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A B S T R A C T   

Recent evidence shows a greater facilitating effect of beta-adrenergic receptors (β-ARs) on long-term synaptic 
plasticity in the ventral versus the dorsal hippocampus. Here, using field potentials from the CA1 area and a ten- 
pulse stimulation train of varying frequency we show that activation of β-ARs by isoproterenol preferentially 
facilitates the output from the dorsal hippocampus at the frequency range of 3–40 Hz without affecting short- 
term synaptic plasticity. Furthermore, isoproterenol increases basal synaptic transmission in the dorsal hippo-
campus only and enhances basal neuronal excitation more in the dorsal than the ventral hippocampus. These 
results suggest that β-AR-modulation of short-term neuronal dynamics differs along the longitudinal axis of the 
hippocampus, thereby contributing to functional specialization along the same axis.   

Introduction 

Noradrenergic transmission is profoundly implicated in modulating 
several brain processes including wakening, attention, synaptic plas-
ticity, learning/memory, and sensory processing (Berridge and Water-
house, 2003; Aston-Jones and Cohen, 2005; Sara, 2009; Hansen and 
Manahan-Vaughan, 2015b, 2015a; O’Dell et al., 2015). Hippocampus, 
a brain structure involved in navigation, memory encoding/retrieval 
and processing of sensory information, among other functions (Eichen-
baum et al., 2016; Goode et al., 2020), is a target region of noradrenergic 
system (Loy et al., 1980) and adrenergic synaptic transmission strongly 
modulates hippocampal long-term synaptic plasticity and 
hippocampus-dependent memory formation via actitation of 
beta-adrenergic receptors (Hansen and Manahan-Vaughan, 2015b, 
2015a; O’Dell et al., 2015; Hagena et al., 2016). Importantly, adrenergic 
transmission differs along the longitudinal (septotemporal or dorso-
ventral) axis of the hippocampus in terms of density of adrenergic nerve 
terminals (Gage and Thompson, 1980), noradrenaline content (Loy 
et al., 1980), extracellular levels of noradrenaline (Haring and Davis, 
1985; Hortnagl et al., 1991) and modulation of long-term synaptic 
plasticity (Papaleonidopoulos and Papatheodoropoulos, 2018), which 
have all been found to be higher in the ventral compared with the dorsal 
hippocampus. These differences belong to a steadily growing body of 
evidence for intrinsic specializations of anatomical and functional or-
ganization along the hippocampal septotemporal axis that corroborates 

the concept of segregation of functions along the same axis (van Strien 
et al., 2009; Fanselow and Dong, 2010; Bannerman et al., 2014; Strange 
et al., 2014). 

Frequency-dependent transient changes in neuronal activity, 
expressed as short-term changes in synaptic input and neuronal output 
are deeply implicated in neural information processing, including tem-
poral filtering, synaptic input diversification and dynamic gain control 
(Abbott and Regehr, 2004; Jackman and Regehr, 2017). Short-term 
changes of neuronal input and output hereafter alternatively referred 
to as the short-term synaptic plasticity and short-term dynamics of 
neuronal excitation, respectively, are related but distinct phenomena. 
For instance, short-term dynamics of neuronal excitation are to some 
extent influenced by short-term synaptic plasticity, however, they may 
be determined by additional mechanisms, including synaptic inhibition 
(Haider and McCormick, 2009; Womelsdorf et al., 2014; Koutsoumpa 
and Papatheodoropoulos, 2019). 

