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Language development has been correlated with specific changes in brain development. The aim of this paper is to analyze the
linguistic-brain associations that occur from birth through senescence. Findings from the neuropsychological and neuroimaging
literature are reviewed, and the relationship of language changes observable in human development and the corresponding brain
maturation processes across age groups are examined. Two major dimensions of language development are highlighted: naming
(considered amajormeasure of lexical knowledge) and verbal fluency (regarded as amajormeasure of language production ability).
Developmental changes in the brain lateralization of language are discussed, emphasizing that in early life there is an increase in
functional brain asymmetry for language, but that this asymmetry changes over time, and that changes in the volume of gray and
white matter are age-sensitive. The effects of certain specific variables, such as gender, level of education, and bilingualism are also
analyzed. General conclusions are presented and directions for future research are suggested.

1. Introduction

Human language is a communication system in which, via
a limited number of meaningless sounds (phonemes), it
becomes possible to make a virtually unlimited number
of combinations that produce meaningful elements (mor-
phemes, words), which can then be combined to generate
an almost endless number of sentences. This property is
usually known as the “double articulation of language” [1],
which means that the speech stream can be divided into
meaningful elements: words that can be further subdivided
into meaningless sounds or phonemes. Language structure
is characterized by the existence of several levels of analysis
[2]. One common distinction is that established in relation
to the transmission of meaning via lexicon (vocabulary) and
grammar (morphosyntax) [3]. Bickerton [4] emphasizes that
symbolic units (lexicon) and syntax (grammar) are the only
real novelties in human communication and the most salient
of all elements in any adequate theory of language, while
Chomsky [5] has made a similar distinction when referring

to the conceptual (lexical) and computational (syntactic)
aspects of language.

In most adults, language has a well-defined cerebral
organization in the left hemisphere that includes two main
language systems. The first one, involved in lexical/semantic
analysis, is associated withWernicke’s area, while the second,
located in the left posterior frontal lobe (Broca’s area), is
related to grammar (morphosyntax) and speech automatiza-
tion (i.e., speech praxis) [3, 6]. This organization of language
in the brain is not exactly the same in children and older
adults, and some significant developmental changes have
beenwell documented.Thepurpose of this paper is to analyze
language development and the changes that occur in its brain
organization from birth through senescence, passing through
the stages of infancy, childhood, adolescence, and adulthood.
It includes findings from both developmental and adult
studies, particularly those of interest to neuropsychology and
the neuroimaging literature. A comprehensive picture of age-
related changes in the volume of gray and white matter is
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provided by structural magnetic resonance imaging (MRI)
studies, while functionalMRI (fMRI) andmagnetoelectroen-
cephalographic (MEG) methods have generated information
on neural activity associated with cognitive functions. Use
of blood oxygenation level-dependent (BOLD) signal with
fMRI may produce acceptable spatial resolution, and the
magnetic fields changes utilized in MEG allow tracking of
the neural activity with reasonable time resolution. More
recently, the analysis of structural connectivity with diffu-
sion tensor imaging (DTI) (white matter wiring) has given
anatomical support to functional brain models of cognition
[7]. This technique allows the visualization of the rate and
shape of diffusion of water along axons and is used to depict
axonal pathways. Thus, the objective of this paper is to
integrate age-related changes in linguistic skills to age-related
neuroimaging findings.

The first section presents a review of the development of
language functions (phonology, vocabulary, grammar) dur-
ing infancy and the preschool and school years, before nar-
rowing the discussion to the development of specific language
skills, such as confrontation naming (CN) (considered a
major measure of lexical knowledge) and verbal fluency (VF)
(regarded as amajormeasure of language production ability).
Language evolution in adults and changes during senescence
are analyzed next. Neuroimaging findings related to language
development are introduced in each section.The influence of
such additional variables as gender, level of education, and
language experience on language development is highlighted
at the end of the paper. Note that this review focuses on the
development of oral language and does not include written
language.

2. Language Development in Infancy
and the Preschool Years

It has been well established that newborns respond to
auditory stimuli in the range of language frequencies and
show an overt preference for verbal sounds [8, 9], suggesting
a biological predisposition to detect and process human
language signals. From 2 to 8 months, babies demonstrate an
evident orientation to verbal sounds that gives rise to the so-
called “mother/father-child dialogue.” Using the habituation
paradigm (in which infants eventually lose interest in a
repeated stimulus and cease to respond to it), it has been
shown that babies aged 22 to 140 days are capable of detecting
consonant-vowel (CV) changes much better in the right
ear (left hemisphere) than the left one (right hemisphere),
a finding which indicates that the left hemisphere is likely
involved in processing language-related signals right from
birth [10]. This is a particularly important finding because it
suggests an inborn brain asymmetry for language.

The results of neuroimaging studies are congruent with
the above observation, as they have shown that very early
in life human language is predominantly processed by the
left hemisphere. Thus, Dehaene-Lambertz et al. [11] used
fMRI to demonstrate that breastfed babies activate restricted
perisylvian brain areas in the left hemisphere when listening
to their mothers’ language. These brain areas are similar to

those involved in language in adult brains (e.g., Wernicke’s
area in the left hemisphere). This suggests that the infant’s
cerebral cortex is already structured into various functional
regions, one of which is active in language reception. In
newborns, as in adults, listening to speech activates a large
subset of temporal lobe areas with a marked left-hemispheric
dominance.

