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A B S T R A C T   

The NIH HEALthy Brain and Cognitive Development (HBCD) study aims to characterize the impact of in utero 
exposure to substances, and related environmental exposures on child neurodevelopment and health outcomes. A 
key focus of HBCD is opioid exposure, which has disproportionately affected rural areas. While most opioid use 
and neonatal abstinence syndrome has been reported outside of large cities, rural communities are often under- 
represented in large-scale clinical research studies that involve neuroimaging, in-person assessments, or bio- 
specimen collections. Thus, there exists a likely mismatch between the communities that are the focus of 
HBCD and those that can participate. Even geographically proximal participants, however, are likely to bias 
towards higher socioeconomic status given the anticipated study burden and visit frequency. Wearables, 
‘nearables’, and other consumer biosensors, however, are increasingly capable of collecting continuous physi
ologic and environmental exposure data, facilitating remote assessment. We review the potential of these 
technologies for remote in situ data collection, and the ability to engage rural, affected communities. While not 
necessarily a replacement, these technologies offer a compelling complement to traditional ‘gold standard’ lab- 
based methods, with significant potential to expand the study’s reach and importance.   

1. Introduction 

The HEALthy Brain and Cognitive Development (HBCD) Study is a 
planned prospective and longitudinal study of brain and cognitive 
development across the first 10 years of life (Volkow et al., 2020). The 
focus of the study is to characterize healthy normative neurobehavioral 
development, as well as potential aberrant development resulting from, 
or associated with, in utero substance (opioids and other) use and in the 
context of pre- and post-natal environmental exposures. The HBCD 
study will also provide novel insight on the neurodevelopmental impact 
of the COVID-19 pandemic and associated economic shut-down, 
social-distancing, and other public health policies that have funda
mentally altered the economic, social, and psychosocial environments 
experienced by families and children. 

As a study of neurodevelopment, a combination of multimodal 

neuroimaging techniques, namely advanced 3 T magnetic resonance 
imaging (MRI) and electroencephalography (EEG) is planned to thor
oughly characterize maturing brain structure and function. In addition, 
evolving child cognition and behavior will be assessed across all major 
domains, including early development and pre-academic skills, intel
lectual functioning, expressive and receptive language, visuomotor/vi
suospatial functioning, fine motor coordination, and attention and 
executive functioning. Additional maternal and child health information 
will provide context to this detailed neuroimaging and psychometric 
data, and will include anthropometry, physiology, sleep, physical ac
tivity, family history, caregiver interaction and bonding; biospecimens 
(genetics, microbiome, breastmilk, blood, hair, shed teeth, urine, and 
toenails); and demographic and socioeconomic indicators (race, 
ethnicity, parent education and family income, and residential and 
neighborhood characteristics). These elements will provide rich and 
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important characterization of pre- and post-natal health and associated 
exposure influences previously shown to shape child health and devel
opmental outcomes. 

The developmental interval spanning infancy to pre-adolescence is 
widely recognized as an important and sensitive period of health and 
development. Across this age-span, the structural and functional archi
tecture of the brain is established, and life-long patterns of mental and 
physical (cardiovascular and metabolic) health are set in motion. From 
birth to age 10, the human brain increases more than four-fold in volume 
(Houston et al., 2014), and its eloquent neuroarchitecture matures 
through processes including neurogenesis and migration, synapto
genesis and pruning, and cortical and white matter myelination (Fig. 1). 
These structural and functional changes support the emergence and 
refinement of nearly every cognitive, behavioral, and academic skill 
(Clouchoux et al., 2012; Lyall et al., 2015; Makropoulos et al., 2016; Gao 
et al., 2017). This remarkable transformation is fueled by the mother 
and child’s nutritional and energy resources, and shaped by cascades of 
genetic and environmental interactions that are modulated through 
psychosocial and caregiving relationships (Rice and Barone, 2000; Stiles 
and Jernigan, 2010; Liu et al., 2012; Fields, 2015; Choi et al., 2019). 
While neurodevelopmental changes occur across the lifespan, the period 
before age 10 represents a period of peak growth, maximal plasticity, 
and unique sensitivity (Gale et al., 2004). 

The rapid neurodevelopmental growth and achievement of major 
developmental milestones across the first decade of life demands careful 
consideration of the study visit timing and frequency necessary to 

accurately characterize neurodevelopment. The near exponential 
growth over the first 1000 days of development (e.g., Fig. 1), for 
example, may suggest at least biannual imaging assessments; whereas 
the slower growth exhibited throughout older childhood may be 
adequately captured with only annual visits. However, even a frequent 
visit schedule may not capture the specialized microstructural or func
tional changes that likely accompany achievement of major develop
mental milestones (e.g., rolling over, first steps, first words) or life- 
events (e.g., introduction to formal schooling, changes in living condi
tions, and initial onset of puberty). While most past neuroimaging 
studies of development have utilized a standardized set of imaging 
timepoints (e.g., 6, 12, and 24 months), a potentially more informative 
approach would be base scanning timepoints on the developmental 
progress of the child (e.g., when they first roll over or take their first 
steps). Such frequent neuroimaging, however, would be exceptionally 
challenging, particularly for participants not proximal to the research 
setting. Whether performed during the day or in the evening, infant 
scanning can require prolonged and repeated study visits for the child to 
fall asleep and to collect all desired data elements. This can become 
more challenging during the toddler and early childhood periods (2–5 
years) when children sleep less throughout the day but are difficult to 
routinely scan awake (Richardson et al., 2018). 

While children are inherently competent in their ability to initiate 
relationships, explore, seek meaning, and learn; they are vulnerable and 
depend entirely on caregivers for their survival, emotional security, 
modeling of behaviors, and the nature and rules of the physical and 

Fig. 1. (a) General multimodal MRI patterns of brain maturation, including indices of anatomy, myelination, and functional connectivity across the first 5 years of 
life. (b) Curated and condensed trajectories of white and gray matter volume, myelination, and mean cortical thickness showing the changing rate of development, 
with most developmental processes and changes occurring rapidly over the first 1000 days and the slowing throughout the remainder of childhood. (c) Networks of 
functional connectivity change associated with emerging fine motor, language, and visual processing skill. 
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socio-cultural world that they inhabit. The infant brain is likewise born 
with immense capacity to learn, remodel, and adapt, but sensitive and 
vulnerable to neglect and environmental exposures that begin even 
before birth (Fulford et al., 2003; Kisilevsky et al., 2009; Bock et al., 
2015; Lynema et al., 2016; Vohr et al., 2017). Optimal brain develop
ment, therefore, depends on secure and trusting relationships with 
knowledgeable caregivers who are sensitive and responsive to the in
fant’s needs and interests (Garnett et al., 2020). Myelination and syn
aptogenesis, for example, are stimulated by external cues and 
experiences like maternal interaction, and physical skin-to-skin “kan
garoo” care, touch, and warmth (Kolb, 2009; He et al., 2010; Fields, 
2015; Ismail et al., 2017; Choi et al., 2019). The brain’s adaptive plas
ticity, however, is a double-edged sword. While positive and enriching 
environments can promote healthy brain development (Dobbing, 1964; 
Bradley and Corwyn, 2002; Noble et al., 2005; Farah et al., 2006; 
Georgieff, 2007; Swain et al., 2007; Hillman et al., 2008; Hackman and 
Farah, 2009), neglect, abuse and other negative environments can 
impair maturing brain systems and lead to disrupted cognitive and 
behavioral outcomes (Feinberg, 1982; Rees and Inder, 2005; Fields, 
2008). Negative environments often, but not always, accompany sub
stance use and exposure that, as may be expected, is also associated with 
worsened cognitive development and outcomes. Substance-using par
ents are often less responsive to an infant’s needs nor attentive to their 
cues for support and interaction (Mozeika et al., 2020). 