Neuromodulators play crucial roles in controlling neural information 
flow in brain circuits in a frequency-dependent manner (Ito and Schu-
man, 2008). Recently, it has been reported that short-term neuronal 
dynamics greatly differ along the longitudinal hippocampal axis 
(Papaleonidopoulos et al., 2017; Koutsoumpa and Papatheodoropoulos, 
2019). Considering the greater facilitating effect of β-ARs on long-term 
synaptic plasticity in the ventral versus the dorsal hippocampus 
(Papaleonidopoulos and Papatheodoropoulos, 2018), we hypothesized 
that activation of β-ARs might also modulate short-term changes in 
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neuronal activity more in the ventral than the dorsal hippocampus. To 
address this hypothesis, we recorded field potentials from somatic and 
apical dendritic layers of the CA1 hippocampal field following appli-
cation of a 10-pulse stimulation train of varying frequency (0.1–100 Hz) 
at Schaffer collaterals. Strikingly, we found that activation of β-ARs by 
isoproterenol (1 μM) significantly modulates short-term dynamics of the 
CA1 hippocampal output in the dorsal but not the ventral hippocampus 
without affecting short-term synaptic plasticity in either segment of the 
hippocampus. Also, isoproterenol increases basal transmission and 
network excitation more in the dorsal than the ventral hippocampus. 
These results show that short-term dynamics of local CA1 hippocampal 
network are differently modulated by β-ARs in the two segments of the 
hippocampus. 

Materials and methods 

Preparation of hippocampal slices 

Transverse 500 µm-thick hippocampal slices were prepared from the 
dorsal and the ventral segment of the hippocampi obtained from adult 
(3–4 months old) male Wistar rats, as previously described (Papal-
eonidopoulos and Papatheodoropoulos, 2018). Experiments were con-
ducted in accordance with the European Communities Council Directive 
Guidelines for the care and use of Laboratory animals (2010/63/EU – 
European Commission) and approved by the “Protocol Evaluation 
Committee” of the Department of Medicine of the University of Patras 
and the Directorate of Veterinary Services of the Achaia Prefecture of 
Western Greece Region (reg. number: 187531/626, 26/06/2018). 
Furthermore, all efforts were made to minimize the number of animals 
used as well as their suffering. Following decapitation under deep 
anesthesia, the brain was removed, placed in ice-cold (2–4 ◦C) standard 
medium containing, in mM: 124 NaCl, 4 KCl, 2 CaCl2, 2 MgSO4, 26 
NaHCO3, 1.25 NaH2PO4 and 10 glucose and equilibrated with 95% O2 
and 5% CO2 gas mixture at a pH= 7.4. Each hippocampus was excised 
free from the brain and transverse slices, 500 µm-thick, were prepared 

from the dorsal (septal) and the ventral (temporal) segment of the hip-
pocampus, as shown in Fig. 1A. Slices were immediately transferred to 
an interface type recording chamber continuously perfused with stan-
dard medium, of the same composition as described above, at a rate of 
~1.5 ml/min. Slices were continuously humidified with a mixed gas 
consisting of 95% O2 and 5% CO2 at a constant temperature of 30 ±
0.5 ◦C. Tissue stimulation and recording started at least one and a half 
hours after their placement in the chamber. We used the β-AR agonist 
(+)-isoproterenol (+)-bitartrate salt (isoproterenol, 1 μМ) and the β-AR 
antagonist (±)-propranolol hydrochloride (propranolol, 10 μМ); both 
substances were purchased from Sigma-Aldrich (Germany). 

Recordings and data analysis 

We recorded evoked field excitatory postsynaptic potentials (fEPSPs) 
from the stratum radiatum and population spikes (PS) from the stratum 
pyramidale of CA1 region (Fig. 1B-C) using a 7 µm-thick carbon fiber- 
made electrode (Kation Scientific, Minneapolis, USA). Field potentials 
were evoked by electrical stimulation of Schaffer collaterals using a 
home-made bipolar wire electrode (25 µm diameter) with an inter-wire 
distance of 100 µm; we used a platinum/iridium wire purchased from 
World Precision Instruments, USA. Baseline stimulation was delivered 
every 30 s. Stimulation and recording electrodes were positioned in the 
middle of the stratum radiatum and stratum pyramidale both in the 
transverse and the radial axis, using a stereo microscope (Olympus, 
Japan). Specifically, to stimulate afferent fibers and record fEPSP, 
electrodes were positioned at a distance from the pyramidal layer of 
250 µm in dorsal and 300–350 µm in ventral hippocampal slices, 
considering that the length of a CA1 pyramidal cell is about 25–30% 
higher in the ventral than the dorsal hippocampus (Dougherty et al., 
2012). Furthermore, stratum radiatum was determined by the negativity 
of the largest amplitude produced after stimulation of Schaffer collat-
erals at the same radial level, while stratum pyramidale was determined 
by the appearance of a waveform with clearly detected positivities on 
either side of the sharp negativity. Signal was amplified 500 times and 

