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Cytometry by Time-Of-Flight (CyTOF) uses antibodies conjugated to isotopically pure

metals to identify and quantify a large number of cellular features with single-cell

resolution. A barcoding approach allows for 20 unique samples to be pooled and

processed together in one tube, reducing the intra-barcode technical variability. However,

with only 20 samples per barcode, multiple barcode sets (batches) are required to

address questions in robustly powered study designs. A batch adjustment procedure

is required to reduce variability across batches and to facilitate direct comparison of runs

performed across multiple barcodes run over weeks, months, or years. We describe

a method using technical replicates that are included in each run to determine and

apply an appropriate adjustment per batch without manual intervention. The use of

technical replicate samples (i.e., anchors or reference samples) avoids assumptions

of sample homogeneity among batches, and allows direct estimation of batch effects

and appropriate adjustment parameters applicable to all samples within a batch.

Quantification of cell subpopulations and mean signal intensity pre- and post-adjustment

using bothmanual gating and unsupervised clustering demonstrate substantial mitigation

of batch effects in the anchor samples used for this adjustment calculation, and in a

second validation set of technical replicates.

Keywords: normalization, barcode, anchor, mass cytometry, clinical studies, human immunology

INTRODUCTION

Mass cytometry, or Cytometry by Time-Of-Flight (CyTOF), is a high-throughput single-cell
analysis technology that allows simultaneousmeasurement of 40+ cellular parameters via detection
of rare earth heavy metal isotopes conjugated to monoclonal antibodies. The high-dimensionality
of mass cytometry casts a wide exploratory net to allow: (1) discovery of novel cell phenotypes,
(2) quantification of differences in cell-type composition (population frequency), and (3) analysis
of marker expression levels (mean signal intensity) that may reflect different activation and/or
functional cellular attributes. This systems immunology approach, when applied with relevant
computational strategies, has the potential to unravel the cellular diversity and heterogeneity
that underlies human immune-mediated disorders, providing descriptive and mechanistic insight
with translational impact. For example, mass cytometry has been used to study human B cell
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development in the context of healthy and abnormal progression
in acute lymphoblastic leukemia, leading to improved
predictive risk stratification methods (1, 2). Mass cytometry
applications to understand dysregulated signaling networks
and downstream cytokine production in pediatric SLE have
demonstrated unique signatures that may help with diagnosis
and monitoring response to therapy (3, 4). Additionally, mass
cytometry has been applied to study T cell proliferation and
differentiation (5), macrophage phagocytosis (6), parallel
DNA, RNA, and protein biosynthesis (7), and cell cycle
status in malignancy and immunotherapy (8–10), to name a
few applications.

The ability of mass cytometry to address a wide variety
of biological questions related to immune cellular phenotype
and function illustrates a desire for the technology to be
utilized in increasingly complex study designs, with increasing
number of study subjects, in vivo therapeutic interventions,
in vitro conditions, and different disease status/timepoints.
Differences in immune cell subset abundance or functionality
can be explored among multiple patient groups of different
diagnosis, between patient groups receiving different therapeutic
interventions, or the same interventions across therapy phases.
Addressing such questions often requires multiple patients
per group, and often multiple samples (accounting for in
vitro stimulation conditions and/or incubation timepoints) per
patient. Additionally, given that mass cytometry measures
hundreds of cells per second, and the ideal goal data collection
numbers range in the hundreds of thousands of cells per sample
(or more if analyzing rare cell types), instrument run times
would expand over days or weeks for well-powered studies.
Inherent to human immunology studies, prospective sample
collection often occurs over the course of months to years.
Therefore, the combination of the need of multiple samples to
be analyzed per project, the relative speed of data acquisition
on the instrument, and the prospective nature of the sample
collection in human studies, requires the ability to process
and run samples in multiple batches. A barcoding approach
allows for multiple samples to be stained together in one tube,
reducing the intra-barcode technical variability, and optimizing
data acquisition speed and efficiency (decreased cell loss) as
it constitutes a single sample run on the instrument (11).
However, at 20 samples per barcode set, multiple barcode sets
(batches) are still required to address questions in robustly
powered study designs. While a barcoding approach does
reduce technical variability among the 20 samples within the
barcode set, having multiple barcode sets adds inter-barcode
variability. Variability in reagent lots, instrument maintenance
and calibration (detector changes, instrument repairs), antibody
concentration to cell number ratio per barcode set, and other
technical issues related to sample preparation can introduce
artifacts and complicate analysis of samples processed and run in
different barcode sets. The antibody reagent variability issue can
be potentially overcome by using lyophilized antibody cocktails
(12, 13), or preparing master mixes of antibody panels that
are aliquoted, frozen, and later distributed across barcode sets
over time (14). Bead normalization addresses signal variation
issues related to instrument changes (15), however it does not

address the other factors related to batch-to-batch variability
mentioned above.