To appreciate the impact of positive and negative psychosocial and 
environmental exposures on child neurodevelopment, and the com
pounding effects of substance exposure, will require extensive and often 
invasive assessments of the home environment, psychosocial factors, 
and health metrics. Other pre-and post-natal exposures often associated 
with opioid use which are relevant to fetal and infant development 
include maternal sleep health impacted by factors such as depression, 
drinking and smoking, and low socioeconomic status, and sleep distur
bances. These factors have been shown to induce physiological adap
tations that may predispose offspring to altered development and 
disease across the lifespan. While many lab-based assessments of these 
factors are well developed and accepted, at-home or in situ assessment 
may be preferable and less sensitive to the Hawthorne effect (i.e., 
changes in behavior resulting from known observation) (McCambridge 
et al., 2014). Similarly, 1–3-day nutrition or sleep diaries, or measures of 
child health concurrent with the imaging visit may not be representative 
of the 3, 6, or even 12-month period between study visits. The breadth of 
possible factors that likely impact infant, child, and adolescent devel
opment, and the shifting influence with child age, places unique de
mands on the HBCD study and study participants. 

Adding further to the challenges of HBCD is the potential mismatch 
between the families most able to participate in the study, and the 
families most important to the study. Opioid use, abuse, overdose, and 
newborn neonatal abstinence syndrome (NAS) in the US have dis
proportionally affected rural areas (Becker et al., 2018). Over 90% of 
opioid users live outside of large cities and city centers, and nearly half 
of all newborns with NAS are born in rural areas (Kozhimannil et al., 
2019). Amongst the hardest hit areas in the US includes rural southwest 
Virginia, in the heart of Appalachia with an NAS rate of up to 80 per 
1000 live births (compared to a national average of 7.3 per 1000). With 
respect to COVID-19, the changing economic and social landscape has 
disproportionately affected racial and ethnic minorities, and lower in
come families (Raifman and Raifman, 2020). Many have been forced to 
take on additional employment in essential industries to maintain 
housing, food, and other necessities leaving less time for supportive and 
interactive parenting (or assisting with home schooling older children). 
This added economic and health uncertainty has led to increased mental 
health concerns, higher rates of domestic and inter-partner violence, and 
escalating substance use (Mukhtar, 2020) - all further exacerbated by 
the temporary closure of support services. 

The overlap between COVID-19 and the opioid epidemic has, tragi
cally, created a perfect storm that has amplified many factors that 

negatively affect fetal, infant, and child neurodevelopment. However, 
many of those most affected are the most unable to participate in 
research studies. Many areas throughout Appalachia, for example, are 
more than 4 h away from the nearest research center; lower income 
families may not be able to devote time away from work, school, or 
family to attend prolonged study visits; and racial and ethnic minorities 
have often been neglected and maligned by the scientific community 
and are under-represented in research studies. 

To encourage participation amongst remote or rural communities 
many groups have customized vans and recreational vehicles (RVs) into 
mobile laboratories that can facilitate traditional lab-based in-person 
visits but at remote community centers, schools, or even participant 
homes (Racine and Kobinger, 2019). Mobile labs can provide space for 
cognitive and behavioral assessments, facilities and storage for bio
specimen collections (blood samples, etc.), as well as carry sensitive 
neuroimaging technology, such as EEG or NIRS (Lau-Zhu et al., 2019). 

Beyond mobile labs, the emergence of low cost and innovative 
technologies has immense potential to address the increasing challenges 
of subject participation and visit burden, the opportunity to reach under- 
represented communities, as well as increase the amount of data that 
can be collected. Consumer wearables, such as Fitbit, Apple Watch, Oura 
ring, Movesense, Gabi Baby Band and other fitness trackers and wear
ables can provide continuous and non-invasive physiological monitoring 
and associated health data, such as activity levels, heart-rate (HR), HR 
variability (HRV), and sleep metrics. These may be further linked to 
‘nearable’ devices related to anthropometry and body composition, 
heart, and brain activity (ECG and EEG), air quality, light exposure, 
cardiovascular and pulmonary health (lung function, max VO2), sub
stance use (e.g., breath analysis of blood alcohol content and/or exhaled 
carbon monoxide), and parent-child language interaction. Connected 
smart phones and tablets have increasingly been used to conduct remote 
study visits, including neurocognitive assessments, and remote data 
capture (online forms and questionnaires, nutrition and food frequency 
diaries). Research groups have become increasingly proficient at remote 
biospecimen collection, including saliva, fecal, hair, toe/fingernails, 
whole blood, and dried blood spots. Combined, these devices make 
possible near-continuous data collection and monitoring while poten
tially reducing participant burden. The real-time nature of these devices 
allows collection of data before, during, and after sensitive develop
mental periods (potentially not known a priori) without suffering 
problems associated with retrospective recall. 

Remote data collection, via mobile labs, personalized wearable or 
nearable technologies, or their combination, has appeal to the HBCD 
study, specifically with respect to increasing participation amongst 
geographically remote or otherwise under-represented communities; 
facilitating more frequent data collection that aligns with develop
mental timelines or milestones; as well as paradoxically reducing subject 
burden. In this review, we highlight potential approaches that speak to 
these points, with focus on domains of relevance to HBCD, including 
neurocognitive assessment, biospecimen collection, health and envi
ronmental monitoring, and neuroimaging. Taking a human-centered 
design (HCD) prospective, which takes the perspective of the partici
pating family, mother, and child, rather than that of the research team, 
we review potential approaches that could replace and/or complement 
traditional in-person lab-based assessments, examining challenges with 
participant convenience, harmonization, and data security. We also 
explore additional aspects, including research team burden. 

2. Methods 

2.1. Neuroimaging 

HBCD is fundamentally an imaging study of brain and cognitive 
development (Volkow et al., 2020). Imaging measures related to 
developing structure, function, and brain connectivity will be collected 
using high field (3 Tesla, T) state-of-the-art MRI systems with 
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multi-channel radiofrequency (RF) coil arrays (48 channels or greater) 
and current 80 mT/m and 200 mT/m/s gradients. These data will be 
complemented in younger infants and children with electrophysiology 
(EEG) measures of task-based neurofunction that cannot be easily per
formed with MRI. 

