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Abstract

Tropical South America is rich in different groups of pollinators, but the biotic and abiotic factors determining the
geographical distribution of their species richness are poorly understood. We analyzed the species richness of three groups
of pollinators (bees and wasps, butterflies, hummingbirds) in six tropical forests in the Bolivian lowlands along a gradient of
climatic seasonality and precipitation ranging from 410 mm to 6250 mm. At each site, we sampled the three pollinator
groups and their food plants twice for 16 days in both the dry and rainy seasons. The richness of the pollinator groups was
related to climatic factors by linear regressions. Differences in species numbers between pollinator groups were analyzed by
Wilcoxon tests for matched pairs and the proportion in species numbers between pollinator groups by correlation analyses.
Species richness of hummingbirds was most closely correlated to the continuous availability of food, that of bees and wasps
to the number of food plant species and flowers, and that of butterflies to air temperature. Only the species number of
butterflies differed significantly between seasons. We were not able to find shifts in the proportion of species numbers of
the different groups of pollinators along the study gradient. Thus, we conclude that the diversity of pollinator guilds is
determined by group-specific factors and that the constant proportions in species numbers of the different pollinator
groups constitute a general pattern.
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Introduction

Animal pollination is one of the key ecosystem services in

natural habitats as well as in many agricultural systems [1,2].

Currently, these services are threatened by habitat destruction and

climate change, as illustrated by marked decreases in pollinator

diversity and abundance in different parts of the world [3,4], and

further declines in species numbers of bees, bumblebees, and

butterflies are predicted as results of future landuse and climate

change [5,6,7,8]. These declines will have severe consequences for

the ecosystem services provided by pollinators. In Western

Europe, for example, obligate animal-pollinated plant species

have declined in parallel with their pollinators [1]. Among animal

pollinated plant species, particularly those with the most

specialized pollination requirements, are expected to become at

least locally extinct [9]. However, also generalists that are well

integrated into asymmetric and nested interaction networks that

are in general buffered against disturbances, can be negatively

affected if the networks reach a tipping-point and collapse [10,11].

In tropical forests, up to 99% of all plants are dependent on

animal pollination [12]. Tropical areas host a large variety of

diurnal and nocturnal pollinator groups. The main diurnal

pollinator groups in South America are bees and wasps, flies,

beetles, butterflies, and hummingbirds. At night, they are mainly

replaced by moths and bats. Overall, bees are the most important

pollinators worldwide [13]. In two Amazonian rainforests 54% of

all plant species are pollinated by bees [14]. Vertebrates, mainly

birds and bats, pollinate 3–15% of the plant species in the tropics

and subtropics [15,16].

The crucial factors determining diversity, composition, and

temporal variability of the pollinator assemblages are climatic

seasonality, and spatial and temporal variation of food resources

[17,18]. Most vertebrate pollinators need a continuous supply

of food due to their high metabolic rate, long lifespan and

homoeothermic bodies. In turn, these enable them to visit flowers

even during cool and rainy weather when insects are unable

to fly. Therefore, large-scale diversity patterns hummingbirds are

in line with the general pattern of high tropical diversity [19],

peaking in warm and humid regions. Previous studies suggest that

hummingbirds are more diverse in humid rainforests than in

deciduous forests [20,21] because of a less pronounced clima-

tic seasonality. Butterflies show a similar diversity pattern as

hummingbirds. However, for butterflies the absence of low

temperatures is most important [17]. Instead, bees are more

diverse in warm, temperate, and xeric regions than in the humid

tropics [22,23], presumably reflecting their physiological and

behavioural adaptations. In contrast to hummingbirds, insects

such as bees and wasps or butterflies are able to survive long

phases of unfavourable conditions in larval stages or hibernating as

adults. Vertebrate pollinators such as hummingbirds or nectar-

feeding bats and even some butterfly species can avoid areas with

unfavourable conditions during parts of the year by conducting

local and regional migrations following shifting food resources

[24,25,26,27].
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Comparing the diversity patterns of the different pollinator

groups, the proportion of hummingbird species should be higher

in per-humid forests whereas the proportion of insect pollinators

should be higher in deciduous dry forests with a marked climatic

seasonality. However, cross-taxon comparisons are difficult

because the majority of studies on large-scale patterns of pollinator

diversity to date have only focussed on single pollinator groups and

have not considered the relation of pollinators to their food plant

species [17,20] or have been conducted on oceanic islands, where

pollinator diversity is reduced [18]. Independent of the study area,

studies on a smaller scale considering the relation to food plant

species of single groups of pollinator have shown that humming-

bird diversity is mainly influenced by a continuous availability of

food [28,29] whereas the number of bee and wasp species is

determined by the number of flowers and the diversity of food

plant species [30].