To facilitate analysis of large-scale mass cytometry
experiments and allow for data analysis across prospective
longitudinal studies, a batch adjustment process is required to
reduce variability among batches/barcode sets. Batch adjustment
will allow for direct comparison of data acquired on barcode
sets across time. Batch effects are ubiquitous in high-throughput
experiments (e.g., RNA sequencing, proteomics, metabolomics),
and methods to adjust for these effects have been developed
for domain-specific application, as well as general purpose
frameworks (16). Surrogate variable analysis (SVA) identifies
latent factors in a data set using the singular value decomposition
of a matrix. Latent factors represent coordinated modules within
the data and may correspond to biological effects, batch effects,
or other sources of systematic variability (16). ComBat uses
a Bayesian framework to model data, including covariates for
batch, and possibly latent variables identified by SVA (17, 18).
These effects are then removed using regression. Remove
unwanted variation (RUV) uses spike-in control samples or
genes which are expected to remain relatively constant between
batches to estimate technical effects (19). Combat, Surrogate
Variable Analysis (SVA) and related methodologies for batch
effect adjustment cannot be directly applied to mass cytometry
data for the following reasons. First, they require a data matrix
in which the rows correspond to genes or molecules, while
the columns are samples. A single mass cytometry sample is
inherently more complex, as it consists of many single cell
events, each of which is represented as a vector of measurements
(ion counts from each mass channel). The inherent structure
of multiple batches, with multiple samples, each with many
single-cell events is not naturally represented in the two-
dimensional matrix format that SVA and Combat assume. It is
possible to consider each single-cell event as a sample and simply
concatenate all events from all samples into a single matrix, but
with hundreds of thousands of cells per sample, many samples
per batch, and many batches, this approach does not scale
well with increasing experiment size. Second, it is important
to understand the proper data distribution of mass cytometry
experiments before applying batch adjustment methods. This
is still an open question and needs further investigation.
Higher-dimensional tensor decomposition methods have been
developed (20) and could be adapted for latent variable analyses
explicitly encoding batch, sample, and cell events as separate
dimensions, but this has not yet been implemented for mass
cytometry data.

Currently, no readily available method exists specifically
for batch adjustment of mass cytometry data. As the number
of cell events measured for each sample may be in the
hundreds of thousands to over a million, with 20 samples per
batch, and likely many batches per study, a computationally
efficient method that will execute in a reasonable amount
of time without specialized computing hardware is needed.
Another feature incorporated into the design of this batch
normalization method is a simple conceptual interpretability,
in which, similarly to bead normalization, the resulting files
are adjusted to address variability and the output is a ready to
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analyze Flow Cytometry Standard (FCS) file (21). Additionally,
an optional diagnostic output allows for user-driven evaluation
of the batch normalization of their dataset. Finally, a “rolling
basis” capability to adjust individual batches as they become
available is desirable, as it allows for inclusion of additional
batches without reprocessing or changing the results for batches
already completed.

To facilitate comparison across batches, it is useful to include
a technical replicate in each barcode set as a biologically constant
reference, or anchor sample. This anchor sample represents
a single donor/cell line/tissue sample (depending on the goal
of the study) that is processed in the same way as the other
study samples, and distributed in aliquots to be incorporated
into each barcode set. Additionally, if the study design involves
in vitro stimulations to induce specific functional read outs,
anchor samples may need to be prepared as an unstimulated
and stimulated pair (or more than a pair if the study design
calls for it). A “master set” of unstimulated and stimulated
anchor samples can be prepared prior to the start of the project,
and distributed in single aliquots to later be included in each
barcode set. While this approach reduces the number of study
samples per barcode set, using the same anchor sample across all
batches minimizes biological differences, isolating batch effects.
Rather than estimating the effects per batch based on modeling
all samples, which requires assumptions such as homogeneous
sample composition across batches (18, 22), batch effects for
each channel (measured variable) can be directly estimated from
the anchor samples, where the expectation of homogeneity in
cell composition and marker expression levels is much more
reasonable. Scaling or mapping parameters per channel for an
anchor sample may then be applied to other samples from the
same batch.