The issue of language lateralization towards the left hem-
isphere from birth, however, is not universally supported,
as some authors (e.g., Dick et al. [12]) have departed from
the electrophysiological literature, questioned the exclusively
innate cerebral organization of language, and postulated
a more dynamic developmental process. They argue that
although event-related potential (ERP) components of audi-
tory stimuli show early left lateralization (from 3 months to 3
years), symmetrical cerebral distribution is seen later in life,
from 6 to 12 years. Also, connectivity during language listen-
ing evolves from interhemispheric connectivity in infants to
the predominant connectivity in the left hemisphere during
adulthood. While the classic language regions are activated
by the age of 6, the functional connectivity among these
regions is not. Unlike adults, who show robust connectivity
between the frontal and temporal language regions in the
left hemisphere, the language network in children is charac-
terized by a strong functional interhemispheric connectivity,
mainly among superior temporal regions, as revealed by low
frequency data from fMRI experiments on language process-
ing [13].The asymmetric organization of language, examined
with fMRI and neuropsychological tests, increases between
the ages of 8–20 years [14]; therefore, early lateralization
of language must be understood in the dynamic context of
changes in brain activation that take place over the entire
life span, a context in which experience plays a particularly
relevant role.

Consequently, it is important not only to consider bio-
logical variables when analyzing brain organization and the
lateralization of language but also to include interaction with
environmental conditions. It could be conjectured that the
brainmechanisms required for language are not fixed at birth
but present a dynamic organization during their development
and exposure to language [15].

The child’s experiences may play a significant role in this
language lateralization process. For instance, the influence
of environmental variables on the cerebral functioning of
language is evident in the phenomenon called “perceptual
narrowing,” inwhich perception is broad at birth, but narrows
as a function of experience [16], such that while at birth
babies are endowed with universal recognition of phonemes
(native and non-native), by the end of the first year a clear
decline in the recognition of nonnative phonemes (i.e., those
to which they are not exposed) is observed [17, 18]. Two
theories have been offered to account for the phenomenon of
perceptual narrowing. First, the so-called regressive theories
of neural development propose explaining it on the basis of
the selective elimination of certain connections (known as
pruning) [19]. Other authors, in contrast, propose that the
perceptual narrowing observed at the functional level is likely
due to the formation of new connections (called selective
elaboration of synapses) [20]. At present, we lack sufficient
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evidence to determine which one of these neurofunctional
explanations is correct or whether the two are contradictory
or complementary.

2.1. Phonology. Phoneme production in the native language
seems to increase parallel to the growing perceptual sen-
sitivity to environmentally relevant phonemic distinctions
(native language phonology) and decreasing sensitivity to
environmentally absent distinctions; that is, perceptual nar-
rowing occurs. Tables 1 and 2 show the acquisition of
consonant phonemes in children whose native tongue is
English or Spanish. There, 90% of the children exposed to
the English language from birth were able to produce 5
consonant phonemes by age 3, 4 more phonemes by age 4,
and the complete phonological repertoire by age 8 [21, 22].
Interestingly, the acquisition of Spanish phonemes seems
to occur more quickly, as 90% of the children exposed to
that language acquired all but 3 of its phonemes by age 4,
while by age 6 they had completed the acquisition of the
entire range [23, 24]. This apparent difference in phonemic
development between English and Spanish can probably be
attributed to two main sources: (1) these studies focused only
on the production of consonants (no vowels, see Tables 1
and 2) and (2) English has more phonemes (about 34) than
Spanish (about 23).

We know that phonological abilities develop in a way that
corresponds to the brain’s growing specialization in terms
of recognizing native language phonemes [25]. During the
second and third years of life, the ability to not only perceive
but actually produce native speech sounds increases signif-
icantly, so that by the age of 4-5 years phoneme repertory
development doubles, and in the range of 6-to-8 years the
typical child’s phonological repertoire is complete, regardless
of her/his phonological language system [22, 26].

In a meta-analysis of the brain/language fMRI literature
conducted by Vigneau et al. [27], phonological processing
activation peaks were found in the left frontal lobe and the left
temporal and inferior parietal areas. Among the phonological
tasks included in the studies reviewedwere syllable repetition
or articulation, reading, listening or attending syllables or
letters, reading a pseudo-word or counting the number of
syllables it contains, counting the syllables in a word, and dis-
criminating whether trial words ended with the same sound.

2.2. Vocabulary. Active vocabulary normally begins to
develop early in the second year of life.Most children produce
their first recognizable words between 12 and 18 months
of age. After the first year, word comprehension begins to
increase rapidly, though at this age a clear dissociation exists
between language expression and comprehension; that is,
children’s ability to understand language significantly surpas-
ses their capacity to produce it [28].

The developmental discrepancy between word compre-
hension and word production in Spanish-speaking toddlers
was reported recently by Jackson-Maldonado et al. [29] and
is shown in Figure 1. By the age of 12 months, children in the
50th percentile produced fewer than 10words but understood
close to 40. At 18 months, this gap persists; that is, while word

Table 1: Acquisition of phonemes in English (adapted from Sander,
[21]).