While there is little doubt that 3 T MRI systems provide structural 
and functional data with high spatial and temporal resolution and fi
delity, these systems carry a substantial infrastructure cost. State-of-the- 
art systems require dedicated imaging suites, substantial uninterrupted 
power, advanced cooling systems, and experienced and trained techni
cians to run and support them. As such, they are predominately limited 
to tertiary care settings and leading university research centers, skewing 
the individuals and populations that can participate in neuroimaging 
studies towards proximal and higher socioeconomic demographics. The 
considerable acquisition and operational cost of these systems means 
there is often limited time availability - a challenge for infant and child 
studies where participants cannot be guaranteed to fall asleep and be 
scanned within the usual 1-hour scan block. 

At its most basic level, therefore, the HBCD study is a challenge for 
HCD as it elevates the imaging equipment at the design center, with all 
other considerations, including the participating family, secondary. 

2.2. Portable MRI 

Rather than require participants and families to travel to the imaging 
center, HCD principles would seek ways to bring the imaging center to 
the family. The desire for more accessible point-of-care and ‘anywhere/ 
everywhere’ MRI has led to the development of lower field MRI systems 
(<0.5 T). Using advanced machine learning approaches for denoising 
and image reconstruction, these systems now offer structural imaging 
quality nearly on-par with some older generation 1.5 T systems. The 
light weight (~1400 lbs) Hyperfine Swoop™ (www.hyperfine.io) is one 
of the first commercially available low field systems. The Swoop has a 
permanent 64mT main magnetic field, a 5 Gauss boundary diameter of 
~5 feet, and low power requirements. Other research-focused systems, 
with main permanent magnets up to ~100mT have similarly been 
proposed and demonstrated in vivo (Marques et al., 2019; Sarracanie and 

Salameh, 2020). Without need for costly permanent siting or cryogens, 
their relatively low weight and low power needs make systems like 
Hyperfine ideal candidates for mobile imaging, e.g., Fig. 2 with a 
customized van that can travel on rural secondary, local, and dirt roads 
without a commercial driver’s license. A more fully equipped lab, with 
assessment space could also be built out of an RV or motorhome. 

The Hyperfine system is currently capable of whole-brain T1 and T2- 
weighted structural imaging (Fig. 2), fluid-attenuated contrast, and 
diffusion imaging, with spatial resolutions approaching 
1.5 × 1.5 × 1.5 mm isotropic. Quantitative relaxometry, magnetization 
transfer, and perfusion and functional imaging methods are currently 
under investigation. Image quality transfer algorithms(Alexander et al., 
2014; Alexander et al., 2017) may offer the potential to significantly 
improve apparent spatial resolution and image quality, and novel im
aging approaches, such as field cycling (Koenig et al., 1975), and 
hyperpolarized imaging (Coffey et al., 2013) may allow us to explore 
physiologic and metabolic processes not possible at higher field 
strengths(Springer et al., 2014; Bai et al., 2018). In combination with 
either high- or low-density EEG systems, a full complement of structural 
and functional neuroimaging measures can be collected. 

In the context of HBCD and HCD, portable MRI is compelling. The 
most obvious advantage is the ability to perform routine structural im
aging at a participant’s home, wherever they live, at a fraction of the cost 
and burden of conventional 3 T imaging. We envisage two comple
mentary use-cases: 1. Inclusion of underserved communities and in
dividuals; and 2. Increasing neuroimaging frequency. 

For participants in rural areas, the ability to travel two or more hours 
to the nearest research center or hospital setting is a barrier to partici
pation. Even providing transportation and hotel accommodation reim
bursement may not be enough to offset potential economic loss from 
taking two or more days off work; and may not be feasible if a large or 
single-parent family needs to travel. In these cases, bringing the lab and 
scanner to the participant eliminates this barrier. Whilst many imaging 
centers routinely charge $800 or more per 1-hour scan block, the Hy
perfine system may be as low as $50. Given constraints on grant re
sources, this costing difference could be used to either vastly increase 
the number of participants in a study or increase the number of imaging 

Fig. 2. Mobile low field MRI using the 64mT Hyperfine system installed in a customized cargo van (a). Despite its low field and portable nature, the device provides 
sound imaging abilities without geometric distortions (b) and with image quality and contrast nearing 1.5 T quality (c). 
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timepoints collected per participant. A yearly high field image coupled 
with bi-monthly at-home lower field imaging, for example, would pro
vide greater insight into early brain maturation and at lower cost than 2 
semi-yearly conventional scans. Such at-home (or, in the case of older 
children, at-school) scanning could also significantly reduce participant 
burden, with corresponding benefits to retention. 

An immediate challenge to including low field imaging into HBCD, 
however, is the reduced imaging quality and flexibility of systems like 
the Swoop compared to all-purpose higher field 3 T systems. For 
example, while image quality (signal-to-noise ratio, contrast, and spatial 
resolution) is impressive for the field strength, it falls short of 3 T. 
Further, while clinical high field systems can perform functional, spec
troscopic, perfusion, diffusion, and structural scanning, the current 
range of imaging methods available at low field is limited to brain 
structure. It would be ill-advised, therefore, to image rural participants 
only with portable systems, and proximal urban participants with high 
field systems. However, this stratification could be avoided by instead 
viewing portable imaging to also increase imaging frequency across all 
participants. For example, if high field data were acquired where 
possible at 6, 12, and 24 months, low field data acquired at or near the 
participant’s home could be acquired at 3, 9, and 18 months, or in 
complement with EEG (see below). This would provide 2 complemen
tary datasets, providing general trends of structural maturity, with a 
subset of specialized imaging measures. 

2.3. Portable EEG 

Most EEG monitoring systems currently available in clinical practice 
require wired attachments to a power supply, amplifiers, and base units, 
which dramatically limits their portability. Unlike MRI, EEG has a rich 
history of portable device development. Though most portable EEG 
systems had been developed for use with adults, or older children, there 
are now a variety of less expensive, portable, and reusable/disposable 

systems ranging from high density electrode nets to single channel 
sensors. Advancements in wearable, battery powered technologies and 
the development of adhesives specifically designed for placement and 
removal on fragile infant skin, now affords the opportunity for longi
tudinal remote investigations outside the traditional clinical environ
ment. Moreover, recent efforts toward harmonization of EEG data across 
devices and preprocessing pipelines on standardized platforms offer 
options for increased complementary infant data acquisition and anal
ysis (ref). As with lower field portable MRI, some lower density and 
disposable systems offer options for increased complementary data 
acquisition up to and including even daily continuous or pseudo 
continuous EEG measurements in a variety of settings. 

The Geodesic EEG systems (Magstim EGI, Inc) utilize high density 
nets ranging from 32 to 256 leads. The ensemble of dry electrodes evenly 
spaced over the entire scalp, cheeks, and the back of the neck, monitors 
brain activity with a high spatial and temporal resolution. The Geodesic 
system is less ‘portable’ than others as it currently requires nonportable 
additional pieces of equipment for data collection such as the dedicated 
amplifiers, and a computer Enobio EEG (Fig. 3) (Neuroelectrics, Inc) is a 
totally wireless EEG system suitable for mobile brain imaging and 
integration with other physiologic sensors. The device can store up to 
20 h of continuous data on the internal memory. The Explore (Mentalab) 
is an inexpensive portable system (Mentalab) with a small profile, 
reusable caps and can collect simultaneous ECG.The Epilog device 
(Epitel, Inc.) is a miniature EEG device capable of recording high-fidelity 
EEG and ECG from single or multiple sensors. Epilog is inexpensive, 
disposable, and capable of recording continuous EEG data that is less 
susceptible to movement artifacts or antenna noise that frequently affect 
traditional wired EEG systems. The recorded EEG traces are stored on 
the device’s internal memory which can save up to 10 days of contin
uous data. 

