoration on MoS2 nanosheets in photodetection were

evaluated through solution routes, by dipping spray coatedMoS2 devices into a solution of HAuCl4. Similar

to the observations from SERS, smaller nanosheets were found to be affected profoundly. Optimized Au

metal loading yielded devices with a fast response time of �17 ms, while achieving a responsivity of

367.5 mAW-1. These findings suggest the scope for suitable modifications of various 2D materials through

spontaneous metal nanoparticle formation together with size-control could enhance their performance in

various applications using solution-processed techniques.

Limitations of the study

The protocol for Au decoration outlined in our work relies on the higher defect density in smaller nano-

sheets, although in order to gain a further understanding into the underlying phenomenon, the kinetics

of nucleation and growth need detailed investigation. Theoretical studies may in this case provide a deeper

understanding in to the observed higher activity of smaller nanosheets as compared to larger nanosheets.

In order to investigate the implications of decoration density, SERS has been used as a tool here, although

the underlying factors warrant a detailed investigation in order to discern electromagnetic and charge-

transfer contributions. Enhanced photoresponse of nanosheets with Au nanoparticle decoration has

been evaluated in this work; however, there is a scope for further optimization for better figures of merit

in solution-processed photodetectors, to be in par with photodetectors obtained using other synthetic

strategies such as chemical vapor deposition and mechanical cleavage.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Materials availability

This study did not generate any new unique reagents.

Date and code availability

The data reported in this paper can be shared by the lead contact upon request.

METHOD DETAILS

Exfoliation and size-selection

Bulk MoS2 powders (Alfa Aesar, 325 mesh, 99%) were sonicated in 2-butanone (Finar, 99%) at a concentra-

tion of 30 mg mL�1 using an Elmasonic TI-H5 bath sonicator at 45 kHz for 30 h under cold water circulation.

This dispersion is then subjected to cascaded centrifugation at successively increasing speeds between

1000 and 5000 rpm on a REMI PR-24 centrifuge to obtain sediments of size-selected nanosheets. These

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Molybdenum disulfide Alfa Aesar CAS No. 1317-33-5

Molybdenum diselenide Alfa Aesar CAS No. 12058-18-3

Tungsten disulfide Sigma Aldrich CAS No. 12138-09-9

Tungsten diselenide Alfa Aesar CAS No. 12067-46-8

2-Butanone Finar CAS No. 78-93-3

Chloroauric acid Sigma Aldrich CAS No. 27988-77-8

Software and algorithms

Origin www.originlab.com Origin 2018

Adobe Illustrator https://www.adobe.com/in/

products/illustrator.html

Adobe Illustrator CC 2015

ImageJ https://imagej.nih.gov/ij/

download.html

ImageJ 1.51j8

Origin www.originlab.com Origin 2018

Other

Bath sonicator Elma https://www.elma-ultrasonic.com/produkte/ultraschallgeraete/

elmasonic-ti-h#tabs|p21:features

X-ray diffractometer Rigaku https://www.rigaku.com/products/xrd/smartlab

Field emission scanning electron microscope Tescan https://www.tescan.com/product/

sem-for-materials-science-tescan-mira/

UV-Visible spectrophotometer Perkin-Elmer https://www.perkinelmer.com/

Particle size analyser Malvern Panalytical https://www.malvernpanalytical.com/en/

support/product-support/zetasizer-range/

zetasizer-nano-range/zetasizer-nano-zs

Raman spectrometer Horiba https://www.horiba.com/int/products/detail/

action/show/Product/xploratm-plus-1528/

Transmission electron microscope Thermo-Scientific https://www.fei.com/products/tem/talos/#gsc.tab=0

Electrical characterization system Keithley https://www.tek.com/en/keithley-4200a-scs-

parameter-analyzer

Probe station FormFactor https://www.formfactor.com/product/

probe-systems/150-mm-systems/mps150/
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sediments in the form of a paste are then dried in to powder in a hot air oven at 80�C, and then re-dispersed

at desired concentrations in deionized water by mild sonication to obtain aqueous size-selected nanosheet

dispersions. Aqueous dispersions of MoSe2, WS2 and WSe2 were prepared in a similar manner for sedi-

ments obtained between 1000 and 5000 rpm, without size-selection. These protocols have been demon-

strated with extensive characterization in these following articles (Lobo et al., 2019, 2021).