Data standardization based on location and scale adjustment
are well-characterized and widely used (23). These include
combinations of spread-based methods for adjusting variance
(autoscaling, Pareto scaling) and magnitude-based methods such
range scaling, level scaling (mean), and median or percentile
matching. Here we describe a flexible method to adjust mass
cytometry batches relative to a reference batch based on technical
replicates, implemented in R, and available at https://github.com/
CUHIMSR/CytofBatchAdjust. We implement several standard
normalization options, and provide recommendations for
their use. Available methods include per channel quantile
normalization (QN), and location and scale methods that
harmonize batches based on signal variance, mean, median, or
a user-defined percentile. We note that in channels with high
variability among technical replicates, particularly those with
substantial variability in the fraction of zero-valued events, there
may be no satisfactory adjustment to harmonize data across
batches. In these cases, it may be advisable to conduct statistical
testing for conditions of interest within batches, then combine
results across batches using Fisher’s method as recommended by
others (24).

To evaluate methods and parameter settings for batch
adjustment, we quantify cell subpopulations using both manual
gating and unsupervised clustering, applied to multiple technical
replicates run in different batches, before and after adjustment.
We also quantify variability in signal intensity of cytokines

measured after stimulation. As each anchor is a large random
sample from the same initial population of cells, we expect the
same proportions of cell types in each batch anchor. Therefore,
lower variability in subpopulation frequency (percentages) and
cytokine levels (signal intensity) among technical replicates
after adjustment indicates successful reduction of batch effects.
Decreased variability in a second set of replicate samples (i.e.,
stimulated samples from an anchor set) demonstrates that batch
adjustment parameters based on an anchor sample are applicable
to the batch that it represents.

BATCH NORMALIZATION METHOD

An example dataset of 12 barcode sets is be used to illustrate
the development of this batch adjustment methodology, its
validation and application. Data was acquired on a Helios
CyTOF instrument (Fluidigm, San Francisco, CA) over the
course of 6 months. In this data set, 38 markers (22 cell
surface markers and 16 intracellular cytokines) were used
to study immune dysregulation in pediatric systemic lupus
erythematosus (SLE). In addition to the study samples, a
pair of anchor samples was included in each barcode set
(Cell-IDTM 20-plex barcoding kit, Fluidigm, San Francisco,
CA). The anchor samples were generated from one single
healthy donor peripheral whole blood sample, processed to
include an unstimulated and a stimulated conditions (LPS +

R848) to induce the 16 cytokines measured, as previously
described in O’Gorman et al. (3). These samples were used to
demonstrate the applicability of this adjustment methodology
and validate the decrease in total variance across anchor
samples post-adjustment (see Supplementary Material for the
specific FCS files that were used, http://flowrepository.org/
id/FR-FCM-Z2YR). This dataset was acquired on a Helios
CyTOF instrument at Stanford University over the course of
4 months. Peripheral blood mononuclear cells (PBMCs) from
a healthy control were spiked into separate barcoded samples
and stained with a panel of 38 surface markers, as part of
a longitudinal vaccination study. There were no stimulation
conditions used in this dataset. The healthy control files
(anchors/references) were not used further in the analysis of the
study samples.

In Kleinsteuber et al. (25) the use of reference samples is
also applied, albeit taking a different approach—CD45-barcoded
anchor sample aliquots were spiked into each individual study
sample, which were run sequentially (separately) across the study.
This reference sample was then used to guide manual adjustment
of gates. In contrast, in the approach described here, the reference
sample (stimulated anchor) from each batch was then used as a
representative of that batch to determine adjustment factors or
mapping functions (per channel and per barcode) that bring the
anchor samples into alignment. This adjustment was automated
and computed for each barcode set and each channel, and
independently applied to all samples from the same barcode
set on a per channel basis, including the unstimulated anchor
samples which served as a validation set.

Prior to batch adjustment, data was bead-normalized (15),
debarcoded (11), and manually gated to remove debris and non-
biological events (Figure 1). Alternatively, data pre-processing

Frontiers in Immunology | www.frontiersin.org 3 October 2019 | Volume 10 | Article 2367

https://github.com/CUHIMSR/CytofBatchAdjust
https://github.com/CUHIMSR/CytofBatchAdjust
http://flowrepository.org/id/FR-FCM-Z2YR
http://flowrepository.org/id/FR-FCM-Z2YR
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Schuyler et al. Batch Normalization in CyTOF Data

could be automated using FlowClean or other methods (26).
For batch adjustment, a single stimulated anchor sample from a
specific barcode set was designated as reference. The reference
anchor may be chosen by any criterion. We recommend visual
inspection of data distributions to avoid choosing an outlier
batch as reference. All batches were adjusted relative to this
reference, and samples from the reference batch were not
modified. Importantly, signal intensity range in anchor samples
used for adjustment should approximately cover the full signal
range for all samples, and therefore should include experimental
manipulations. We also evaluated an unstimulated anchor
replicate set for validation to demonstrate that adjustments
computed using the stimulated anchors are also applicable to the
unstimulated samples.