The analysis of EEG data offers the potential for quantification of the 
effects of adverse pregnancy exposures. The Safe Passage study 

Fig. 3. Top Panel (from left to right) 128-lead EGI net used to record EEG at birth in the nursery; 32-leads Enobio EEG system used at home to record EEG during an 
attention task in a toddler; infant wearing 8-leads Mentalab Explore system during tactile stimulus presentation; two Epilog devices (left and right forehead) used to 
record resting state EEG in a 5-month infant at home (right). Bottom Panel: Effect of alcohol at 4–6 Hz (theta) on newborn electroencephalography power repre
senting the percent difference in power compared to reference group (no in utero alcohol exposure). 
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investigated the effects of prenatal maternal drinking and smoking on 
infant brain activity EEG power at birth was computed from neonatal 
EEG traces recorded from ~ 1,700during natural sleep using 28-lead 
net. Fig. 3 shows the topological distribution of EEG power character
ized by an increase in EEG power (4–6 Hz (theta)) in the several brain 
regions. Specifically, prenatal alcohol exposure resulted in increased 
low-frequency EEG power in a dose-dependent manner, such that in
fants with moderate or high continuous PAE had the most significant 
increase compared with infants with no PAE. Moreover, consistently for 
PAE and prenatal tobacco exposure, alteration of EEG power was 
asymmetrically distributed for the left and right hemispheres [REF]. 

While most of the the bove-described EEG systems require special
ized training and it is impractical to be shipped to study participants, the 
development of user-friendly kits for remote data collection is under
going. As an example, the small Epilog sensors can be used to collect EEG 
during either resting state or simple challenges (e.g., eyes open and eyes 
closed) in the home environment. 

3. Neurocognitive assessment 

Alongside neuroimaging, assessment of a child’s developing cogni
tive and behavioral functioning is a core component of HBCD. 
Depending on child age and the modalities of neuroimaging to be per
formed (i.e., during a daytime nap, nighttime sleep, or awake during the 
day), neurocognitive assessments may require a separate day of testing - 
necessitating additional travel or an overnight stay near the research 
facility. 

Research and clinically administered neurocognitive batteries often 
include a mixture of performance-based and self- or parent-reported 
measures. In infants and toddlers, the Bayley Scales of Infant and 
Toddler Development (BSID) (Gauthier et al., 1999), Mullen Scales of 
Early Learning (MSEL) (Akshoomoff, 2006), and the Griffiths Scales of 
Child Development (Reyes et al., 2010) are amongst the most popular 
performance-based assessment tools. In older children, the Weschler 
scales, including the Preschool & Primary Scale of Intelligence (WPPSI) 
(Watkins and Beaujean, 2014), Intelligence Scale for Children (WISC) 
(Watkins, 2010), and the Adult Scale of Intelligence (WAIS) (Nelson 
et al., 2013; Canivez et al., 2017) being the de-facto standards for 
children as young as age 3 and older. Each of these scales are available in 
English and Spanish with appropriate population-normed references. 

With respect to parent and self-reported measures, the Ages & Stages 
Questionnaire (ASQ) (Beswick, 2014), the Vineland Adaptive Behavior 
Scales (Perry and Factor, 1989), and the NIH Toolbox (Gershon et al., 
2013) are widely used for general cognitive and intellectual develop
ment, as well as more specific functional domains. Alongside these tools, 
the Global Scales of Early Development and the NIH Infant and Toddler 
toolbox will, when completed, offer additional tablet-based assessments 
of children as young as 3 months across a range of languages. 

As a result of the SARS-CoV-2 coronavirus and related Covid-19 
pandemic, clinical services and research groups across the US hurried 
to develop remote assessment tools and protocols. For older children, 
the NIH Toolbox offers the potential for remote collection via video
conferencing. However, high speed internet and WiFi connectivity may 
not always be available. Approximately 30% of US households with an 
annual income less than $30,000 per year do not have access to high 
speed internet (Reddick et al., 2020). 

In cases where direct observation or performance-based assessments 
cannot be performed i.e., for individuals who cannot accommodate 
multiple trips or prolonged time away from home, alternative ap
proaches are needed. Mobile labs, such as those used to transport the 
portable MRI and/or EEG, with assessments performed in the RV or the 
participant’s home, offer an option or supplement to reliance on parent- 
reports observational measures. The latter, however, can be time 
consuming (lasting 2 + hrs for older children), and their general broad 
nature can be less sensitive to deficits in specific cognitive domains. To 
this end, free-viewing and task-based EEG methods in a mobile unit can 

also be used to assess language, motor skills, socioemotional reactivity 
and temperament, attention, executive functions, learning and memory 
– all functions believed to be potentially vulnerable to prenatal sub
stance exposure. 

A targeted and brief assessment battery comprising compatible in- 
person and on-line measures, such as the child Minnesota Executive 
Function Scale185 or NIH Toolbox186; developing language skills (NIH 
Toolbox186 and MacArthur Bates CDI187); socioemotional reactivity and 
temperament (IBQ-R188, ECBQ189 and the Lab-TAB190; attention and 
executive functioning (Gap/Overlap task191, MEFS185, and Go/No-Go 
‘Zoo’ task192; learning and memory (visual paired comparison193,194, 
memory space/time tablet game195 and the NIH Toolbox picture 
sequence memory task196); and motor development (Vineland197 motor 
sub-domain) can be performed in less than 1 hr in all children regardless 
of assessment location. 

4. Biospecimen collection 

A thorough review of proposed HBCD biospecimen collection is 
provided by Croff et al. (2020) and so here we detail only specifics 
related to samples that can be readily collected remotely and consider
ations thereof, including sampling, storage, and shipping. Biospecimen 
collections, alone and in combination with neuroimaging, neuro
cognitive assessments, and validated questionnaires, are critical to 
establishing and disentangling prenatal substance exposures from the 
postnatal environment. The biospecimen working group highlighted 
essential and recommended biospecimens for biological mothers, fa
thers, and children across four domains of interest: a) substance use 
exposure; b) other environmental exposures; c) genomics and epi
genomics; and d) other biological markers of neurodevelopment and 
putative moderators and mediators of developmental effects (Croff 
et al., 2020). 

There are several distinct advantages to remote collection of bio
specimens across, including the ability to capture additional samples 
from biological maternal and paternal sources, regardless of custody 
status. The consideration of remote biospecimen elements creates op
portunities for collection of additional timepoints outside of those paired 
with in-person assessments. 

While some collections (venous blood, for example) require 
specialized training to collect, the development of user-friendly and 
nearly painless collection and storage sets for saliva, hair, nail clippings, 
fecal, blood spots, and capillary blood; as well as at-home test kits for 
SARS-CoV-2, substance and alcohol use, has reduced the need for in- 
person collection of these samples. However, this does not mean 
collection kits can be simply mailed en mass to parents and families with 
the expectation that they can use and return quality samples. Care and 
thought must be given to packaging, presentation, and support. For 
example, well presented gift boxes with clearly labeled and separated 
kits, clear multi-lingual instructions (complemented by on-line instruc
tional videos), and extra pens, labels, latex-free gloves, etc. 