Fig. 1. Methods used for preparing hippocam-
pal slices and recording and quantifying field 
potentials. A. Drawing of a left hippocampus 
showing the cutting blade orientation (solid 
thin lines) used for preparing transverse slices 
(500 µm); we cut hippocampus orthogonally to 
its long axis (curved dotted line). Slices were 
prepared from the dorsal and the ventral 
segment of the hippocampus, extending be-
tween 1.0 and 3.5 mm from each end of the 
structure (solid lines with arrowheads). B. 
Photograph of a hippocampal slice showing the 
positions of stimulating and recording elec-
trodes. Stimulating electrode was placed in CA1 
stratum radiatum (SR) to activate Schaffer col-
laterals and recording electrodes were posi-
tioned in stratum radiatum and stratum 
pyramidale (SP) to record fEPSP and PS, 
respectively. C. The fEPSP was quantified by 
the maximum slope of its initial rising phase 
measured in a time frame of about one milli-
second (denoted by the two vertical dashed 
lines), starting one millisecond after the peak of 
the presynaptic fiber volley (arrowhead). The 
PS was quantified by its amplitude, measured as 
the length of the projection of the negative peak 
(vertical line with arrowheads) on the line 
joining the two positive peaks on either side of 
the negative peak of the waveform (oblique 
dashed line).   
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band-pass filtered at 0.5 Hz–2 kHz using Neurolog amplifiers (Digitimer 
Limited, UK), digitized at 10 kHz and stored on a computer disk for 
off-line analysis using the CED 1401-plus interface and the Signal6 
software (Cambridge Electronic Design, Cambridge, UK). 

Short-term changes in fEPSP and PS were studied using a frequency 
stimulation protocol consisted of a ten-pulses train delivered at a fre-
quency range from 0.1 to 100 Hz. Consecutive stimulation trains were 
delivered at a random fashion regarding stimulation frequency, and 
trains were separated by a two-minute interval. Frequency stimulation 
was given before and during application of the agonists of β-ARs 
isoproterenol (1 μM). fEPSP was quantified by the maximum slope of its 
initial rising phase and PS was quantified by its amplitude, as shown in 
Fig. 1C. The effects of frequency stimulation were quantified as the 
percent change of each of the nine consecutive evoked responses with 
respect to the first response in a train. Steady state response was esti-
mated by averaging the responses evoked by the last three pulses in a 
train (i.e. 8th-10th). The parametric paired and independent t-tests, and 
the univariate full factorial general linear model (UNIANOVA) were 
used. The values in the text and figures express mean ± S.E.M. The 
number of slices and animals used is given throughout the text (slices/ 
animals). The statistics were performed using the number of slices. The 

IBM SPSS Statistics 27 software package was used for all statistical 
analyses. 