Using the stimulated anchor samples from each of the 12
barcode sets, for each batch and each channel independently, an
adjustment factor was computed as a function of the ratio of a

descriptive summary statistic for that channel and anchor to the
same value for the reference anchor sample. We implemented
and tested several batch adjustment options, including scaling by
mean and median [similar to bead normalization (15)], standard
deviation of per event ion counts, and quantile normalization
(QN), which was developed for oligonucleotide arrays and is
used to normalize RNA-seq data (27, 28). Additionally, a user-
defined percentile may be specified rather than median. This
approach is useful in the case that any channel has more
than 50% zero-valued events (from total events per file after
data pre-processing steps as described in Figure 1), giving a
median of zero and an undefined or zero-valued scaling factor.
The same adjustment approach (i.e., mean, median, standard
deviation, QN, percentile scaling) is applied across the entire
dataset, and the same approach is applied to all channels, though
each adjustment factor is tailored to each barcode set and
channel. Adjustment factors may be computed and applied in an

FIGURE 1 | Pre-processing of files prior to batch normalization. FCS files are bead normalized and debarcoded. A set of three consecutive gates is applied as shown

prior to batch normalization.

FIGURE 2 | Signal intensity distribution pre- and post-batch normalization. Density plots for all barcode anchor replicates for three representative data channels (IL12,

IL6, CD3). (A) Before batch normalization. (B) After batch normalization to 95th percentile, relative to anchor 1.
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arcsinh-transformed space commonly used for data visualization,
or in the untransformed ion count data space. Scaling in
the transformed data space effectively results in a non-linear
adjustment once the inverse transformation is applied before
results are written to the resulting FCS file, whereas adjustments
computed in the original data space are linear.

We began by evaluating distances between distributions
for all individual data channels among replicates for a set
of candidate parameter combinations using the Kolmogorov–
Smirnov distance metric. Using parameters that performed well
in single channel consistency measurements, we then moved
to evaluations considering all channels together, and finally to
consistency of subpopulation frequencies simultaneously for 12
cell types in all replicates. Levine et al. scaled individual data
channels to the 99.5th percentile before defining subpopulations,
and Lun et al. suggested a range-based batch adjustment to

linearly scale intensities between the 1st and 99th percentiles
(29, 30). We used the 95th percentile as the high end for our
normalization target point to avoid outliers, and 80th percentile
as the low end, as up to 79% of cell events were zero-valued
for some channels in this data set. Using default parameters, the
adjustment factor for each channel was computed as the ratio
of the 95th percentile event ion counts for each batch anchor
compared to the designated reference anchor. Adjustments were
made in the untransformed raw ion count data space. We found
that these parameters resulted in the most stable post-adjustment
population counts using the validation method described below.

Execution time scaled linearly with the number of samples.
Using a Mac Mini (Apple, Cupertino, CA) with a 2.8 GHz
processor requires ∼8 s per sample, including time to read the
input file, apply the adjustment, and write the result to disk.
A log file was generated listing each batch found, each sample

FIGURE 3 | Variability of zero-valued events among replicate anchor samples pre-normalization. The fraction of zero-valued events (X-axis) for each anchor (red dot) is

shown for each channel (Y-axis).
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FIGURE 4 | Kolmogorov-Smirnov (KS) distance for each single channel, for each batch normalization approach examined. (A) Distance between distributions among

replicates is computed as the average of the KS test statistic for all pairwise combinations of anchor samples, computed independently (X-axis) for each data channel

(Y-axis). Smaller values indicate better consistency among replicates. (B) Quantile normalization artifacts in biaxial plots for each anchor replicate (numbered). Top left

is the unmodified reference anchor.
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processed, and additional diagnostic information, including
processing time. Adjustment factors for each channel in every
batch (or mapping functions in the case of QN) were saved
in a .Rdata file (31). An optional diagnostic output can be
generated, which includes (1) the scaling factors for every channel
for each barcoded anchor that is adjusted, and (2) the signal
intensity distribution for each adjusted channel for each barcoded
anchor pre- and post-adjustment (from total events per file).
We recommend inspecting adjustment factors, as very large
values may be undesirable, and could result from outlier batches,
channel labeling errors, or other issues with input data.

BATCH NORMALIZATION VALIDATION

All anchor samples, including the stimulated and unstimulated
sets, were derived from aliquots of a single large sample and
processed together to minimize variability. Whereas the true
numbers of cells of any phenotype in the anchor samples is

unknown, given the large number of cell events measured for
each anchor aliquot (300–500 k events per anchor per batch),
subpopulation frequencies are expected to be consistent among
anchors. Therefore, variation in population frequencies among
anchor samples is expected to be attributable to technical
effects, and should decrease after batch adjustment. With similar
reasoning, we expect the functional responses in the stimulated
anchor relative the unstimulated condition to be consistent
across anchor replicates.