4.1. Assessment of substance use 

Accurate measurement of prenatal exposures is a particularly 
important part of the upcoming HBCD study. Social desirability bias 
creates concerns around the validity of self-reported alcohol, tobacco, 
and other substance use during pregnancy. The biospecimen working 
group recommended a combination of biospecimens to capture recent 
use (e.g., urine drug screens) and use across a longer time period (i.e., 
fingernails for 3 – 6 months); the use of exhaled air in the postnatal 
period to assess recent tobacco and alcohol use/exposure; collection of 
breastmilk in the postnatal period; recommended cord tissue at delivery; 
and child urine and hair collection throughout childhood. 

Maternal collection of fingernails is an essential element during 
pregnancy, and paternal collection is recommended during this time 
period. Fingernails lend themselves to self- and remote-collection; 
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however, given the sensitivity of this biospecimen for the assessment of 
substance use during pregnancy, the final protocol should prioritize at 
least one in-person collection of this biospecimen. 

Exhaled air breath collection devices for carbon monoxide (CO) and 
ethanol (EtOH) can be collected remotely, each with distinct exposure 
windows. Notably, EtOH breath tests are sensitive to error from alcohol 
remaining in the mouth after sipping an alcoholic drink, and gas from 
the digestive tract with high levels of EtOH. For these reasons, alterna
tive remote collections may be preferred over breath-based systems. 
Notably, cotinine can be assessed via serum remotely collected using 
TASSO or TAP devices, or more affordably through dried blood spots, 
which have been validated for exposure in adults (Murphy et al., 2013) 
and infants (Spector et al., 2007). Continuous monitoring of alcohol use 
may also be accomplished by transdermal alcohol sensors, which have 
demonstrated utility among young adult women over periods as long as 
one month (Croff et al., 2020). 

A breastmilk sample in the first month postpartum was requested for 
presence of opioids and other drugs. Breastmilk sampling will also 
inform infant nutrition and microbiome. Remotely collected breastmilk 
has been used to detect Δ9-THC (Bertrand et al., 2018) and other 
markers of cannabis use, organic contaminants (Tran et al., 2020), and 
SARS-CoV-2 (COVID-19) (Chambers et al., 2020). Because 19.2% of 
breastfed infants are supplemented with formula before they are 2 days 
old, remote sampling will help to capture this biospecimen before par
ticipants can be scheduled for in-person data collection. 

Remote breastmilk collections can be paired with momsense or 
coroflow, both of which are smart devices to measure quantity of 
breastmilk consumed during a feeding, which can also act as incentives 
to parents and reassurance their child is receiving the appropriate 
nutrition. 

For families who choose not to breastfeed, or who supplement 
breastmilk with formula, information on formula brand and approxi
mate breastmilk / formula milk percentage in the child’s diet should be 
obtained. 

4.2. Nutrition 

Although nutrient deficiency is uncommon in the US, many Ameri
cans have inadequate intakes of several nutrients critical to neuro
development. These micronutrient inadequacies are critically important 
to measure during pregnancy. Inadequate nutrient intakes among 
women of childbearing age in the US have been identified for vitamin A, 
choline, B12, C, D, Calcium, and Iron. Various blood and serum collec
tion devices including liquid blood collection devices (e.g., TAP, TASSO 
SST) and dried blood spots (with or without liquid chromatography, e. 
g., Whatman paper, TASSO-M20, ArrayIt) can allow for remote collec
tion of blood during pregnancy in order to better understand the nu
trients available throughout prenatal development. Deciduous teeth can 
also be remotely collected for the measurement of zinc and fatty acids 
(Camann et al., 2013) from the prenatal period through childhood. 
Breastmilk can also be collected to assess infant nutriture, with collec
tion techniques described earlier. 

While breastmilk, blood, and/or teeth may represent gold-standard 
approaches for nutrition intake, population health studies also employ 
food diaries and recalls, including the ASA-24 and similar (Subar et al., 
2012; Jurgens et al., 2019). While available online, recall forms such as 
the ASA-24 can be time-consuming and exhaustive, leading to incom
plete or missing data. To this end, new image-based approaches, which 
estimate nutritional intake from photographs of the meal or snack have 
been developed with validation on-going (Boushey et al., 2017). Such 
approaches may simplify the collection of nutrition data while providing 
robust and reliable estimates. 

4.3. Neurotoxicant exposome 

Known neurotoxicants of interest may create differential exposures 

by site. For example, former industrial hubs, including Rhode Island, 
Massachusetts, Pennsylvania, New York, Michigan, and Ohio have sig
nificant lead contamination in soil and ground water (Jurgens et al., 
2019), which is known to impact brain development and cognitive 
outcomes (Yuan et al., 2006). Neurotoxicants, like heavy metals (e.g., 
lead, arsenic) and other environmental chemicals (e.g., phthalates, 
polychlorinated biphenyls (PBCs), and polybrominated diphenyl esters 
(PBDEs)) have broad windows of neurotoxicity, spanning prenatal and 
postnatal environments. Several remotely collected biospecimens of 
interest can be used to assess the NT exposome, including maternal 
prenatal serum samples, maternal prenatal urine, and offspring decid
uous teeth, and breastmilk. 

4.4. Genomics and epigenomics 

Remote collection of saliva from maternal, paternal, and children 
can be used to link epigenetics changes in biological parents or other 
caregivers. Remote collection may enhance ability of biological parental 
participation in the research study, regardless of custody and parenting 
practices. Saliva collection is recommended by the HBCD biospecimen’s 
working group for generation of whole genome sequencing, and poly
genic risk score generation. 

4.5. Other biological markers of neurodevelopment 

Microbiome. The gut-brain-microbiome axis plays a role in immune 
regulation and neurodevelopment. Working group recommendations 
included child stool samples. This work can be conducted remotely by 
caregivers in the home by swabbing diapers or toilet paper after (Cost
ello et al., 2009; Herman et al., 2020) (Flores et al., 2014), which is 
particularly important because of changes in microbiome over time and 
by location. 

During vaginal childbirth, which represents approximately 69.1% of 
births in the US, the infant is exposed to the vaginal microbiome. Along 
with other parts of the maternal microbiome, the vaginal microbiome 
colonizes the gut of the neonate. In animal models, the vaginal micro
biome is sensitive to stressors, and has been tied to neurodevelopmental 
effects in offspring (Jasarevic et al., 2015). Patterns of the vaginal 
microbiome have been associated with preterm birth (Tabatabaei et al., 
2019). Therefore, remotely collected samples of maternal vaginal 
microbiome after recruitment may serve as important variables of in
terest. Vaginal swabs are a highly-valid self-collected biomarker (Forney 
et al., 2010). Given the interest in microbiome colonization, swabs 
should be collected proximal to delivery; a strong case exists for frequent 
collection in the third trimester. 