Phonemes Age at which 50%
produced the sound

Age at which 90%
produced the sound

/p/, /m/, /h/, /n/, /w/ 1 year 3 years
/b/ 1 year 4 years
/k/, /g/, /d/ 2 years 4 years
/t/, /p/ 2 years 6 years
/f/ 2.5 years 4 years
/r/, /l/ 3 years 6 years
/s/ 3 years 8 years
/t∫/, /∫/ 3.5 years 7 years
/z/ 3.5 years 8 years
/j/ 4 years 7 years
/v/ 4 years 8 years
/𝜃/ 4.5 years 7 years
/ð/ 5 years 8 years
/P/ 6 years 8.5 years

Table 2: Acquisition of phonemes in Spanish (adapted fromBedore,
[23]).

Phonemes Age at which 50%
produced the sound

Age at which 90%
produced the sound

/p/, /b/, /t/ 3 years 3.3 years
/m/, /n/, /k/ 3 years 3.7 years
/Q/ 3 years 3.9 years
/l/ 3.3 years 3.9 years
/O/ — —
/f/ 3 years 4.3 years
/t∫/ 3 years 4.5 years
/d/, /g/ 3.3 years 4.5 years
/r/ 3.7 years 4.5 years
/x/ 3.3 years 4.9 years
/T/ 3.7 years 4.9 years
/s/ 3.3 years 5.5 years
/U/ 4.7 years 6 years
Note. The phoneme /O/ is preserved in some areas of Spain and Latin
America.

production doubles to almost 20, comprehension reaches
60. It is interesting to note that similar findings have been
reported for English-speaking toddlers [28].

From 18 to 30 months there is an important increase
in vocabulary size and in the comprehension of words that
are presented out of context. Also, toddlers in this age
group begin to combine words to create sentences and to
use language to ask for information. Thus, the increase
in vocabulary size correlates with an increase in grammar
complexity [30].

According to Fenson et al. [31] and Lorraine [32], by the
end of the first year of life children have mastered perhaps 20
words, but by age 2 their vocabulary will have grown tenfold,
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Figure 1: Number of words produced and understood by Spanish
speakers in the 50th percentile according to the Spanish-language
MacArthur-Bates Communicative Development Inventories Short
Form I (S-CDI SFI) and Spanish-language MacArthur-Bates Com-
municative Development Inventories Short Form II (S-CDI SFII)
(adapted from Jackson-Maldonado et al. [29]).

and by age 3 the child will have close to 1000 words, a number
that will double by age 5. At 6 years of age, the number of
words averages 2,600, but the child’s comprehension includes
approximately 20,000 words, a level of understanding that
will double again by age 12.

The tremendous speed of language development
observed by age 2 has been linked to structural changes in
the neurons (such as the growth of axons and a larger num-
ber of dendrites) and upsurges in the myelination process
that permit faster conduction. A normal newborn has
only sparse neural circuitry, but as age increases there is a
tremendous expansion in the complexity of those circuits
that is reflected in the marked increase in the number of
dendrite arbors from birth to 2 years [33]. In addition to
more general changes in the neuronal structure, Su et al.
[34] used quantitative analysis of MRI images to assess
myelination-associated developmental changes in the signal
intensity of language-correlated regions in infants and
children. Those authors found that myelination in the classic
language areas, that is, Broca’s and Wernicke’s areas, reaches
mature appearance by 18 months, which coincides with the
age at which children begin to actively produce language
and initiate grammatical development. Pujol and colleagues
[35] used three-dimensional MRI to quantify myelination in
the lateral part of the left hemisphere from birth to 3 years
and found that it begins to increase in the sensorimotor
white matter and the Heschl gyrus (primary auditory area)
and later extends into the aforementioned language-related
areas. These authors suggest a process of simultaneous
maturation of the temporofrontal language network, since
both comprehension and production regions showed very
similar myelination progress during the first 3 years of life.

Leroy and colleagues [36] quantified the degree of matu-
ration in the linguistic network in fourteen 1-to-4-month-old
infants using MRI spatial resolution and found that the least

mature perisylvian region was the ventral superior temporal
sulcus (STS). They also observed a significant difference in
maturation in the STS that favored the right side, which
they interpreted as an early indication of the distinctive
left-right development of this structure. Asymmetries in the
maturation of Broca’s area correlated with asymmetries in the
frontotemporal dorsal pathway might provide infants with a
phonological loop circuitry much earlier than was previously
assumed.

2.3. Grammar. Even before children begin to speak, they can
detect complex linguistic cues from auditory input, including
structural regularities [37]. Between 2 and 5 years of age,
the learning of morphosyntactic rules in simple sentences
can be detected, together with the onset of the construction
of progressively more complex sentences [38]. Grammar
develops rapidly during this age range with a significant
increase in average phrase length from 2.0 to 4.5 words [12].