Single Channel Consistency Measures
As an initial evaluation comparing methods and parameters, we
used the Kolmogorov–Smirnov statistic to measure the distance
between distributions among replicates within single channels.
Within each channel, pairwise empirical distribution distances
were computed between each pair of replicates and averaged,
giving a single measure of consistency for each data channel
across all batches of the experiment. This test was automated
and less labor intensive than the manual gating evaluation

FIGURE 5 | Variability in signal intensity per channel for the 95th percentile batch normalization approach. (A) Mean signal intensity of each cytokine for all cell events

for each anchor replicate (circles). (B) Variance of these mean signal intensities across replicates. (C) Permutation null distribution and significance of observed change

in total variance (red line). p-value is the fraction of permutations with a change in total variance as or more extreme than that observed for unpermuted data.

Frontiers in Immunology | www.frontiersin.org 7 October 2019 | Volume 10 | Article 2367

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Schuyler et al. Batch Normalization in CyTOF Data

described below, allowing an expedient exploration of a range of
approaches and parameter settings.

For a comprehensive measure of signal variability, total
variance was computed as the sum of the eigenvalues of the
covariance matrix (32) of the mean signal intensity for all cell
events in each channel and each replicate. The value of the total

variance is equal to the sum of the diagonals of the covariance
matrix, i.e., the sum of the individual variance components.
The significance of the decrease in total variance due to batch
adjustment was evaluated using a permutation test (33), where
the labels pre- and post-adjustment were swapped for each
replicate. Change in total variance was computed for all possible
permutations to derive a null distribution for comparison with
the observed reduction in total variance in signal intensity
(Figure S1).

As the goal of a batch adjustment procedure is to prepare
the data for further downstream analysis, a more important

measure than single-channel distribution distances and mean
signal intensity variability is consistency in cell subpopulation
frequencies among replicates. These two evaluation approaches

will not always agree because gating is hierarchical and considers
multiple channels simultaneously. We show that this is the
case for some parameter settings, which performed well within
channels, but did not translate to better performance in cell-type
classification consistency.

Cell Subpopulation Frequency
Quantification Consistency Measures
Two methods to assess the consistency of cell subpopulation
frequencies across anchor samples were used: a consistent
manual gating strategy applied to all anchors (no tailored
gates), and unsupervised population quantification via event
clustering considering all anchors simultaneously. As functional
read outs, cytokine production was assessed, either as percent
positivity or mean signal intensity, comparing unstimulated and
stimulated anchors within the relevant gated parent populations.
Although the normalization procedure applied to the data did not
specifically adjust pre-defined cell populations, the adjustment
and subsequent reduction of variability in signal intensity

FIGURE 6 | Manual gating cell subpopulation variance post-normalization. Variance across all stimulated anchor replicates in the fraction of events assigned to each

population pre- and post-normalization. Manual gates were drawn based on the reference anchor (barcode 1) and applied to all other anchor replicates. (A,C)

Variance per subpopulation pre- (blue) and post-normalization (red) for 95th (A) and 80th (C) percentile normalization. (B,D) Null distribution for change in total

variance for the 95th (B) and 80th (D) percentile normalization. Red bar indicates observed change in total variance. p-value is the fraction of permutations with a

change in total variance as or more extreme than that observed for unpermuted data.
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improved downstreammanual gating procedures by reducing the
need to manually tailor gates.

Manual Gating
The stimulated anchor sample designated as reference was
manually gated using FlowJo (version 10) for the cell populations
defined by the markers shown in Table S1. This set of gates
was applied without manual adjustment to all pre- and post-
normalized anchor samples separately, and each cell population
frequency was quantified as the fraction of all cell events within
a sample. As a further validation, unstimulated anchors were also
examined. By quantifying populations in unstimulated replicates
that were adjusted using the stimulated anchor samples we
showed that this method is applicable to a range of samples
and experimental conditions. Additionally, signal intensity for
functional markers within specific manually gated populations
was also compared pre- and post-batch normalization.

To quantify the magnitude of cell population frequency
variability for an entire experiment we used the total variance
defined as the sum of the eigenvalues of the covariance matrix
of all gated subpopulation fractions in all replicates. Similar
to the test of signal intensity variability described above,
the difference in total subpopulation variance pre- and post-
adjustment provides a measure of the effectiveness of the
adjustment, and a means to compare methods and parameter
settings. To assign a significance level to the change in total
population fraction variance, we again used a permutation test,
where labels of replicate samples were swapped between pre-
and post-adjustment conditions for each replicate. The change in
total variance was then recomputed for all possible permutations,
giving an exact test of the probability of seeing a reduction in

variance of population frequencies as or more extreme than that
observed for the unpermuted data (Figure S1).