Little is known about seasonal changes of different pollinator

guilds at a given locality. In particular, studies along climatic

gradients are completely lacking. Studies considering single groups

of pollinators suggest that the seasonal variation in species richness

of butterflies as well as of bees and wasps [31,32,33,34] is more

pronounced than in hummingbirds [29] because insect pollinators

can outlive phases of unfavourable environmental conditions in

larval stages or hibernating as adults. For example, in Venezuela, a

higher species numbers of insect pollinators during the dry season

is known when rain does not restrict their activities too much [35].

The lack of comparative studies considering several pollinator

groups severely limits our understanding of the impact of climatic

conditions, particularly climatic seasonality.

This lack of knowledge is particularly important when

predicting effects of habitat and climate change on pollinator

diversity. For large parts of the tropics, including central South

America an increase in temperature and a decrease in precipita-

tion is predicted [36,37]. Our study was directed at addressing this

knowledge gap by exploring the relations of the diversity between

the three main diurnal pollinator groups (bees and wasps,

butterflies, hummingbirds) to climatic factors as well as to flower

number and food plant diversity along a natural gradient of

precipitation and climatic seasonality in tropical and subtropical

Bolivian forests. This region, located at the southern margin of the

Amazon basin presents a good opportunity to assess how

pollinator assemblages change along a climatic gradient mimicking

the changes predicted for the next decades [37]. The study was

designed to test the following three hypotheses:

I. Species richness and abundance of pollinator groups is more

strongly determined by food-related than directly by

climate-related factors (although climate certainly influences

food availability).

II. Species richness and abundance of insect pollinators shift

between seasons whereas that of hummingbirds does not

show marked seasonal changes.

III. Towards areas with lower climatic seasonality, pollinator

assemblages include a higher proportion of hummingbirds

and their food plants relative to insect pollinators and their

food plants.

Materials and Methods

Our study complies with the current laws of Bolivia and

Switzerland and with international rules. Permissions for fieldwork

in Bolivia and collecting and exporting samples have been

provided by national and local authorities.

Study sites
Our study was conducted at six sites in central and southern

Bolivia: three non-seasonal, tropical (Villa Tunari: 16u57959 S,

65u24944 W; Sacta: 17u06903 S, 64u47902 W; Buena Vista:

17u30949 S, 63u38916 W) and three seasonal, subtropical sites

(Santa Cruz: 17u46948 S, 63u04902 W; Rı́o Seco: 18u42944 S,

63u11935 W; Corbalán: 21u36915 S, 62u27945 W; Figure 1). Along

this latitudinal gradient, mean annual precipitation decreases

from 6258 mm at Villa Tunari to 410 mm at Corbalán, while

seasonality in temperature and precipitation increase [38]

(Table 1). All study sites consisted of primary, occasionally slightly

disturbed forest and lay between 200 m and 440 m elevation. All

sites are part of a larger forest system extending from Amazonia to

the Gran Chaco.

Environmental data
We extracted the climatic data from SAGA, a climate model for

Bolivia based on an empirical modelling scheme [38]. At each site

we took four soil samples from the non-organic soil horizon. The

samples were air-dried and later analyzed for pH, C/N-

proportion, cationic exchange capacity, and base saturation.

Field sampling
Each locality was visited twice for 16 days between November

2007 and October 2008, once during the rainy season (November

to April) and once during the dry season (May to October). Such a

short survey time is liable to result in incomplete sampling,

especially of insects [39,40]. On the other hand, since sampling at

the different sites could not be conducted simultaneously, sampling

was spread over three months, so that sites were visited at different

times during each season. This too might influence our perception

of the plant and pollinator assemblages. Because these two

limitations are counteracting (longer sampling per site increases

temporal differences between sites), we decided on the 16-day

sampling routine as a compromise between both potential

problems. Further, we did not include replicate study sites in

each study region, again as the result of a compromise between

sampling completeness and number of study sites.