A reliable index of language acquisition in young children
and one that is described conventionally is mean length of
utterance (MLU), which corresponds to the number of words
in a sentence (MLUw) or the number ofmorphemes (MLUm)
used in spontaneous conversations. Rice et al. [39] reported
theMLUw andMLUm of 136monolingual, English-speaking
children ranging in age from 2 years 6 months to 8 years
11 months. Table 3 presents their results by year range. As
can be seen, the MLUw and MLUm by age range are closely
aligned; that is, children advance from producing an average
of 3words, ormorphemes, per utterance at age 2, to 5words or
morphemes per utterance by age 8. Similar results have been
reported for the extension of utterances in normal Spanish-
speaking children [40].

Although brain lateralization of language begins early on,
improvement in language abilities (including syntactic ones)
is associated with an increased lateralization of language
functions in the left hemisphere [7]. For example, between
7 and 12 years of age, better syntactic skills are related to an
increase in left inferior frontal gyrus activation and a decrease
in right inferior frontal activation as measured by fMRI [41].
Also, significant increases in the left frontal lateralization for
verb generation with advancing age beginning at age 5 have
been reported using magnetoencephalography [42].

3. Language Development during
the School Years

The period in which children begin school (around age
6) is considered critical for their cognitive development.
During this time, teaching at school awakens knowledge
of the components of language at all levels of analysis:
phonological, lexical, semantic, grammatical, and pragmatic.
Development of such knowledge is intimately related to
cognitive evolution and is associated with progress towards
the stage of concrete operations. The introduction into
the world of formal instruction enriches and modifies the
linguistic input to which a child is exposed, such that the
drive towards linguistic reflection permits the development
of metalinguistic understanding [43].



Neuroscience Journal 5

Table 3: Mean length of utterances in words (MLUw) and mor-
phemes (MLUm) per age group (adapted from Rice et al. [39]).

Age range (in years) MLUw MLUm
2; 6–2; 11 2.91 3.23
3-3; 11 3.57 3.95
4-4; 11 4.19 4.66
5-5; 11 4.42 4.92
6-6; 11 4.63 5.14
7-7; 11 4.82 5.33
8-8; 11 5.03 5.59
Note. The scores presented by Rice et al. [39] were averaged for each year
range.

By age 6, children present well-developed language skills.
They possess a basic vocabulary of close to 3,000 words,
virtually complete phonological production ability (i.e., they
can produce all the phonemes and phoneme combinations
of the mother tongue), and can correctly understand and use
basic grammar [22].

From the age of 6 years to puberty (around 12), strategies
for generating and integrating information emerge, as does
the use of unusual sentences (sophistication of language
grammar). Lexicon continues to increase in an enhancement
that correlates significantly with more advanced levels of
schooling. A progressive increase ofmetalinguistic awareness
is also found that is due, in part, to the development of reading
skills [44].

MRI neuroimaging studies have demonstrated increases
of white matter (WM) volume throughout childhood and
adolescence [45], which may underlie a greater connectivity
and integration of incongruent neural circuitry [46]. Though
this rapid increase in the volume of WM takes place in both
hemispheres, a more significant increase in the left language-
associated regions (frontotemporal) has been reported in
children and adolescents using computational analysis of
structural MRI [47]. Wilke et al. [48] found that while
listening to a story children between the ages of 6 and 15 years
present bilateral activation of the language regions (supe-
rior temporal, inferior parietal, and inferior frontal brain,
in an fMRI paradigm) with leftward dominance. Clearly,
language development at these ages is linked to the devel-
opment of other, nonlinguistic abilities, such as attention,
social skills, memory, and many other individual character-
istics [26]. More talkative children, for example, may have
the opportunity to practice more language skills through
increased verbal interaction. Also, children with larger verbal
memory capacity may repeat longer sentences, retain more
words, and so develop a larger vocabulary. It is reasonable
to think that the development of language areas in the brain
occurs parallel to the maturation of other brain areas and
parallel to the increased connectivity between the temporal
and frontal lobes (language areas) and other brain structures
(e.g., the hippocampus) that comes with higher age. In fact,
DTI studies have demonstrated that the integrity (measure
by FA values) of most major WM tracks increased with
age during childhood and early adulthood [49] and that

temporal lobe gray-matter structures (the amygdala and
hippocampus) seem to increase in volume during childhood
and adolescence [50].

The transition from childhood to adolescence is char-
acterized by both structural and functional brain changes.
The total cerebral white matter proportion in a structural
MRI study is significantly greater than the change in the
total cerebral graymatter proportion [51], while the reduction
in gray matter correlates significantly with increases in
white matter [52]. The few studies that have analyzed the
association between these anatomical changes and cognitive
performance during adolescence have found better perfor-
mance associated with white matter diffusion properties
[53, 54]. Meanwhile, fMRI studies comparing the trajectory
from childhood to adolescence have shown changes in brain
activation during language production tasks (speaking) from
bilateral towards increasingly lateralized representation in the
prefrontal cortex (premotor areas) [55].

3.1. Development of Confrontation Naming (CN) and Verbal
Fluency (VF). Specific neuropsychological tests have been
widely used with children and adolescents to measure cogni-
tive development and diagnose language disorders. Particu-
larly influential in this regard are two tests: CN (finding figure
names), and VF (saying words that correspond to a semantic
category (semantic condition) or that begin with a particular
phoneme (phonemic condition)), which are useful diagnostic
tools that can effectively identify word finding and language
production defects in diverse neuropsychological conditions.