Unsupervised Population Quantification
Citrus version 0.8 (34) was chosen as the unsupervised
clustering approach to explore differences between pre- and
post-normalized files. Samples were grouped as pre- or post-
normalized, with 50,000 events sampled from each file and
a minimum cluster size of 2.5%. The significance analysis
of microarrays (SAM) statistical model was used to examine
statistical differences with a false discovery rate (FDR) below
1%. In addition to quantitative evaluation, visual inspection of
data distributions per channel across anchor samples provides a
qualitative assessment of pre- and post-adjustment consistency
and the effectiveness of batch adjustment (Figure 2).

BATCH NORMALIZATION RESULTS

Signal Intensity Variability and Zero-Valued
Events
Whereas some channels are quite consistent across batches,
others show substantial variability (Figure 2A). In addition
to shifts in signal density and changes in distribution shape
(number of visible peaks), we observed large differences between
replicates in the number of events within a mass channel with
ion counts of zero (Figure 3, Figure S2). The differences in the
numbers of zero-valued events are particularly troublesome
for quantile normalization, which either inflates the zeros to
non-zero values introducing noise, or squashes the lowest
non-zero events to zero, resulting in loss of information.
Further, given large initial differences among distributions,
we found that adjusting each channel independently using

FIGURE 7 | Manual gating cell subpopulation variance post-normalization. Variance across all stimulated anchor replicates in the fraction of events assigned to each

population pre- and post-normalization. Manual gates were drawn based on the reference anchor (barcode 1) and applied to all other anchor replicates. (A) Variance

per subpopulation pre- (blue) and post-normalization (red) for 95th percentile normalization. (B) Null distribution for change in total variance for the 95th percentile

normalization. Red bar indicates observed change in total variance. p-value is the fraction of permutations with a change in total variance as or more extreme than that

observed for unpermuted data.
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quantile normalization introduced visual artifacts when viewed
as biaxial plots in the process of manual gating. Although
quantile normalization can enforce identical distributions
among replicates and therefore produces the most consistent
results on the single-channel Kolmogorov–Smirnov test
(Figure 4A), we excluded this option from further analysis of cell
population fraction variability due to the artifacts it introduces
(Figure 4B).

Several combinations of parameters resulted in decreased
distances among empirical distributions within single
channels (Figure 4A). Based on these results and visual
inspection of distributions and gated populations, percentile-
based adjustments made in the raw (untransformed)
ion count data space appeared most effective, and 80th
and 95th percentile scaling were chosen for further
evaluation. Both options substantially reduced per-channel
signal variability (Figure 5, Figure S3) and manually
gated subpopulation variance (Figure 6, Figure S4), as
described below.

Manual Gating Results
With a set of gates manually defined using the stimulated
reference anchor and applied to all anchor samples,
variance in subpopulation proportions among replicates
was decreased after batch adjustment. Decrease in total
variance of cell subpopulation frequencies for each of the
parameter combinations above is shown in Figure 6. These
results indicate that scaling based on the 95th percentile in
the original ion count (untransformed) data space was the
most effective parameter combination for batch adjustment
for this dataset. This same 95th percentile scaling batch
adjustment method was applied to the additional dataset from
the publicly available flow repository, also demonstrating a
decrease in total variance for both frequency of manually
gated populations (Figure 7) and per-channel signal intensity
variability (Figure 8).

Granulocytes and other lymphoid and myeloid populations
of interest (T and B cell subsets, NK cells, monocytes, and
dendritic cells) were examined to confirm that the batch

FIGURE 8 | Variability in signal intensity per channel for the 95th percentile batch normalization approach. (A) Mean signal intensity of each cytokine for all cell events

for each anchor replicate (circles). (B) Variance of these mean signal intensities across replicates. (C) Permutation null distribution and significance of observed change

in total variance (red line). p-value is the fraction of permutations with a change in total variance as or more extreme than that observed for unpermuted data.
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normalization procedure did not alter standard manual gating
and downstream analyses, and also to confirm that the procedure
did not disproportionately affect certain populations relative
to others. In addition to the populations examined above,
gates to examine double negative (CD4–/CD8–) and double
positive (CD4+/CD8+) T cells were drawn to help elucidate
potential batch effects. The frequency of double negative T
cells was greater in the pre-normalized group relative to the
batch normalized group (p-value: 0.0005 t-test), indicating
the presence of batch effects since the cells that should
have been categorized as non-T cells (CD3–) were incorrectly
included within the T cell gate (Figure 9). In addition to
the decrease in variance for the batch-normalized populations,
the reduced misclassification of CD3– cells further supported
the conclusion that the normalization procedure reduced
batch effects (Figure 10). Gating of the unstimulated anchors

served as a secondary means of validation with similar results
(Figure S4).