Depending on collection-type, microbiome samples can be collected 
and stored in commercial kits with preservatives, allowing them time to 
be couriered back to the research team. Care needs to be taken to ensure 
date and time of collection is noted, and that shipping time and condi
tions (e.g., summer in Arizona) are detailed. 

5. Health and environmental monitoring 

A child’s physiological health, home and built physical environment, 
and their surrounding socioeconomic, psychosocial, and socioemotional 
circumstances exert meaningful influences on their developing brain. 
However, deciphering the individual and cumulative contributions of 
these intertwined factors, in addition to those related to maternal 
antenatal health and substance use is challenging. This owes, in part, to 
the temporal variability of when these factors may be present, the 
brain’s changing sensitivity to them, and the brain’s relative develop
mental status. As an example, while maternal iron deficiency may be 
detrimental to the developing fetus throughout pregnancy, its effect may 
be most profound during the third trimester, when fetal iron stores are 
established for the early postnatal period, and iron sufficiency is critical 
for fetal hippocampal development and initial myelination of brainstem, 
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cerebellar, and central deep white matter regions. 
For many environmental and maternal and child health factors, 

however, the periods over which they exert their greatest influence are 
not known, nor their long-term effects. Thus, it may be desirable to 
collect information on nutrition status, substance use, air and water 
quality, neurotoxicant exposure, family income, neighborhood and 
schooling characteristics, and caregiving quality and caregiver-child 
interaction, and child physical activity, sleep, weight, body composi
tion as often as possible. In the above section, we described methods that 
address some of these important aspects, such as blood spots, urine, hair, 
toe or fingernails, and breastmilk. In addition, the advancement of 
consumer wearables and ‘nearables’ have increasingly made routine and 
near continuous physiologic and environmental monitoring possible. 

5.1. Physiology 

Apple Watch, Samsung Gear, Fitbit, Oura Ring, and other fitness 
trackers (Fig. 4) now provide continuous measures of physical activity 
level, energy expenditure (calories burned), heart rate and heart rate 
variability, blood oxygenation, body temperature, sleep health, as well 
as environmental sound exposure, glucose monitoring, and even elec
trocardiography (ECG). Beyond these built-in functions, connected 
wearables and nearables extend these capabilities to recording blood 
pressure, weight and body composition, spirometry and lung function, 
and air quality monitoring. Once the domain of expensive, bulky, and 
dedicated devices (e.g., actigraphy watches, Holter monitors), most 
commercial fitness monitors offer more expansive technologies in 
inexpensive and sleek form factors with integrated and curated data 
collection, presentation, and archival. Further, some of these devices, 
including those from Apple, Samsung, and Google, have adopted ele
ments of open-source research frameworks (e.g., ResearchKit and 
ResearchStack for Apple and Android-based devices, respectively), that 
provide researchers with supported application programming interfaces 
(APIs) to access the underlying sensors and data streams, and the ability 
to develop custom study applications that can be used in controlled 
study environments, or made available to the general population. 
Studies have begun to evaluate the validity of these devices, with 
comparisons to clinical gold standards and methods revealing differ
ences across devices. For example, Apple Watch has been found to have 
clinically acceptable measures of heart rate, heart rate variability, sleep/ 
wake (Wallen et al., 2016; Walch et al., 2019), and incorporates an 
FDA-approved ECG method for atrial fibrillation detection (Inui et al., 
2020); but overestimates measures of energy expenditure relative to 
indirect calorimetry. Other wearables, such as those from Fitbit, Sam
sung, and Oura, likewise show similar performance for heart rate and 
energy expenditure. 

Regarding the characterization of sleep, wearable approaches, such 
as actigraphy, only capture sleep duration, efficiency, and latency, but 
can not provide information on sleep stage cycling. Newer devices can 

noninvasively acquire maternal EEG and ECG to characterize multidi
mensional measures of sleep in the home during pregnancy and in the 
months after delivery. As an example, EEG data acquired by a single lead 
wearable device (Epilog) can be used to derive overnight sleep cycling 
patterns as shown in Fig. 5. The quantification of EEG rhythmsin the in 
the delta and beta bands represent a valuable tool to monitor the cycling 
of deep and light sleep phases throughout the night. Moreover, such data 
could provide additional insights into maternal physical and mental 
health during pregnancy, including sleep, weight gain, overall activity, 
ecological momentary assessment of depression and anxiety. Coupled 
with smartphone, tablet, or web-based applications, such as Sprout 
Pregnancy or Ovia, these can provide a curated source of antenatal 
health, including medications, antenatal visits, and fetal growth mea
sures. In children, continued sleep and physical activity monitors could 
provide valuable information into child growth, weight gain, and sleep 
health. For instance, one of the main limitations of previous sleep studies 
is that many have relied on subjective measures of sleep, such as parent- 
report questionnaires (e.g., Brief Infant Sleep Questionnaire), which do 
not fully characterize the complexity and multidimensional nature of 
sleep and are subject to reporting or recall bias. Primarily driven by the 
justified fear of sudden infant death (SIDS), there are increasing 
numbers of infant-centric devices that are particularly focused on sleep. 
For example, the clip-on MonBaby monitor records infant movement, 
position (including rolling over), and cardiorespiratory activity or de
vices like the Owlet Smart Sock or Gabi Baby Band, that use near 
infrared spectroscopy to measure heart rate and blood oxygen levels. 

Fig. 4. Example devices used for monitoring actigraphy and physiology, including the (left to right) Actigraph Spectrum, Apple Watch, Samsung watch, FitBit Versa, 
Fitbit Charge, Whoop band, and jewelry based trackers, (top to bottom) Oura ring and Bellabeat Leaf. All provide basic monitoring of physical activity and heart rate, 
with more advanced and expensive devices offering more in-depth physiological monitoring including ECG. 

Fig. 5. Overnight alternance of light and deep sleep cycles. EEG data were 
collected using a single lead wearable device worn by an adult subject on 
the forehead. 
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Using novel wearable devices, we can decrease subject burden by 
assessing the natural sleep environment. Importantly, sleep is a modi
fiable risk factor and practical tools to assess sleep health in the home 
environment will afford the opportunity to improve maternal health and 
promote health equity. 

Furthermore, there is a lack of ecologically valid field studies (i.e., 
outside of the laboratory) and data are often collected at minimal time 
points, which may not accurately reflect possible changes across in
fancy-childhood. 

Direct challenges to the adoption and widespread use of consumer 
wearables within the HBCD study, however, include: 1. Cost of hard
ware; 2. Participant applicability; 3. At-home infrastructure needs; and 
4. Data integration and harmonization with lab-based collections. 