Riva et al. [43] conducted a study with 160 participants
divided into 5 groups according to the school grade they
were attending: from 1st to 5th. Results revealed consistent
improvements in performance by grade, with higher scores
on semantic fluency tasks than phonemic fluency tasks at
every point. These findings provide support for the claim
that these two tests reflect different abilities and, therefore,
depend on distinct cognitive domains and brain networks.
In the Boston Naming Test (BNT) (an often-used neu-
ropsychological measure of lexical knowledge), participants
increased the number of correct answers as age and years
of schooling increased. No gender or year of schooling ×
gender interaction effects were found. Correlation analysis
revealed closer correlations between the BNT and semantic
fluency tests than with the phonemic fluency test, as the latter
provedmore difficult than the former in all groups tested.The
authors hypothesized that this may be because the specific
ability demanded by the phonemic condition depends on the
maturation of the frontal system and, hence, the development
of executive functions.

In her study of a sample of Hebrew-speaking children,
Kavé [56] determined that only certain naming and fluency
measures reach adult levels during adolescence. As children
develop, their naming test performance improves until reach-
ing adult levels at age 16 to 17. However, 16-to-17-year-old
subjects name fewer items spontaneously and require more
functional cues to arrive at the correct answer than do adults
aged 18 to 29 years, suggesting not only that the vocabulary
required to successfully complete the naming test has been
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acquired by age 16 to 17 but also that maturation of strategic
retrieval functions may still be lacking.

In a study conducted with a sample of monolingual
Spanish-speakers made up of 171 children divided into 5 age
groups (6-7, 8-9, 10-11, 12-13, and 14-15 years), Matute et al.
[57] found that at age 6-7 children can generate about 10
animal names in one minute; by age 8-9, about 11; by age 10-
11, about 12; by age 12-13, about 13; and by age 14-15, about
16. Phonemic fluency increased on average from about 3.5 at
the age of 6-7 to around 13 at 14-15 years. While all fluency
test scores increased from age 6 to 15, the most significant
changeswere seen after age 12-13, a finding consistentwith the
hypothesis that they depend on the maturation of executive
functions. It is important to note that this is the age at
which brain activation patterns during verbal generation are
lateralized in the left hemisphere [58].

Sauzéon et al. [59], meanwhile, measured clusters that
consisted of successively generated words belonging to the
same semantic category (for instance, animal names that refer
to pets or to zoo animals, etc.) or phonemic subcategory
(for instance, words beginning with /a/ to say animal names
or fruit names, etc.). Cluster size (i.e., number of elements
per subcategory) was counted from the second word of each
group and switches were calculated as the number of times
a subject changed from one cluster to another. The number
of switches increased from 11 to 12 years on the phonemic
fluency test but decreased with age on the semantic task. The
authors of this study hypothesized that late frontal network
maturationmay explain why greater changes occurred on the
phonemic fluency test with regard to the number of both
switches and clusters, considering that this is, in part, an
executive function test.They attributed the increase in cluster
size seen over the course of the development of semantic
fluency to the enrichment of semantic knowledge. Thus,
continuous vocabulary expansion may be responsible for the
fact that adults generate more words than teenagers.

The use of clustering strategies in semantic and phonemic
fluency was also tested in the 3rd- and 5th-grade children
(aged 8-9 and 10-11 years, resp.) by Koren et al. [60]. Con-
sistent with the results outlined above, semantic fluency was
greater than phonological fluency in both age groups. Also,
the 5th-grade children had greater semantic and phonemic
fluency than those in the 3rd grade, a finding associated with
an increase in the number of clusters but not cluster size.This
increase, and the related increase in fluency in older children
might thus be related to the development of cognitive flexi-
bility. See Table 4 for a summary of these studies.

3.2. Patterns of Brain Maturation. Verbal generation mea-
sured by VF tests and vocabulary size measured by naming
tests are obviously correlated with some of the neuroanatom-
ical and neurophysiological changes that occur in the brain
during childhood and adolescence. Functional and structural
MRI studies have shown that one of the most important
aspects of maturation across the cerebral cortex after age 5
is the overall decrease in gray matter (GM) volume and the
continuous increase in the volume of white matter (WM)
[61]. The development of GM follows an inverted U pattern,
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Figure 2: Changes in gray and white brain matter between the ages
of 4 and 22 years in males (adapted from Lenroot et al. [61]).

with initial growth followed by a continuous decrease [62,
63]. The age at which this decrease in GM begins varies
across the cerebral cortex; for example, the frontal system
reaches its GM peak between the ages of 12–14 years, while
in the temporal lobe this occurs around age 17-18, and in
the parietal at 10–12 years. In contrast, the total volume of
WM increases continuously (see Figure 2). Giorgio et al. [52]
used diffusion-weighted magnetic resonance imaging to test
for age-related WM changes in 42 adolescents (aged 13.5–21
years). They found that the increase of WM is much more
prominent than the decrease in GM, results which revealed
that the most significant changes were in the body of the
corpus callosum (related to the integration of sensory and
motor cortical information) and the right superior region of
the corona radiata (fibers projecting to and from the entire
cerebral cortex, particularly the motor cortices).