Results 

Application of the β-AR agonist isoproterenol (1 μM), produced a 
significant increase in fEPSP in the dorsal but not the ventral hippo-
campus (Fig. 2A, C & E), and significantly enhanced PS in both segments 
of the hippocampus (Fig. 2B, D & F). In addition, these actions were 
significantly higher in the dorsal compared with the ventral hippo-
campus (Fig. 2E & F). Specifically, isoproterenol significantly enhanced 
fEPSP in the dorsal (by 13.3 ± 1.92%, n = 19/7, p < 0.005) but not the 
ventral hippocampus (3.59 ± 1.87%, n = 14/6, p > 0.05) (dorsal- 
ventral difference, p < 0.05), and increased PS more in the dorsal (by 
94.15 ± 17.63%, n = 49/25, p < 0.001) than the ventral hippocampus 
(by 56.32 ± 17.64%, n = 40/23, p < 0.001), (dorsal-ventral difference, 
p < 0.05). The effects of isoproterenol were occluded by pretreatment 
with 10 μM propranolol (Fig. 2C & D, insert graphs). Specifically, 
application of isoproterenol in the presence of propranolol did not sig-
nificanty change fEPSP and PS in the dorsal (n = 5/3, paired t-test, 
p > 0.05) and the ventral hippocampus (n = 5/3, paired t-test, 

Fig. 2. Isoproterenol increases fEPSP and PS significantly more in the dorsal than in the ventral hippocampus. A-B. Representative fEPSP (A) and PS traces (B) before 
(control, dotted lines) and during application of isoproterenol (ISO, solid lines) are shown. Calibration bars: 1 mV, 5 ms. Stimulation artifacts are truncated for 
clarity. C-D. Collective time courses of the effect of isoproterenol (ISO) on fEPSP and PS. Insert graphs show that the effects of isoproterenol were occluded by prior 
treatment with 10 μM propranolol (PRO). E-F. Overall results of drug action on fEPSP and PS. Asterisks denote significant drug effect (paired t-test, at p < 0.05), and 
dieses indicate significant dorsal-ventral differences (independent t-test, at p < 0.05). 
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p > 0.05). Also, application of propranolol did not significanty affect 
either fEPSP or PS in the dorsal (n = 5/3, paired t-test, p > 0.05) and the 
ventral hippocampus (n = 5/3, paired t-test, p > 0.05). 

Applying the frequency stimulation protocol, we found robust 
frequency-dependent changes in both fEPSP (Fig. 3) and PS (Fig. 4), 
which greatly differ between the dorsal and the ventral hippocampus as 
described previously (Papaleonidopoulos et al., 2017, Koutsoumpa and 
Papatheodoropoulos, 2019). Furthermore, Fig. 3 shows that application 
of frequency stimulation under conditions of tissue perfusion with 1 μM 
isoproterenol did not significantly affect short-term changes in fEPSP in 
either the dorsal (n = 13/5, UNIANOVA, average of all conditioned re-
sponses, F=0.055, p > 0.5, second response, F=0.213, p > 0.5, 
steady-state response, F=0.046, p > 0.5; paired t-test, each response at 

individual frequencies, p > 0.05) or the ventral hippocampus (n = 12/4, 
UNIANOVA, average of all conditioned responses, F=0.227 p > 0.5, 
second response, F=0.357, steady-state response, F=0.179, p > 0.5; 
paired t-test, each response at individual frequencies, p > 0.05). How-
ever, application of isoproterenol in the dorsal hippocampus strongly 
modulated short-term dynamics of neuronal excitation (n = 34/18, 
UNIANOVA, average of all conditioned responses, F=6.404, p < 0.001, 
steady-state response, F=6.651, p < 0.001), (Fig. 4). More specifically, 
isoproterenol produced a significant reduction in the facilitation of 
steady-state responses at stimulation frequencies of 1–30 Hz (paired 
t-test at individual frequencies, p < 0.005). Given, however, that 
isoproterenol produced a robust increase of PS in both segments of the 
hippocampus and considering that the level of neuronal activation 