At each site, we established a 1.5 km long study transect along a

path through the forest with a minimum distance to the forest

border of 150 m to avoid edge effects [41,42]. Each transect was

visited for 13 continuous days between 7:30 am and 15:30 pm. On

the remaining three days, we visited a 350 m long section of the

forest border because some pollinator species normally live in the

tree crowns and only come down to lower vegetation levels along

forest edges.

All animal-pollinated plant species flowering three meters to

both sides of the transect were recorded [43] and for all species the

number of flower was estimated using five categories: 1–10, 11–50,

51–200, 201–1000 and 1000+ flowers. For further analyses, we

defined the ‘‘number of plant species’’ as the number of all plant

species used by a certain pollinator group that were flowering

along a transect. The number of plant species was counted for

each season (dry and wet) separately and added to the total

number of plant species. The ‘‘number of flowers’’ was summed

from the minimum values per category of plant species used by a

certain pollinator group that were flowering along a transect.

These values were only expressed per season.

We recorded all plant species visited by hummingbirds (pers.

obs.) or showing the anatomical adaptations to hummingbird

pollination [44] as food plant species of hummingbirds. According

to our field observations, all animal-pollinated plant species

providing nectar or pollen during the day were recorded as food

plants for bees and wasps, irrespectively of their morphology. Plant

Climatic Seasonality and Pollinator Diversity
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species showing the typical anatomical adaptations to humming-

bird pollination were thus also counted as ‘‘bee and wasp plants’’

because bees were regularly observed stealing nectar or pollen

from them (pers. obs.). All plant species providing nectar during

the day, regardless of visits by other pollinator groups were

categorized as ‘‘food plant species of adult butterflies’’, because

butterflies are also known to be opportunistic in their food choice

[45].

We divided the diurnal pollinators with the exception of flies,

which were not considered in our study, into three main pollinator

groups [following 46]: bees and wasps, butterflies, and humming-

birds. We treated all bees and wasps as potential pollinators

because several studies show that even species that do not feed

their offspring with pollen use nectar as an energy source during

adult stage [47,48]. We distinguished flower-visiting and hence

pollinating butterfly species from species not visiting flowers (i.e.,

species feeding on fruits, dung, or not at all as imagines) based on

field observation, literature, and expert knowledge.

For pollinator sampling, we first recorded all diurnal pollinators

visiting the plants along our study transects during four days,

watching each flowering plant species several times for 15 min at

different times of the day. Frequency and length of pollinator

observations on different plant species depended on the abun-

dance of the respective species along the transects. Bees and wasps

and butterflies visiting flowers were captured with nets. Further

bees and wasps were collected during five days using 13 pairs of

yellow and blue pan traps situated next to each other along the

transects [49]. Euglossine bees were collected for two days using 39

Figure 1. Precipitation map of Bolivia (based on [38]) showing the six study sites (circles) and the provinces.
doi:10.1371/journal.pone.0027115.g001
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modified McPhail traps with 13 different odour baits [50]. With

both trap types it was possible to estimate the numbers of

individuals per species. Afterwards, for three days we captured

flower-visiting butterflies with nets, focusing on recording as many

species as possible but not collecting every individual seen (which

would have been impossible). Further, for three days humming-

birds were recorded at their food plants. Additional hummingbird

observations were made while walking on the transects. No direct

individual counts were attempted of hummingbirds due to their

high mobility, but we estimated the abundance of the recorded

hummingbird species in three categories: 1–3 (rare species), 4–9

(occasional species) and 9+ individuals seen per survey (common

species) [29]. Thus, we are able to use estimates of individual

numbers for bees and wasps and hummingbirds in our analysis but

not for butterflies.