When paired with a smartphone, for example, even the lowest cost 
Apple Watch and refurbished unlocked iPhone combination is a signif
icant investment of hundreds of dollars per study participant – even 
before additional specialized ‘smart’ devices are added, e.g., blood 
glucose and blood pressure sensors While wearable throughout preg
nancy by mothers, and by older childhood (~5 years of age and older), 
most wrist or finger-based fitness and health monitors are not size- 
appropriate or validated in infants and young children. The reliance of 
many wearables on WiFi connectivity and short battery life are impor
tant considerations. As mentioned above, fast and stable internet con
nectivity cannot always be assumed, particularly amongst the more 
rural and lower income settings these devices would be most useable. 
The need to recharge devices 3 or more times per week can lead to 
missed data collection. To address these challenges, the newest wearable 
technologies offer options to collect important physiologic metrics at a 
lower price point, across the targeted HBCD age spectrum, with longer 
battery life and viable connectivity protocols (e.g., Bluetooth). For 
example devices like the Fitbit Zip or Spire Health Tag last several 
months allowing the device to be handed out at one study visit and 
collected, synced, and returned at the following with minimal interfer
ence to the participant’s routine. 

Cumulatively, therefore, numerous options exist to measure basic 
physical activity and general cardiovascular health. However, 

differences in sensor performance, measurement techniques, and 
calculation algorithms between devices (including those from the same 
vendor) can challenge the integration of measures across them and 
implies the need for a consistent and homogeneous approach in HBCD. 

5.2. Physical environment (air and chemical exposures) 

Like physical activity, general concern of air quality and pollution on 
child health (Buka et al., 2006; Koranteng et al., 2007) has led to the 
proliferation of personal wearable and nearable air quality monitors to 
track carbon monoxide, carbon dioxide, and pollutants such as dust, 
pollen soot, and mold, as well as volatile organic compounds (VOCs), 
alongside temperature and humidity. In particular, most higher quality 
devices focus on measuring inhalable particles with diameters up to 
2.5micrometers (PM2.5), which have been associated with reduced 
child lung health, obesity, cognitive impairments, and academic diffi
culties (Buka et al., 2006; Koranteng et al., 2007; Friedrich, 2018; 
Payne-Sturges et al., 2019; Seo et al., 2020). 

At home monitors (Fig. 6), such as those from AWAIR, Eve, Airthings, 
IQAir, and others offer a range of devices from $49 to $499 that provide 
a basic set of temperature, humidity, carbon dioxide, and VOC measures, 
that can be connected to a smartphone either via WiFi or Bluetooth. 
These can be placed in main rooms of the house, including the bedrooms 
and nursery, to gauge overall trends in air quality throughout the house. 

For portable monitoring, the Pico, Airbeam, Flow, and Atmotube are 
wearable devices that are worn around the neck or attached to a 
waistband. They provide more personalized measurement, which may 
be valuable for working parents and school-aged children who spend 
significant time outside the house. 

Less technologically savvy, silicone wristbands can inform not only 
on aspects of air quality, but also numerous chemical exposures (Dixon 
et al., 2019). These passive ‘devices’ are cheap, simple to wear by every 
member of the household (including four-legged members), and can be 
stored for later analysis (Dixon et al., 2018, Doherty et al., 2020). The 
principle drawback to these, however, is the cost of analysis, which can 
range from several hundred to thousands of dollars each. 

Fig. 6. At-home and personal air quality monitors including (top, left to right): AWAIR, Eve, and Airthings room monitors; and (bottom, left ti right): Pico, Atmotube, 
Huma, and Flow personal wearable monitors. 
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5.3. Light and media exposure 

Smartphones, tablets, and laptops have become go-to entertainment 
and content-consumption devices for parents and their children, with 
toy makers even designing infant-friendly protectors (e.g., Fisher-Price 
Laugh & Lean iPhone and iPad Case). However, in addition to taking 
away time that could otherwise be used for more interactive or 
exploratory play, these devices can also emit blue light that interrupts 
sleep patterns and circadian rhythms, impacts memory and general 
cognitive function, and may impact overall child health (including 
obesity) and eyesight development (Read et al., 2015; O’Hagan et al., 
2016; Pattinson et al., 2016; Chaopu et al., 2018; Tonetti and Natale, 
2019). 

Makers of Digital devices (principally Apple, Samsung, and Google) 
now include screen time monitors and light shifting (e.g., NightShift) 
technologies within their mobile OSes that provide tracking information 
on total time spent on the device curated into general categories 
(gaming, social media, reading and reference, etc.), as well as more 
granular information including time spent in individual apps. 

Beyond media exposure, however, light exposure throughout the day 
is also associated with overall health. Activity monitors, such as the 
Philips Actigraph Spectrum, the CamNtech MotionWatch, and the 
Condor ActTrust offer not only activity monitoring but also include 
multiple wavelength ambient light exposure sensors. These devices, 
however, are made for adults and are not form fitted for infants or 
toddlers, and can be cumbersome. 

5.4. Caregiver interaction 

Optimal brain development requires secure and trusting relation
ships with knowledgeable caregivers who are responsive to the infant’s 
needs and interests. Fundamental processes of neurodevelopment, 
including myelination and synaptogenesis, for example, are stimulated 
by external cues and experiences like maternal interaction, and physical 
skin-to-skin “kangaroo” care, touch, and warmth. Caregiver respon
siveness, interaction, and skin-to-skin care are further associated with 
general health metrics, including immune function, weight gain, and 
prolonged breastfeeding exclusivity, which themselves also promote 
improved brain development. 

Quantification of caregiver interaction, however, is often laborious 
and time consuming and, when performed under novel laboratory 
conditions can result in biased findings. Throughout early development 
caregiver-child interaction, including language exposure (infant- 
directed speech, conversational interaction), has also been shown to be 
an important precursor and predictor of later school readiness and ac
ademic success (Duncan et al., 2007; Forget-Dubois et al., 2009). Past 
work has crystalized the ’30 million word gap’ - an estimate of the 
difference in the number of words children from higher income families 
are exposed to compared to those from lower incomes. Differences in 
early language exposure and interaction (specifically, conversational 
turns, which reflect a back-and-forth interaction between the child and 
their caregiver) have been associated with increased child language 
comprehension and school readiness, as well as increased functional and 
structural brain connectivity in infants as young as 6 months (Romeo 
et al., 2018; King et al., 2020) and functional word processing in order 
children (Romeo et al., 2018). 

The current gold standard wearable for at-home language assessment 
is the Language ENvironment Analysis (LENA) device, which is about 
the size of a deck of cards and records the child’s environment for up to 8 
continuous hours. These recordings are then analyzed and broken down 
into various metrics, including the total number of adult words the child 
hears, the number of vocalizations the child makes, and the number of 
conversational turns (child response to adult word and vice versa). 
Other metrics, including the amount of time a television is present, are 
also provided. Conventionally, at least 16 h (approximately 2 days) of 
recording are preferred, which can be a challenge with the device 

recording limit and the need to physically transfer data to a laptop. A 
recent introduction has added a cloud-based option for storage and 
analysis, however, this still requires at least 2 devices to be provided to 
each child. A further concern is the recorded audio file creates a po
tential confidentiality and security risk. 

Newer technologies, ranging from ‘smart’ speakers (e.g., ECHO, 
HomePod, Nest, Sonos, and others may provide a technical platform for 
recording and analyzing adult and infant directed speech remotely 
across multiple languages, and throughout the home, without need for a 
wearable device. Alternatively, the low cost of digital sensors, memory 
storage, and increasing language and motion processing capabilities of 
smart devices make it easy to imagine wearables that combine activity, 
light, physiology, and language environment monitors into a coin-sized 
device. 