Findings from imaging studies suggest that age-related
WM changes continue beyond early childhood. Myelinated
fibers are the presumed substrate for greater brain connectiv-
ity, for acquiring new abilities, and for increases in learning
[46, 64]. The volume of most brain tracts using diffusion
tensor tractography shows a significant increase between
childhood and adolescence, with volume increases still being
evident in several association cortex tracks during the posta-
dolescent years [65]. Furthermore, gender differences in the
maturation rate of both gray and white matter have been
reported, with boys showing a faster rate of change than girls
[62].

In addition to general changes in brain volume and
gray matter, increments and decrements in the activation of
specific brain regions have also been associated with lan-
guage development. For example, Brown et al. [66] explored
progressive and regressive developmental changes in the
functional brain organization that underlies lexical control
in 95 healthy individuals aged 7–32 years. They used event-
related functional magnetic resonance imaging to identify
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those brain regions that revealed statistically reliable, age-
related effects. These brain regions were divided according
to whether adults or children showed greater activity. Their
results show that 75% of the regions studied (30/40) man-
ifested decreases in activity as age rose. The areas marked
by developmental decreases were distributed bilaterally and
were evident most prominently in the medial-frontal and
anterior cingulate cortex, the right frontal cortex, the medial-
parietal and posterior cingulate cortex, and the bilateral
occipitoparietal cortex. In contrast, only 25% (10/40) of the
age-related brain regions demonstrated increases in activity
as age increased. Most of the regions that showed significant
developmental increases were in the left lateral and medial
dorsal frontal cortex and the left parietal cortex, including
the supramarginal gyrus. The brain regions that expanded
and those that contracted showed signs of becoming adult-
like at different ages. The activity in decreasing, age-related
regions on average became 50% adult-like at age 12.8 years
and 75% adult-like at age 16.5. Regions showing maturational
increases, on the other hand, matured somewhat earlier,
showing peak activity that was 50% adult-like by the age
of 11.9 years and 75% adult-like by age 14.8. In summary,
performance on word generation tasks appears to be related
to increases in the activation of the left frontal and parietal
cortex that reaches a peak around age 13 and to maturational
decreases in other brain regions that achieve an adult-like
condition between the ages of 13 and 16 years.

Szaflarski et al. [67] used a longitudinal design to obtain
additional evidence for progressive and regressive changes in
brain development during the school years. They obtained
fMRI data annually for a period of 5 years using a verbal gen-
eration task paradigm. Results demonstrated a progressive
participation in language processing by the inferior/middle
frontal, middle temporal, and angular gyri of the left hemi-
sphere and the lingual and inferior temporal gyri of the right
hemisphere, accompanied by a regression in the participation
of the left posterior insula/extrastriate cortex, the left superior
frontal and right anterior cingulate gyri, and the left thalamus.
These authors suggest that the development of language
representation in the brain reflects qualitative rather than
simply quantitative changes and concluded that their results
provide evidence of the increased neuroplasticity of language
in this age group.

3.3. Development of Brain Lateralization. To pinpoint the
significance of brain lateralization values, the so-called “lat-
eralization index” has been proposed (e.g., [58, 68]) that
employs fMRI-activation during performance of language
tasks. This index refers to the difference between the number
of activated pixels in the left (L) and right (R) hemispheres
divided by the total number of activated pixels. Analyses of
the lateralization of different functions have shown that one of
the cognitive functions with the highest lateralization indexes
in the left hemisphere is language. Though a certain degree
of functional lateralization has been observed in the human
brain from birth, the assumption that lateralization increases
with age means that the lateralization index can be used as a
measure of brain maturation (e.g., [69]).

The increased lateralization of language in the left hemi-
sphere as age advances has been correlated with the growth of
the corpus callosum, which connects the associative cortex of
the two cerebral hemispheres and expands significantly from
2 to 15 years of age [70]. The anterior regions of the corpus
callosum mature first (at 3–6 years), followed by growth in
the posterior ones (isthmus and splenium) as shown in [71].
Using time series of three-dimensional magnetic resonance
imaging scans,Westerhausen and colleagues [72] showed that
children aged 6–8 years whose callosal isthmus increased in
thickness over the course of 2 years showed a decrease in
interhemispheric information transfer, whereas childrenwho
exhibited a decrease in isthmus thickness showed an increase
in information transfer. These findings support the notion of
a relation between the structural and functional development
of the corpus callosum.Moreover, the authors suggest that the
refinement of the connections of this commissure that occur
after age 6 optimize neural communication between the two
cerebral hemispheres.

4. Language Evolution in Adults
and the Elderly

In the same way that language production and compre-
hension can reveal brain development in the early stages
of human life, language abilities continue to reflect cere-
bral changes throughout adulthood and into senescence.
Although verbal abilities are relatively less sensitive to the
aging effect compared to nonverbal skills, some age effects
on the latter are still observable. For example, Brown [73]
reported that the “tip-of-the-tongue” phenomenon increases
with age, reflecting a certain degree of naming deficit
(anomia), while Ardila [74] described decreases in lexical
access associated with age as measured by the vocabulary
subtest of the Wechsler Adult Intelligence Scale. According
to the normalization data of the WAIS-III [75], vocabulary
subtest scores increase up to the age of 45–54 years, but a
decline is observed after that. More recently, Verhaegen and
Poncelet [76] found that subtle naming difficulties, reflected
by an increase in naming latencies, appear in individuals as
young as those still in their 50s.