We were unable to conduct formal estimates of sampling

completeness [51] because this requires counts of numbers of

individuals per species which were not available for most of our

taxa. However, for those groups for which regional species counts

are available, our sampling is reasonably complete: hummingbirds:

25 species known to occur in the study area [52], 21 (84%) species

detected by us; euglossine bees: 68 species known for Amazonia

[35], 48 (71%) collected in our study; butterflies: 96 nectar-feeding

species known for the Botanical Garden Santa Cruz [53], 69

(72%) collected in our study. Furthermore, published local studies

show similar patterns to those detected by us [25,54,55]. Thus,

considering that our sampling effort lies within the range of studies

sampling more than one site (8–92 days, as estimated in [56]), we

consider that our sampling is complete enough to reveal general

patterns in each group of pollinators.

Hummingbirds, butterflies, euglossine bees, and plants were

identified to species level using the relevant literature [57,58,59,60]

and with the help of experts (butterflies: O. Mielke, K. Willmott,

R.K. Robbins; euglossine bees: P. Gottleuber). The remaining

bees and wasps which made up about 90% of the total group

species richness were identified to family level using [61] and then

arranged into morpho-species. The use of morpho-species is

widely accepted to assess insect species richness in the tropics

because of the large number of total and undescribed species of

insects in this area, the large number of collected individuals (4328

in our case), and the widely missing identification literature [62].

Data analysis
All analyses were conducted separately for each of the three

pollinator groups. Our estimates of the numbers of flowers of food

plants as well as of the numbers of hummingbirds were only rough

estimates; for butterflies we did not obtain abundance data at all.

To circumvent these limitations, we conducted all relevant

analyses both with abundance and presence-absence data.

To test for differences between groups we used Wilcoxon rank

tests and Wilcoxon tests for matched pairs due to non-normality in

our dataset.

To assess latitudinal trends in species richness of the three

pollinator groups, linear regressions of species numbers of the

different pollinator groups against the latitude of the study sites.

Due to conspicuously lower values in species number for all

pollinator groups at the northernmost site Villa Tunari, in a

second round of analyses we excluded this site. Further, we

compared species numbers between the three northern (non- to

slightly climatically seasonal) and southern (strongly climatically

seasonal) sites by Wilcoxon rank tests.

To test hypothesis I, we conducted linear regressions to assess

the influence of individual explanatory variables (plant species

number, flower number, climate and soil related parameters) on

individual pollinator groups (individual and species numbers).

Because we only had six study sites, we refrained from calculating

multiple regression models. To relate seasonal differences in

species and individual number to environmental factors of climate

and food seasonality, we conducted linear regressions between the

difference in species respectively individual number per site

between seasons and factors of seasonality.

To test hypothesis II, we tested differences of species numbers of

the three pollinator groups between seasons and differences in bee

and wasp and hummingbird abundance between seasons with

Wilcoxon tests for matched pairs. We used Wilcoxon tests for

matched pairs to find out whether the proportions of species per

pollinator group occurring only at a single site during one season

differed between seasons.

To test hypothesis III, we used correlation analyses to compare

the abundances between the three pollinator groups, between

flower numbers, and between numbers of plant species utilized by

the three pollinator groups along the seasonality gradient.

Unless indicated otherwise, all calculations were performed with

the statistical platform R [63]. Following Roback and Askins [64]

we did not use Bonferroni corrections to correct for the high

number of tests. Further, we accepted an additional level of

marginal significance at p#0.1 because of the low number of study

sites. The marginally significant results did not change our overall

perception of the patterns, but it helped us to take in account

additional, potentially important factors that would have been

ignored by only looking at the significance level of p#0.05.

Results

Overall, we recorded 21 species of hummingbirds, 513

morphospecies of bees and wasps, 243 species of diurnal, nectar-

feeding butterflies, and 168 species of flowering food plants

(Table 2). Due to regular pollen and nectar thievery, all plant

Table 1. Environmental characteristics of the study sites.

Elevation (m)
Annual
precipitation (mm)

No. arid
months

Temperature

mean (6C)

Minimum

temperature (6C)

Temperature

amplitude (6C)

Corbalán 268 410 8 25.2 23 7

Rı́o Seco 434 729 6 25.0 21 5

Santa Cruz 397 1166 2 25.2 1 5

Buena Vista 424 2000 0 25.3 3 4

Sacta 204 3457 0 26.7 5 4

Villa Tunari 400 6258 0 26.6 6 3

doi:10.1371/journal.pone.0027115.t001
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species were used by bees and wasps. Further, 143 plant species

were used by butterflies and 45 by hummingbirds (Appendix 1).