Au nanoparticle decoration

Employing the spontaneous reduction mechanism of HAuCl4 by MoS2 nanosheets, Au nanoparticle deco-

ration was carried out by reacting 1 mL of size-selected MoS2 dispersion of 0.2 mgmL�1 concentration with

1 mL of HAuCl4 solution of 2 (2.5 mM) and 4 (5 mM) equivalents. The reaction was allowed to proceed for 18

h, after which unreacted HAuCl4 was removed by iteratively centrifuging for 10 min at 5000 rpm and

washing with deionized water for 3 times. The washed sediments containing the decorated nanosheets

were then re-dispersed in 2 mL of deionized water. Au decoration of aqueously dispersed MoSe2, WS2
and WSe2 nanosheets were carried out by reacting the dilute dispersions with HAuCl4 solution.

Characterization techniques

Substrates for X-ray diffraction were prepared by drop-casting the samples onto cleaned glass slides and

drying at 80�C. Diffraction patterns were obtained on a Rigaku SmartLab with a Cu source, at a scan rate of

1� min�1 with step size of 0.01�. UV-Visible spectra of dispersions were recorded using a Perkin Elmer

Lambda 750 spectrometer. Field emission scanning electron microscopy was carried out on a Tescan

Mira3 by drop casting the samples onto Si substrates at 80�C. Dynamic light scattering and determination

of zeta potentials were carried out on a Malvern Zetasizer NanoZS. Transmission electron microscopy was

carried out on a Thermo Scientific Talos (200 kV) by coating lacey carbon grids with dilute dispersions.

Surface enhanced raman scattering

Substrates for surface enhanced Raman scattering were prepared by drop-casting 50 mL of the dispersions

onto glass slides held at 80�C on a hotplate. Once dried, 40 mL of methylene blue (10 mM) was added. A

Horiba XploRa Plus Raman spectrometer was used for acquiring the spectra, using 2 accumulations for

an acquisition time of 4 s at a laser power of 0.3 mW with a grating of 1200 grooves mm�1. The hole and

slit width were maintained at 300 and 100 mm respectively.

Determination of enhancement factor (EF)

The formula to determine the EF of SERS substrates is given by

EF = (ISERS/IRaman) 3 (NRaman/NSERS)

Under the experimental conditions used, IRaman, NRaman and NSERS are unchanged, providing a factor for

multiplication of the observed ISERS in the case of each sample in order to determine the EF.

IRaman (Signal intensity for dye powder) is straightforward to obtain, and was found to be 340 counts. To

determine the number of molecules excited in the bulk powder, the diameter of the laser spot and pene-

tration depth need to be calculated.

Diameter of focused laser spot = 1.22 * (l/NA)

For 638 nm laser and 0.5 NA of the lens used in the experiments, the diameter is computed to be 1.55 mm.

The radius would then be r = 0.778 mm.

The penetration depth is calculated by d = 2 l/(NA)2

This depth is calculated to be 5.10 mm.

The volume (assumed to be a cylinder) excited by the laser can therefore be calculated as

V = pr2d
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V = p(0.778 mm)2 (5.10 mm)

= 9.709 mm3

To obtain the number of molecules excited in this volume,

NRaman = V * rMB* NA/MMB

Where rMB is the density of methylene blue (1757 kg m�3), NA is the Avogadro number and MMB is the mo-

lecular weight of methylene blue (319.9 g mol�1).

Substituting these values,

NRaman = 9.709 mm3 * 1.757 g mL�1* 6.022 * 1022 mol�1/319.9 g mol�1

= 3.213 * 1010

In order to compute the number of molecules excited in SERS, monolayer coverage of dye molecules was

assumed.

The area of one methylene blue molecule = 0.8723 nm2

The area under the laser spot is = pr2 = 1.9 * 10�12 m2

Therefore, the number of molecules under illumination (assuming monolayer coverage on the substrate) is

found to be

= 1.9 * 10�12 m2/0.8723 nm2

= 2.18 * 106

By substituting these computed values, a factor of 43.4 was obtained for multiplication with the observed

ISERS to calculate the value of EF.

Solution-processed photodetectors

Photodetectors were fabricated by spray coating 5 mL of dispersions (0.2 mg mL�1) of the undecorated

MoS2 nanosheets onto glass slides with Au gap electrodes. The substrates were held at 80�C on a hotplate

at a distance of 10 cm, and spraying was carried out at a pressure of 10psi. The spray coated devices were

then decorated with Au nanoparticles by dipping the substrates in to a solution of 1 mM HAuCl4 for a

defined period of time. After dipping, the substrates were immediately washed with running deionized wa-

ter and dried on a hotplate held at 80�C and later stored under dessication. The electrical characterization

of the devices were carried out on a Keithley 4200SCS paired with a Cascade Microtech EPS-150 probe sta-

tion. A 532 nm laser was used as the light source.
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