Fig. 3. Isoproterenol does not significantly affect short-term synaptic plasticity in either segment of the hippocampus. Short-term synaptic plasticity was studied at a 
stimulation current intensity producing a subthreshold fEPSP slope of about 1 mV/ms. Changes in fEPSP are plotted as a function of stimulus number. Each graph 
shows fEPSP changes induced by a single stimulation frequency. Graphs for the dorsal and the ventral hippocampus are displayed in left and right panels, 
respectively. 
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Fig. 4. Isoproterenol significantly influences short-term dynamics of hippocampal output (PS) in the dorsal but not the ventral hippocampus. Short-term changes in 
PS were studied at a stimulation current intensity producing a PS of about 1 mV. Changes in PS are plotted as a function of stimulus number. The indication "ISO 
adjust" refers to the data collected under isoproterenol after adjusting conditioning PS to control levels. Graphs for the dorsal and the ventral hippocampus are 
displayed in left and right panels, respectively. 
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significantly determines short-term dynamics of excitation (Koutsoumpa 
and Papatheodoropoulos, 2019), the above described effects of isopro-
terenol on short-term changes of PS may be secondary to drug-induced 
increase in PS. Therefore, we examined short-term changes of PS also 
after adjusting the amplitude of conditioning PS (i.e., the first PS evoked 
by a stimulation train) to control levels (Fig. 4, ISO adjust). Remarkably, 
we found that in the dorsal hippocampus isoproterenol significantly 
modulated short-term changes of PS across most of the stimulation 
frequencies (UNIANOVA, average of all conditioned responses, 
F=2.268, p < 0.05, second response, F=1.869, p < 0.05, steady-state 
response, F=2.057, p < 0.05). More specifically, we found that isopro-
terenol significantly increased frequency facilitation at stimulation fre-
quencies between 3 and 30 Hz and converted frequency depression into 
facilitation at the stimulation frequency of 40 Hz (Fig. 5A & Fig. 5C, 
respectively; paired t-test at individual frequencies, p < 0.05). Strik-
ingly, in the ventral hippocampus (Fig. 4, Ventral), isoproterenol did not 
significantly affect short-term changes of neuronal excitation under 
conditions of adjusted PS (n = 26/16, UNIANOVA, average of all 
conditioned responses, F=0.209, p > 0.5, second response, F=0.294, 
p > 0. 5, steady-state response, F=0.283, p > 0.5). Similarly, under 
conditions of non-adjusted PS, isoproterenol did not significantly affect 
the average of all conditioned responses (UNIANOVA, F=0.401, p > 0.5) 
or steady-state responses (UNIANOVA, F=0.308, p > 0.5); yet, it 
significantly reduced the facilitation of the second response in a train 
(UNIANOVA, F=3.405, p < 0.001). Fig. 5 shows the effects of isopro-
terenol on the second (panels A & B) and steady-state responses (panels 
C & D) in the dorsal and the ventral segments of the hippocampus across 

all tested stimulation frequencies, under conditions of PS adjustment to 
control levels. Note that isoproterenol modulated short-term changes of 
PS in the dorsal but not the ventral hippocampus. 

Discussion 

Short-term dynamics of neuronal activity profoundly regulate neural 
information flow in local circuits (Abbott and Regehr, 2004; Jackman 
and Regehr, 2017; Pariz et al., 2018) and neuromodulation represents a 
basic mechanism that determines or shapes information transfer be-
tween neural elements (Ito and Schuman, 2008). Importantly, neuro-
modulatory actions of several neuromodulators may considerably differ 
along the septotemporal axis of the hippocampus, see examples in Malik 
and Johnston (2017), Dubovyk and Manahan-Vaughan (2018), Mlinar 
and Corradetti (2018), Papaleonidopoulos et al. (2018), and have sig-
nificant implications in hippocampal physiology and pathology, dis-
cussed in Gulyaeva (2019). Neuromodulation is one aspect of the 
diversification in functional organization along the longitudinal axis of 
the hippocampus. The concept of functional segregation has emerged 
from research performed during the last few decades and shows that 
distinct segments along the hippocampus are involved to different de-
grees in hippocampal functions. Initially, the concept of functional 
segregation emerged as a difference in the involvement of the dorsal and 
the ventral hippocampus to spatial learning and memory, for a review 
see Moser and Moser (1998), while later was expressed by the di-
chotomy between cognition and emotionality that have been ascribed to 
the dorsal and the ventral hippocampus, respectively (van Strien et al., 