A comparison of species numbers between the three less

seasonal northern and the three more seasonal southern sites

revealed marginally significantly higher numbers in the north for

hummingbirds (Wilcoxon rank test: W = 9, p = 0.072) and

butterflies (W = 9, p = 0.10) but not for bees and wasps (W = 8,

p = 0.20).

The total number of butterfly species (linear regression,

R = 20.87, p = 0.057) decreased latitudinally from non-seasonal

Sacta to seasonal Corbalán, while the total number of bee and

wasp species (R = 20.58, p = 0.306) and hummingbird species

(R = 20.77, p = 0.126) did not show a significant latitudinal

pattern. Separated by seasons, we observed marginally significant

latitudinal decreases for the species numbers of butterflies during

the rainy (R = 20.84, p = 0.073) and during the dry season

(R = 20.87, p = 0.055). Hummingbirds (rainy season: R = 20.61,

p = 0.276; dry season: R = 20.49, p = 0.402) and bees and wasps

(rainy season: R = 20.31, p = 0.612, dry season: R = 20.64,

p = 0.246) did not show a significant pattern during single seasons.

For hummingbirds as well as bees and wasps, the northernmost,

wettest site at Villa Tunari had a conspicuously lowered species

richness compared to the nearest locality (Sacta). The species

numbers of food plants as well as of flowers utilized by the different

pollinator groups did not show any significant trends along the

latitudinal transect (Table S1).

Linear regression analyses between the species numbers of

each pollinator group and biotic and abiotic explanatory factors

revealed that the species number of hummingbirds was most

strongly related to the number of flowers during the rainy season

(Table 3). The number of butterfly species showed negative

relations to the annual temperature amplitude and to the number

of arid months as well as positive relations to the annual

minimum temperature. The total number of bee and wasp

species was most strongly related to the number of flowers during

the rainy season. In the dry season, the number of bee and wasp

species was negatively related to the total species number of food

plants as well as to the species number of food plants flowering

during the dry season. In the rainy season, species number of bees

and wasps was related to the total species number of food plants

and to the species number of food plants flowering during the

rainy season. In hummingbirds and butterflies the significant

relations to environmental factors for the species numbers per

season agreed with the relations for the total species numbers

(Table 3). For the number of individuals of bees and wasps and

hummingbirds we found similar but less strong relations as for

species numbers (Table S2).

Linear regression analyses between the species number of

pollinator groups against soil parameters hardly recovered any

significant results. They are therefore not discussed further (Table

S3).

When we related seasonal differences in species and individual

number to environmental factors of climate and food seasonality

we found that the seasonal difference in hummingbird species

number was best explained by the number of arid months while

the difference in bee and wasp abundance was best explained by

annual temperature amplitude (Table S3).

Butterflies showed a significantly higher species richness during

the dry than during the wet season, while for hummingbirds we

obtained only a marginally significant result and for bees and

wasps we did not obtain a significant result (Figure 2). For the

abundance of bees and wasps (V = 16, p = 0.313) and humming-

birds (V = 5, p = 1.00) we did not detect significant differences

between seasons. We further found that the proportions of species

per pollinator group occurring only in a single site during one

season was significantly higher for butterflies during the dry season

(V = 0, p = 0.031) and did not show significant differences for bees

and wasps (V = 0, p = 0.181) and hummingbirds (V = 5, p = 0.313).

Table 2. Species richness of pollinator groups at each study site during the rainy (R) and the dry season (D) and in total.