6. Discussion 

The proliferation of low-cost consumer, and ‘prosumer’ electronic 
sensors, together with active open-source and manufacturer-supporter 
developer communities, have led to a proliferation of wearables and 
‘nearables’ that offer the potential to replace established high-cost 
standards. Many of the devices illustrated above, including the larger 
imaging systems, have only become available over the last 12–18 
months, and offer compelling new approaches to collecting multiple 
forms of data reliably. However, beyond the specific cost, infrastruc
ture/connectivity, and applicability for infants, toddlers, and young 
children; additional practical challenges and hurdles remain. The first of 
these is device overload. While making use of existing and current de
vices is appealing from an availability, warrantee, and service perspec
tive, many devices offer focused or narrow ranges of data. Thus, multiple 
devices, often requiring the same wrist real estate are needed to obtain 
the full spectrum of desired data (i.e., an Apple Watch for physiology; an 
actigraphy watch for sleep and light; Atmotube for environmental air 
quality; etc.), in addition to the participant’s own devices. Thus, custom- 
built wearables that merge many functionalities may be preferable, but 
may not have the same degree of design esthetic, battery life, or user- 
friendliness that participants may be used to and expect. 

For many commercial devices, access to raw data and algorithm 
specifics is tightly regulated. Some commercial partners may require 
legal research and non-disclosure agreements, which may impair 
sharing of data and open publishing; or only processed and aggregated 
data may be made available, limiting the types and extent of follow-on 
analysis that may be performed. While smaller vendors may be more 
willing to work with individual researchers to make data available, or to 
help validate algorithms and supplied metrics against established gold 
standard devices or questionnaires, this is not a universal truth. These 
companies may not have the resources to build or support developer 
APIs for their devices. 

Device and data harmonization and integration will be a continuing 
challenge given the fast-paced nature of change in consumer wearables. 
Sensor upgrades, algorithm updates t, and other modifications across 
device generations from the same vendor, or between devices from 
different vendors, make it difficult to directly combine and integrate 
data without performing rigorous comparisons (particularly so if access 
to the raw data and/or underlying algorithms is not possible). This may 
argue for standardizing on a device and platform at study outset. 
However, devices are likely to change substantially over the planned 10- 
year study duration of HBCD. For example, the first Fitbit was only 
released in 2009, the first iPad in 2012, and the first Apple Watch in 
2015, and all of which would be considered antiquated, slow, and of 
limited functionally compared to current iterations. Thus, standardizing 
now will likely mean limiting access to future functionality or 
advancement. 

As recent headlines of banking and hospital data breaches have made 
clear, connected devices and the ‘internet of things’ are increasingly 
attractive targets for cyber criminals. As devices become more capable, 
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interconnected, and filled with more personalized information, the need 
to secure them is ever-present. Location data, health metrics, financial 
information, and recorded conversations and interactions are sensitive 
information that need safeguarding and protection beyond those out
lined in the Health Insurance Portability and Accountability Act 
(HIPAA) (Colorafi and Bailey, 2016; Kayaalp, 2018) and General Data 
Protection Regulation (GDPR) (Bovenberg and Almeida, 2019; Clarke 
et al., 2019) regulations. Some possible avenues to address these con
cerns include on-device analysis (for example, performing language 
environment analysis on the device and storing only the derived mea
sures rather than retaining the full audio recording); on-device ano
nymization and data encryption; forgoing wireless or Bluetooth 
connectivity and opting for connected data transfer from the device to 
the intended data repository; and secure enclaves within the device (e. 
g., Apple T2 chip and Secure Enclave) (Abu-Tair et al., 2020; Ilokah and 
Eklund, 2020). Neuroimaging data, in particular MRI of the brain and 
head, offers additional and unique challenges since surface rending 
techniques can permit potential facial recognition and subject identifi
cation (Prior et al., 2009). Skull stripping and other masking techniques 
be applied immediately following acquisition (Budin et al., 2008) may 
help reduce this possibility. In addition, the use of blockchain to track 
and monitor data access, modifications, and processing updates in a 
decentralized manner can further ensure trusted analysis while 
providing noneditable data provenance ledgers (Huang et al., 2020). 

6.1. Participant-centered collection 

While it is critical that captured data and measures be reliable, 
consistent, validated, and secure, the sine qua non that the data be 
measured in the first place. While each individual collection kit may not 
be burdensome or confusing on their own, multiple sample collection 
kits and devices with different timings and instructions can quickly 
become onerous and confusing. Further, as study participants increas
ingly own their own set of devices it becomes more and more difficult to 
encourage them to adopt a different study-specific device. Applying 
HCD principles requires looking at the complete study through the eyes 
of the participating family and child and making the process as trans
parent and minimally invasive as possible. This challenge begins the 
moment the participant receives the package of devices, kits, and tubes; 
and ends when they are received back by the study team. 

It is critical to give thought and attention to how devices are sent, 
how they are packaged, and what instructions are included. Packaging 
and cadence of delivery of remote collection materials is a key consid
eration. Indeed, like commercial packaging, remote device packaging 
serves as a mechanism for highlighting content, promoting engagement 
and enhancing communication opportunities with participants. Princi
ples of packaging design require that a great deal is known about the end 
user, and their needs surrounding supported use of the products (e.g., 
packaging hot spots already paired to wearable devices for those 
without reliable home WiFi, or pre-loaded software to eliminate 
complicated, finicky or lengthy set-up). 

The goal of packaging is to encourage the participant’s continued 
interaction with the research product – and return of data. Therefore, it 
is important that the remote collection packaging clearly communicate 
without additional tools. Packaging is known to influence the uptake 
and use of medicines and the perceived flavor of foods; it is critical to 
design the remote collection package in a way that sequentially in
troduces participants to layers of data collection devices. Human- 
centered design must integrate clear directions, and colors that engage 
and encourage participants to interact and engage with research prod
ucts and remote collection inside. For example, microbiome collection 
kit should be packed separately from the genetic, urine, or other kits in 
their own color that can be consistently identified. Kits for different daily 
collections could extend this further by using different shades with clear 
identifying labels (e.g., Day 1, Day 2, etc.). 

Taken together, appropriate packaging and a user-friendly and 

engaging remote collection experience serves as an opportunity to 
enhance the brand and mission of the HBCD study. 

7. Conclusion 

While the importance of human-centered design is often overlooked 
in health research, we contend that remote data collection represents an 
embrace of its practices - placing the participant and not the laboratory 
setting, at the center of the research experience, and designing metrics, 
measures, and collection techniques around them and their lives. Within 
the context of the HBCD study, success requires the participation of 
families from all walks of life, across racial, ethnic, demographic, and 
socioeconomic spectra, and geographic division. From both a partici
pant recruitment standpoint and the need to acquire detailed informa
tion across multiple domains of maternal and child health, exposures, 
and environmental conditions, remote data collection must be a central 
feature of the HBCD study design. Here we have highlighted the op
portunities and addressed the challenges likely to be encountered as the 
final study is developed. However, there can be little doubt that HBCD 
will be a defining study in advancing the use of remote data capture and 
embracing the innovation of portable imaging, health wearables, and 
environmental nearables. 
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