Interestingly, lateralization of language seemingly pre-
sents some changes during senescence, as greater activation
of the right hemisphere during language comprehension and
production tasks has been reported among elderly subjects.
This observation suggests that the degree of language later-
alization decreases after a certain age, while cognitive proc-
esses become more symmetrically represented over time
[77]. Szaflarski et al. [78], for instance, examined the effect
of age on language lateralization in 170 healthy, right-handed
children and adults aged 5–67 years using functional MRI
(fMRI) and a verb-generation task.They found that language
lateralization towards the left hemisphere increases between
the ages of 5 and 20 years, levels off between 20 and 25, and
slowly declines from 25 to 70.

Recent research describes highly dynamic and plastic
cerebral and cognitive systems during aging. Studies using
functional neuroimaging have shown that the brains of older
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adults respond to the cognitive changes characteristic of aging
through anatomical and physiological modifications. Cabeza
and colleagues [79] have suggested that during cognitive task
performance a reorganization of brain activation patterns
occurs that is age related. Two activation patterns distinguish
older adults from younger ones, as those authors show (1)
bilateral activation of the prefrontal lobes in cognitive tasks
that in younger adults is lateralized to one hemisphere and (2)
a reduction in occipital-temporal activation with increased
activation of the frontal areas.These functional brain changes
have been unified in models of reduced brain asymmetry
in aging, or HAROLD (hemispheric asymmetry reduction
in older adults) [80], and changes in posterior to anterior
activation, or PASA [81]. The decrease in posterior activation
and increase in anterior activation in older brains have been
interpreted as part of a compensatory strategy by the frontal
lobes [82].

It should be pointed out that decreased asymmetry is
observed not only in the neocortex but also in other brain
areas, including the hippocampus. Maguire and Frith [83]
selected 12 young (23–39 years old) and 12 older subjects
(67–80) and asked them to retrieve real-life autobiographi-
cal event memories accrued over decades. fMRI recording
was performed simultaneously. Several commonalities were
observed between the younger and older groups in terms
of the network of brain areas activated during retrieval.
However, while left hippocampal activation was apparent
in the younger group, bilateral hippocampal activation was
manifested in the older adults. Direct comparisons of the two
groups confirmed significantly greater right hippocampal
activation in those older adults.

4.1. Confrontation Naming and Verbal Fluency in Adults. It
has often been assumed that word retrieval difficulties are
found commonly in older adults; indeed, several studies
have reported evidence supporting an age-related decline
in lexical retrieval ability (e.g., [84–86]). However, other
research has failed to find evidence of such an age-associated
lexical retrieval defect (e.g., [87, 88]). We can conjecture,
therefore, that there may be some variability in the decline
in lexical retrieval or perhaps that the different experimental
approaches using distinct tasks with a variety of study
population account for some of the variation in results.

Kent and Luszcz [89], for example, studied an initial
sample of 803 people with an average age of 76 (range 65–
93) who underwent an initial examination and a follow-up
evaluation 2 years later. Finally, a subsample of 326 subjects
was reevaluated 6 years after that. Results indicated that
age and educational level, but not gender, affected naming
ability. The authors concluded that there was a continuous
decline in naming ability that correlated inversely with age.
Such findings have been observed in both cross-sectional and
longitudinal studies. Interestingly, in a 20-year longitudinal
study, Connor et al. [90] reported a decline of approximately
2% per decade in BNT scores.

Zec et al. [91] meanwhile analyzed performance on the
BNT by 1,111 “normal” elderly (ages 50–101) and 61 younger
adults (ages 20–49). They found that mean BNT scores
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Figure 3: Average Boston naming scores by age groups (adapted
from Zec et al. [91]).

decreased but the standard deviation increased with each
succeeding decade of age. The size of the decline in mean
BNT scores also increased with successive age decades; that
is, there was an accelerating rate of decline associated with
age (see Figure 3). It is important to emphasize that during
normal aging a decrease in mean naming scores is observed,
coupled with an increase in the standard deviations of the
scores, a finding pointed out previously by Ardila [74], who
suggests that as age advances people become more and more
heterogeneous in terms of cognition. The observed decrease
in cognitive test scores and the increase in variability with
aging were also reported by Weintraub et al. [92] in a sample
of 1,101 healthy volunteer physicians (aged 28–92 years).
This observation means that during aging some individuals
present a rapid decline in cognition that eventually results in
symptoms of dementia, while others maintain high cognitive
test performance (“successful aging”). The majority of the
population falls somewhere between these two extremes.