As mass cytometry is often used to address questions
related to cellular functionality under stimulated conditions,
intracellular cytokine markers were examined to assure the
batch normalization process does not add unnecessary noise.
Three functional markers (IL1RA, MIP1B, and MCP1) were
examined within CD14hi monocyte populations (CD45+, CD3–,
CD19–, CD7–, HLADR+, CD11c+, CD14+, and CD16–) across
unstimulated and stimulated anchor samples. Histograms and
exported means from FlowJo indicated that the application of
the batch normalization method did not eliminate the expected
functional responses (i.e., cytokine production) from populations
of interest, but yet adjusted the signal intensity for the mean
expression values according to the adjustment factor calculated
from the normalization process (Figure 11, Table S2).

FIGURE 9 | Immune cell subset frequencies pre- and post-normalization, assessed via manual gating. Biaxial plots and population percentages (percent of parent

gate) for three immune cell subsets across representative pre- and post-normalized anchor sample (80th and 95th percentile shown). Population percentages

correspond to CD4 vs. CD8T Cells (CD45+, CD3+, CD19–, and CD4+ or CD8+, respectively), CD27hi B Cells (CD45+, CD3–, CD19+, HLADR+, CD27hi), and

CD14 vs. CD16 Monocytes (CD45+, CD3–, CD19–, HLADR+, CD11c+, and CD14+ or CD16+, respectively).
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Clustering Results
Citrus Significance Analysis of Microarrays (SAM) analysis
revealed one particular T cell subpopulation from the batch-
normalized group that had significantly greater abundances
relative to the pre-normalized samples (Figure 12). These
clusters were determined to be CD4 Central Memory T Cells
(CD3+, CD4+, CD27+, and CD45RA–). Of note, the variance
in these clusters for the batch-normalized files was remarkably
reduced relative to the pre-normalized files.

Batch Adjustment Diagnostic Output
Batch adjustment approaches and best strategies are likely
to differ based on the nature/qualities of the dataset. For
this reason, investigators are encouraged to explore different
batch adjustment approaches available through the software
package described. To facilitate this evaluation process, we have
added a graphical diagnostic output for percentile-based batch
adjustments depicting the relative sizes of the scaling factors
used for each batch within each data channel. Investigators may
quickly identify outliers from this figure and decide whether
or not they wish to eliminate certain batches that are outliers
(Figure S5). For further inspection, we have also added signal
intensity distribution plots for every channel, for every anchor
sample from every batch pre- and post-adjustment, with one
figure generated each data channel (Figure S6). Using the scaling
factors figures and the signal distribution figures, users may
determine whether to exclude any batches from further analysis.

An R data file is also saved containing scaling factors for each
batch for more detailed examination.

DISCUSSION

Mass cytometry has the potential to reveal relevant differences
in cell type composition and function across multiple
immunological pathways, aiding in biomarker discovery
and mechanistic hypothesis generation. Methods testing for
differential cell subpopulation abundance or marker intensity
assume that intensities are comparable across samples (30).
Sample barcoding and pooling largely addresses this issue among
samples within a batch, but make no adjustment for systematic
differences between batches (11). Bead normalization (15)
corrects for machine drift occurring over the course of a single
experiment or across multiple experiments, but does not address
other aforementioned technical issues contributing to batch
effects—variability in reagent lots, instrument maintenance and
calibration, and antibody concentration to cell number ratio per
barcode amongst others.

Quantile normalization (QN) is an attractive approach to
batch adjustment, as it forces all samples to fit the same target
distribution regardless of the shapes (properties) of their starting
distributions, and several variations have been developed for the
analysis of RNA-seq data (35). Indeed, by both visual inspection
and the Kolmogorov-Smirnov metric of inter-distribution
distances, QN appears quite effective for single channels

FIGURE 10 | Assignment of cell events to CD3+ T cell gate pre- and post-normalization. Biaxial plots showing cell events that fall within a CD3+ gate used for

examining T cell subsets. Two pre- and post-normalized anchor samples are shown.
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considered in isolation. However, here we have shown that the
potentially large changes introduced by single-channel QN can
introduce artifacts when viewed in two-dimensional plots. Other
methods for handling batch effects rely on the assumption of
sample homogeneity among batches (16). Careful experimental
design requires allocating an equal number of a given condition
to each batch to avoid confounding. With large enough batches
(hundreds to thousands of samples, depending on the data
characteristics) this assumption may be approximately valid,
as outliers or variability within conditions being studied may
average out with large numbers of samples. Current mass
cytometry barcode sets typically consist of 20 samples.With three
experimental conditions (e.g., drug, stimulation, untreated), the
effective number of individuals composing a batch may drop
to six, increasing the likelihood that a single outlier individual
could skew a batch, violating the assumption of homogeneous

composition between batches. There is substantial variability
of immune system composition and function even within the
healthy population, and outliers are expected in potentially
heterogeneous disease conditions. This inherent variability and
the small size of mass cytometry batches make assumptions of
homogeneous batch composition questionable.