No. of Bees and wasps Butterflies Hummingbirds

R D total R D total R D total

Corbalán Pollinator sp. 88 64 119 25 28 40 3 3 3

Flowers 1022 1597 - 1022 1597 - 368 1076 -

Plant sp. 22 18 35 22 18 35 8 6 11

Rı́o Seco Pollinator sp. 90 94 149 28 38 50 3 3 5

Flowers 684 1096 - 420 1095 - 201 315 -

Plant sp. 14 16 29 10 15 24 1 5 5

Santa Cruz Pollinator sp. 62 78 116 36 50 69 3 2 5

Flowers 891 768 - 602 633 - 62 104 -

Plant sp. 21 18 33 12 13 23 2 4 5

Buena Vista Pollinator sp. 122 142 208 31 69 88 9 6 11

Flowers 2858 1653 - 1379 1590 - 1053 1467 -

Plant sp. 20 14 28 10 11 18 3 7 8

Sacta Pollinator sp. 115 99 173 37 61 77 8 6 11

Flowers 2096 575 - 1883 523 - 1138 420 -

Plant sp. 26 -15 32 24 13 28 8 10 12

Villa Tunari Pollinator sp. 73 75 120 38 50 74 5 4 6

Flowers 1043 800 - 991 778 - 149 268 -

Plant sp. 23 19 31 21 18 29 8 8 11

doi:10.1371/journal.pone.0027115.t002
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We found a positive correlation of the number of hummingbird

species to those of butterflies as well as bees and wasps (Table 4).

The correlations of the species number of pollinator groups

separated by seasons revealed significant positive results always just

for one season per pollinator group (Table 4). Correlation analyses

of the total number of flowers used by the different pollinator

groups detected even stronger relations compared to the species

number of pollinator groups. The total numbers of flowers used by

the different groups of pollinators were all positively correlated

with each other. We found similar results for each season

separately (Table 4). With a correlation of the total number of

flowering species utilized by the different pollinator groups we only

found a marginally significant, positive result between bee and

wasp and butterfly species numbers. The correlations of species

numbers used by the different groups in each season separately

gave divergent results (Table 4).

Table 3. Strength of relation (R-values) for pair-wise regression analyses of the species numbers of the three pollinator groups
during rainy season (R), dry season (D) and in total, against all biotic and abiotic environmental factors considered; - not analysed,
^ p#0.1, * p#0.05, ** p#0.01.

Bee and wasp sp. Butterfly sp. Hummingbird sp.

R D total R D total R D total

Elevation (m) 20.30 20.28 0.02 20.04 0.09 0.16 20.20 20.19 20.30

Annual precipiation (mm) 20.05 20.03 20.03 0.76^ 0.41 0.55 0.37 0.38 0.40

Temperature mean (uC) 0.16 20.06 20.06 0.74^ 0.42 0.49 0.48 0.55 0.47

Temperature amplitude (uC) 20.15 20.42 20.35 20.80^ 20.74^ 20.82* 20.60 20.58 20.53

Minimum temperature (uC) 0.19 0.32 0.30 0.88* 0.76^ 0.84* 0.66 0.62 0.68

No. arid months 20.64 20.50 20.43 20.86* 20.91* 20.97** 20.68 20.73^ 20.61

Flower no. R 0.12 - 0.81* 0.31 - 0.53 0.91* - 0.92**

Flower no. D - 20.89* 0.62 - 20.23 20.29 - 0.48 0.48

Food plant sp. no. total 0.83* 0.81* 0.70 20.20 20.70 20.65 0.36 0.41 0.53

Food plant sp. no. R 0.85* - 0.03 0.23 - 0.13 0.06 - 0.23

Food plant sp. no. D - 0.32 20.53 - 20.77^ 20.66 - 0.60 0.72

doi:10.1371/journal.pone.0027115.t003

e

Figure 2. Wilcoxon tests for matched pairs between number of species per pollinator group during the rainy (R) and dry (D) season.
Box plots show the median values (thick lines), second and third quartiles (box margins) and 95% confidences intervals (whiskers).
doi:10.1371/journal.pone.0027115.g002
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Discussion

Overall, we found that the species number of butterflies and

hummingbirds increased from south to north towards the equator,

which corresponds to the well-known latitudinal gradient of

species richness in these groups [17,20]. In contrast, species

richness of bees and wasps remained roughly constant. However,

bees are known to be more species rich in warm and dry regions

than in the wet tropics [22,23]. The causes determining these

richness patterns are still unclear and may involve a variety of

current ecological and historical factors. Among the former, we

hypothesized that food availability should be more closely related

to species richness of our study groups than purely climatic factors.