Fig. 5. Effects of isoproterenol on conditioned responses in the dorsal and the ventral hippocampus. Data are shown for the 2nd response (A & B) and the steady-state 
response (C & D) in a train. In drug condition, only data with adjusted PS are shown. Example traces are given in inserts (stimulation artifacts are truncated for 
clarity). In plots A and B only the first two responses induced in a 20 Hz train are shown to illustrate changes in paired-pulse facilitation. In plots C and D only the first 
and tenth (i.e. last) responses are shown to illustrate the change induced in steady-state responses by 5 Hz and 40 Hz stimulation. Calibration bars: 0.5 mV and 10 ms 
in A and B, 1 mV and 10 ms in C and D. All stimulation artifacts are truncated for clarity. Asterisks indicate statistically significant drug-induced differences at 
p < 0.05 (independent t-test). Note that isoproterenol significantly enhances paired-pulse and steady-state facilitation of PS in the dorsal hippocampus only. 
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2009; Fanselow and Dong, 2010; Bannerman et al., 2014; Strange et al., 
2014). More specifically, the dorsal hippocampus has been linked to 
information processing underlying spatial learning and memory (Moser 
et al., 1993; Jung et al., 1994; Maurer et al., 2005), while the ventral 
hippocampus has been associated with anxiety-related behaviors (Ban-
nerman et al., 2002; Kjelstrup et al., 2002; Pentkowski et al., 2006), 
social interactions, stress-induced disfunctions (McHugh et al., 2004; 
Okuyama et al., 2016), but also with positive emotions (Yang and Wang, 
2017). 

Noradrenergic transmission is a powerful modulator of neuronal 
activity and activity-dependent plasticity in the hippocampus (Segal and 
Bloom, 1974; Madison and Nicoll, 1982; Hopkins and Johnston, 1984; 
Dunwiddie et al., 1992; Hansen and Manahan-Vaughan, 2015b, 2015a); 
for some recent reviews see O’Dell et al. (2015), Hagena et al. (2016). In 
the hippocampus, β-ARs located at both presynaptic and postsynaptic 
sites regulate transmitter release and neuronal excitability (Dunwiddie 
et al., 1992; Gereau and Conn, 1994b, 1994a; Pedarzani and Storm, 
1996; Hoffman and Johnston, 1999; Milner et al., 2000); for a recent 
review see Hagena et al. (2016) Consistently, we found that isoproter-
enol augments transmission and neuronal excitation in CA1 field, but to 
a different extent in the dorsal and ventral hippocampus. In addition, we 
found that isoproterenol enhances short-term changes in neuronal 
excitation in the dorsal hippocampus only. The increased effects of 
isoproterenol in the dorsal hippocampus may be related to the higher 
expression of β1 adrenergic receptors in the dorsal compared with the 
ventral hippocampus, reported recently (Grigoryan and Segal, 2015), 
and/or a different functional coupling between β-ARs and downstream 
processes. It has been previously shown that β-ARs enhance excitability 
in CA1 pyramidal cells (Madison and Nicoll, 1982; Hoffman and John-
ston, 1999) by inhibiting different types of potassium channels (Ped-
arzani and Storm, 1993; Hoffman and Johnston, 1999; Liu et al., 2017; 
Church et al., 2019) and suppressing medium afterhyperpolarization 
(Church et al., 2019). More specifically, β-ARs increase neuronal excit-
ability by inhibiting Kv4.2/A-type (Yuan et al., 2002) and Kir potassium 
channels (Roy and Sontheimer, 1995), which are both expressed more in 
the dorsal than the ventral hippocampus (Marcelin et al., 2012; Kim and 
Johnston, 2015; Malik and Johnston, 2017). Furthermore, the β-AR-in-
duced increase in excitation of the dorsal hippocampus occurs at a fre-
quency range (3–40 Hz) that corresponds to the time-window of 
medium afterhyperpolarization (50–200 ms), (Gu et al., 2005) which 
regulates CA1 cell firing and involves activation of Kv7 (KCNQ) potas-
sium channels, which are expressed more in dorsal than in ventral 
hippocampus (Honigsperger et al., 2015; Trompoukis et al., 2020). 