To address these issues, we describe the use of technical
replicates included in each barcode set as reference points
to anchor each batch. Adjustments are calibrated using
anchor samples representing each barcode set, then applied
to all samples composing a batch. This strategy avoids any
batch composition assumptions, while comparing identical
anchor samples eliminates biological variability and isolates
the technical effects particular to each batch. For validation,
we use a second set of (unstimulated) replicate samples in
each batch, that are adjusted along with the other samples

FIGURE 11 | Cytokine signal intensity distribution in unstimulated and stimulated anchor samples pre- and post-batch normalization. Histograms showing signal

intensity for three cytokines for the CD14hi monocytes, in paired unstimulated and stimulated anchor samples, pre- and post-normalization (95th and 80th percentile).
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FIGURE 12 | Immune cell subset frequencies pre- and post-normalization,

assessed via unsupervised citrus analysis. Citrus was applied using PAMR

analysis with false discovery ratio of 0.05. Boxplots of relative abundance for

central memory CD4T cells generated from Citrus pre- (PN) and

post-normalization (BN, 95th and 80th percentile).

using parameters determined with the representative anchors.
Significant reductions in variability across batches in the
stimulated anchor replicates, validation of this variability
decrease in the unstimulated anchor samples, and the use
of statistical measures to evaluate the reduction of this
variability, demonstrate the feasibility and effectiveness of a
normalization strategy via which an entire batch is adjusted
using parameters derived from representative anchors in each
barcode set.

Despite the multitude of existing mass cytometry data
analysis tools, challenges in choosing the appropriate analytical
strategy to answer the relevant biological question still remain—
What is the appropriate algorithm to use for the study?
Should one or multiple algorithms be applied to analyze
the data? If more than one analytical method is used,
how will results be integrated? What is the best way to
go back to the raw data from the unsupervised analysis
result? These questions remain a significant challenge that
often discourages the application of mass cytometry analysis
to human immunological studies, where single statistically
meaningful outcomes are expected for clinical application. These
analytical barriers are further compounded by the fact that
human clinical studies often require prospective/longitudinal
timeframes and multiple batches; and the lack of a batch
adjustment/normalizationmethod for mass cytometry data poses
an added (if not crucial) hurdle to downstream analysis of
human clinical studies. Here we describe the development,
statistical validation, and application of an automated batch
adjustment tool designed to minimize batch effects and allow for
relevant downstream analysis. This novel tool is time efficient,
incorporates flexibility for data types, investigator-driven batch
adjustment approach choices, and the ability to evaluate such
adjustment approaches (optional diagnostic output)—with great
application potential for the analysis of large samples in human
clinical studies.

MATERIALS AND METHODS

Study Approval
Human samples were obtained from the Allergy and
Immunology Clinic at Children’s Hospital Colorado. Age
appropriate consent and assent was obtained. All human donors
were enrolled under study protocol 16-0918, approved by
the Institutional Review Board of the Research Compliance
Office at University of Colorado. Stage III melanoma patients
were recruited at the University of Colorado Cancer Center
Cutaneous Oncology Clinic as part of the clinicaltrials.gov
registered clinical trial NCT02403778. All patients provided
a written informed consent, and the treatment protocol was
approved by the Colorado Multiple Institutional Review
Board (#14-0948).

Mass Cytometry Analysis
SLE patient, gender-matched control, or healthy donor
(anchor) peripheral whole blood was collected into heparinized
vacutainers (BD). For CyTOF analysis, blood samples were fixed
with Phosflow lyse/fix buffer (BD 558049) either immediately
after collection (T0); or after incubation at 37C, mixed 1:1 with
RPMI 1640 (Gibco 21870076) plus protein transport inhibitor
cocktail (eBioscience 00-4980-93), and with R848 (1µg/ml;
Invivogen tlrl-r848) for 6 h (T6). Lysed/fixed cells were stored
at −80◦C, and were thawed on the day of barcoding and
staining. To decrease technical variability, palladium isotopes
were used in different combinations for mass tag barcoding
of separate samples, pooled in sets of 20, surface stained
in a single tube with a metal-labeled antibody panel, then
permeabilized with Perm/Wash buffer I (BD 558050) to facilitate
intracellular staining. Barcoding methodology was adapted
from Zunder et al. (11). Protocols for intracellular cytokine
staining (ICS) assays were adapted from previous studies in
O’Gorman et al. (3).
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