In accordance with this hypothesis, food availability (number of

flowers) showed a stronger relationship to species numbers of bees

and wasp and hummingbirds than climatic factors (Table 4). The

species numbers of both pollinator groups were correlated to the

flower number of food plants, but only the number of bee and

wasp species was also related to the species number of their food

plants. For hummingbirds, this corresponds to previous conjec-

tures based on local-scale studies that the abundance of flowers is

more important in determining species numbers than the diversity

of food plants [25,65]. For bees, both the number of flowers and

the number of plant species determine the species richness in

Mediterranean habitats in Israel [30]. Further, food resources of

the previous year, i.e., available to the bees as larvae, are stronger

determinants of the species numbers of bees than the flowers

availability in the sampling year [30,66]. The concordance of our

results with these previous studies is remarkable when we take into

account that we also included wasp species into our study, which

in contrast to bees mainly depend on insects and spiders as larval

food. In this case, a direct link to the flowers only exists via the

adults.

Butterflies, whose species richness was more closely related to

climate than to flower numbers, take much of their energy in the

adult stage from the sun [67] and feed exclusively on non-floral

plant tissues as larvae. They are thus less dependent on flowers

than bees or hummingbirds. It is therefore not surprising that we

did not find a significant relationship between the species richness

of butterflies and any flower-related factors. Only few studies

[68,69] have so far been able to demonstrate that nectar resources

have a significant effect on the diversity or abundance of adult

butterflies, either for single species or for entire communities. Due

to their physiological conditions, butterflies are the only major

pollinator group mainly affected by climatic factors such as

minimum temperatures or the number of arid months, both in our

study and in others focusing on single localities [70,71] or along

climatic gradients [17].

Comparing the species richness and abundance of pollinator

groups between seasons, we found – contrary to our second

hypothesis – no consistent seasonal shifts in species richness of bees

and wasps, and very weak ones in hummingbirds. Butterflies,

however, had significantly higher species richness as well as more

unique species per site during the dry season. Butterflies often

spend the dry season as adults and begin with reproduction at the

beginning of the rainy season [72,73]. Thus, the death of the

adults of several species after reproduction and an increased

mortality of larvae due to heavy rainfall [74] could be reasons for

the impoverished assemblages found in our study during large

parts of the rainy season. In addition, since the distribution of

many tropical butterfly species is limited by frost [17], frost events

in the nearby Andes during the dry season [75] led to downward

movements of butterfly species, increasing the diversity of the local

assemblages in that season. Similar avoidance movements are

known for numerous tropical and extra-tropical butterfly species

[76,77]. Other studies found higher butterfly species numbers

during the dry season [78,79], higher species numbers during the

rainy season [33] or no difference between seasons [32,80]. Thus,

Pozo et al. [71] concluded from the divergent results that butterfly

richness is often determined by local factors such as microclimate.

When we compared the proportions of species numbers of the

different pollinator groups and their food plants along the climatic

gradient, in contrast to our third hypothesis we found no changes

in the proportions of the pollinator and plant groups. Therefore,

the potential benefit of the insect pollinator groups through their

ability to survive periods with unfavourable food supply and

weather conditions in larval stages or in their hives did not increase

their relative species numbers at the climatically more seasonal

sites. Hummingbirds, depending on a constant high availability of

flowers [29], have apparently found a way to deal with the low

amount of flowers during the dry season in the seasonal regions.

We found markedly different assemblages of hummingbirds in

each of the two southernmost localities Corbalán and Rı́o Seco

between the seasons. As known for honeyeaters in Australia [81],

hummingbirds in the seasonal regions of Bolivia probably track the

flowering season of plant species appropriate to their requirements

by conducting nomadic movements. Cotton [24] already proposed

that local migrations occur in some Amazonian hummingbird

species. This would explain why the most abundant species in

Table 4. R-values of linear correlation analyses for the species numbers of the pollinator groups, number of flowers and flowering
species used by the different pollinator groups during the rainy (R) and dry (D) season and in total; ^ p#0.1, * p#0.05, ** p#0.01,
*** p#0.001.