Here we show that 1 μM isoproterenol modulates short-term changes 
in neuronal excitation in the dorsal, not ventral hippocampus, though it 
does not affect short-term synaptic plasticity in either segment of the 
hippocampus. This effect appears to be one among many facets of β-AR- 
dependent modulation of neuronal activity along the hippocampus. For 
instance, activation of β-ARs by 1 μM isoproterenol facilitates long-term 
synaptic potentiation (LTP) induced by theta-burst stimulation or a 
classical high-frequency stimulation, more in the ventral than the dorsal 
hippocampus of adult rats (Papaleonidopoulos and Papatheodor-
opoulos, 2018); however, the same drug concentration has no effect on 
LTP induced by high-frequency stimulation in either the dorsal or the 
ventral hippocampus of immature rats (Grigoryan and Segal, 2013). 
These observations support previous findings that show the dependence 
of β-AR modulation of LTP on the frequency and the pattern of synaptic 
activity (Thomas et al., 1996; Gelinas et al., 2008). The picture of β-AR 
actions along the long axis of the hippocampus becomes even more 
complex when forms of short-term plasticity are also considered. Thus, 
1 μM isoproterenol converts short-term synaptic plasticity into LTP in 
the dorsal but not ventral hippocampus of immature or adult rats (Gri-
goryan and Segal, 2013, Grigoryan et al., 2015), presumably acting on a 
substrate of metaplasticity mechanisms. Furthermore, activation of 
β-ARs by 1 μM isoproterenol enhances intermitted theta activity bursts 
more in the ventral than the dorsal hippocampus (Papaleonidopoulos 

and Papatheodoropoulos, 2018), while the present study shows that 
β-ARs enhance short-lasting bursts at a relatively wide frequency spec-
trum (3–40 Hz) in the dorsal hippocampus only. These data suggest that 
the β-AR modulation of neural activity along the hippocampus depends 
on several factors, including the specific pattern of presynaptic activity, 
the age of animals and the potential presence of mechanisms of meta-
plasticity. Here, it is emphasized that short-term changes in neural ac-
tivity play different functional roles in brain circuits from those 
performed by long-term plasticity. Thus, while long-term plasticity is 
involved mainly in the processes of memory formation (Takeuchi et al., 
2014), short-term changes in neuronal activity are thought to be 
involved in current processing of neural activity, such as filtering, 
amplification and pattern detection (Abbott and Regehr, 2004; Jackman 
and Regehr, 2017). It is therefore understood that β-AR could differently 
regulate forms of short-term and long-term plasticity along the 
hippocampus. 

Interestingly, the present results are compatible with the recently 
proposed hypothesis of “glutamate amplifies noradrenergic effects” 
(GANE) (Mather et al., 2016). According to GANE hypothesis, under 
conditions of arousal, mutually enhancing interactions between gluta-
matergic and adrenergic transmission can lead to locally amplified 
neural activity, the “hotspot”, thereby favoring the representations that 
are associated with the hotspot. Importantly, β-ARs represent a key 
component for the appearance of a hotspot. By analogy, the dorsal 
hippocampus local network could be considered as a hotspot in which, 
as the present experiment shows, the combined increased activation of 
glutamatergic and noradrenergic transmission leads to amplified local 
network excitation. Thus, it could be assumed that under conditions of 
intense arousal, hippocampal output is facilitated favorably from the 
dorsal segment of the structure, presumably by mechanisms supporting 
β-AR-dependent localized amplification of neural activity. 

In conclusion, the present results show that activation of β-ARs in-
creases baseline and short-term changes of neuronal activity in the CA1 
region more in the dorsal than the ventral hippocampus, suggesting that 
β-AR modulation is significantly involved in dissociating the functional 
properties of the major output region of the hippocampus along its 
longitudinal axis. 
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