Bees and wasps -
butterflies

Bees and wasps -
hummingbirds

Butterflies –
hummingbirds

Pollinator group sp. no. total 0.61 0.87* 0.84*

Pollinator group sp. no. R 20.18 0.82* 0.34

Pollinator group sp. no. D 0.79^ 0.73 0.76^

Flower no. used by pollinator groups R 0.78^ 0.92** 0.88*

Flower no. used by pollinator groups D 0.99*** 0.89* 0.87*

Plant sp. no. used by pollinator groups total 0.79^ 0.36 0.64

Plant sp. no. used by pollinator groups R 0.80^ 0.81^ 0.97*

Plant sp. no. used by pollinator groups D 0.79^ 20.31 20.02

doi:10.1371/journal.pone.0027115.t004
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Corbalán during the rainy season, Thalurania furcata, was virtually

absent during the dry season. Thalurania was replaced by

Chlorostilbon aureoventris, a smaller hummingbird species that is able

to efficiently utilize the tiny flowers of mass flowering Tripodanthus

acutifolius, a primarily bee-pollinated Loranthaceae [29].

In conclusion, we found that the species numbers of the three

groups of pollinators each showed different patterns along the

climatic gradient and were correlated to different environmental

factors. Combining our results with those from other studies, the

factors correlating with the diversity of the different pollinator

groups appear to be the same worldwide, regardless of the habitat

type or the geographic latitude. Thus, on the local and regional

scale, the number of bee and wasp species covaries with the

availability and diversity of food resources in mediterranean or

temperate openland habitats [30,65] as well as in tropical and

subtropical forests (our study). On a large scale, climatic aspects

play a role in the diversity at least of bees [22,23]. Hummingbird

diversity is mainly correlated to the continuous availability of food

regardless of the geographic latitude [25,28]. Instead, butterfly

diversity peaks in constantly humid, warm areas both worldwide

[17] and on a regional scale (our study). Furthermore, not only the

factors correlated to pollinator group diversity are the same

worldwide, but in our study also the proportion in species numbers

between pollinator groups remained constant along our gradient

from subtropical, deciduous forests to tropical, evergreen rain-

forests. A similar tendency but with some variation was for some

Caribbean islands [18] where pollinator diversity is reduced. Our

results are especially surprising because the diversity of the

different groups is related to different environmental factors.

Climate change will likely directly affect all pollinators by an

increase in climatic seasonality and, perhaps more importantly,

indirectly by changes in the distributions and phenologies of food

plants [9]. In our study system, this is especially likely for

hummingbirds, bees, and wasps, which we found to be strongly

dependent on their food plants. In trophic networks were single

plant species fulfil keystone roles at specific times, such changes

may conceivably lead to massive disruptions of pollinator networks

[82], when periods of insufficient food supply that may lead to

decreases in pollinator diversity and abundance.
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7. Williams PH, Araújo MB, Rasmont P (2007) Can vulnerability among British

bumblebee (Bombus) species be explained by niche position and breadth? Biol

Cons 138: 493–505.

8. Dormann CF, Schweiger O, Arens P, Augenstein I, et al. (2008) Prediction

uncertainty of environmental change effects on temperate European biodiver-

sity. Ecol Lett 11: 235–244.

9. Potts SG, Biesmeijer JC, Kremen C, Neumann P, et al. (2009) Global pollinator

declines: trends, impacts and drivers. Trends Ecol Evol 25: 345–353.

10. Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to

species extinctions. Proc R Soc Lond B Biol Sci 271: 2605–2611.

11. Fortuna MA, Bascompte J (2006) Habitat loss and the structure of plant-animal

mutualistic networks. Ecol Lett 9: 278–283.

12. Bawa KS (1990) Plant-pollinator interactions in tropical rain forests. Ann Rev

Ecol Syst 21: 299–422.

13. Fleming TH, Muchhala N (2008) Nectar-feeding bird and bat niches in two

worlds: pantropical comparisons of vertebrate pollination systems. J Biogeogr 35:

764–780.

14. van Dulmen A (2001) Pollination and phenology of flowers in the canopy of two

contrasting rain forest types in Amazonia, Columbia. Plant Ecol 153: 73–85.

15. Keighery G (1980) Bird pollination in South Western Australia: A checklist.

Plant Syst Evol 135: 171–176.

16. Devy MS, Davidar P (2003) Pollination systems of trees in Kakaachi, a mid-

elevation wet evergreen forest in Western Ghats, India. Am J Bot 90: 650–657.

17. Hawkins BA, DeVries PJ (2009) Tropical niche conservatism and the species

richness gradient of North American butterflies. J Biogeogr 36: 1698–1711.
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