It is noteworthy that, when studying language in general
and naming ability in particular, most researchers have
focused primarily on children and the elderly, frequently
leaving a gap that spans adolescence and early adulthood.
Kent and Luszcz [89] analyzed 22 cross-sectional studies
and one longitudinal study [93] published between 1980 and
2001 on the effects of age, education, and/or gender on BNT
performance in younger and older adults. Based on their
review, they concluded that there was a continuous decline
in naming abilities that correlated inversely with age, since
the results of the cross-sectional studies and the longitudinal
analysis were similar.

As observed in younger individuals, older participants
across age groups also tend to perform better on semantic
fluency tasks than phonemic fluency tasks. It is assumed that
during a semantic fluency task there is an activation of an
entire semantic category that leads to automatic retrieval of
semantically related words. The differences in performance
between these two tests (semantic versus phonemic fluency)
might be explained by the hierarchical organization of the
two categories (phonemic versus semantic), since retrieval
by letter requires exploring more subsets of categories than
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does retrieval of a set like animal names, for example [43].
Moreover, performance on semantic category tasks tends to
be better because the task itself provides a structure that the
phonemic fluency task does not [94]. Phonological fluency
requires processing the phonemic characteristics of words
according to a given rule (i.e., same first letter or sound),
such that phonological fluency tasks demand that subjects
make correct selections, inhibit intrusions, and maintain a
constant level of focused attention [95]. Semantic fluency is
believed to be more automatic, as it relies on common rules
of categorization, whereas phonemic tasks rely on higher-
order cognitive functions. Indeed, retrieval by letter appears
to require exploring more subsets of words than retrieval
of examples from a given semantic category [59]. Table 5
presents verbal fluency scores by age group according to
different authors from studies of adult populations.

4.2. Patterns of Brain Activation in Adults. The patterns of
brain activation observed during performance of CN tests
have also been analyzed using structural MRI and diffusion
tensor imaging (DTI) data, and reports indicate that the
volumes of the left mid-frontal gyrus and right middle tem-
poral gyrus correlate with accuracy on the Action Naming
Test (which requires naming actions, not figures) [96], while
the volumes of the left mid-frontal gyrus and left planum
temporale were seen to be negatively correlated with reaction
times for correct trials on the BNT (i.e., those with greater
volume are, on average, faster). Also, subjects with greater
white matter density tended to achieve greater accuracy and
faster reaction times. Better naming abilities were associated
with the use of the bilateral perisylvian and dorsolateral
frontal areas of both hemispheres. The authors of this study
suggested that the older adults with relatively better naming
ability may be relying on right-hemisphere perisylvian and
mid-frontal regions and pathways in conjunction with left-
hemisphere perisylvian and mid-frontal regions to achieve
better test performance.

In general, fMRI results show relatively consistent areas
of activation during VF tasks. Several studies have found
that the areas of significant activation are the left prefrontal
cortex, including the middle frontal gyrus [97, 98], and the
right cerebellum, while areas of decreased activation are
reported bilaterally in the mesial and dorsolateral parietal
cortex [97]. Activation of regions of the prefrontal cortex
is consistent with the demands on executive functioning
involved in task performance.TheVF paradigm also activates
regions of the inferior frontal gyrus known to be involved
in word retrieval, phonological processing, and language
production, that is, Broca’s area [98]. Using a covert verbal
fluency task, Amunts et al. [99] found bilateral activations of
the posterior part of the frontal cortex including the inferior
frontal gyrus, the precentral gyrus, the parietal lobe, the
orbitofrontal gyrus/insula, and the cerebellum, with more
extensive activations on the left side than the right one.

Different studies report slight variations in the areas of
activation, which can be accounted for by variations in how
the methods are applied and by individual differences in
cognitive strategies. With regard to semantic fluency tests,

Meinzer et al. [100] reported that fMRI peak activity during
such a task centered on the junction of the superior temporal
gyrus and the inferior frontal gyrus, with additional activity
found in the left cuneate gyrus and the medial and middle
frontal gyri, while activity in the right hemisphere was
confined to the caudate nucleus.Thepattern of activity during
the phonemic fluency task was very similar, though a larger
network of brain regions appeared to be activated and peak
activity in several regions was more pronounced. In particu-
lar, a large anterior cluster was activated in the left hemisphere
that included the left superior temporal gyrus and the inferior
frontal gyrus. Also, the superior frontal gyrus, the cuneate
gyrus, and the caudate nucleus were activated. In CN tasks,
increased activation has been observed in the left inferior
temporal gyrus (Brodmann areas 19 and 37) and bilaterally
in the middle and inferior occipital gyri (Brodmann areas 19
and 18), regions that formpart of the occipitotemporal ventral
pathway involved in object recognition and the semantic
processing of visual information [98].

Abrahams et al. [98] developed two fMRI paradigms
to analyze verbal fluency and confrontation naming. They
recruited 18 healthy, right-handed participants (14 men, 4
women) for their study. During the verbal fluency task, par-
ticipants heard an auditory cue of one letter via headphones
and had to respond overtly with a word that began with that
letter during the 4 s period they were allowed to respond.
In the confrontation naming task, subjects were presented
with a visual line drawing of an object for 4 s and had
to say the correct name of the object during the response
period. Verbal fluency was associated with activation in the
middle frontal gyrus (Brodmann areas 46 and 9), the anterior
cingulate gyrus, and the inferior frontal gyrus (areas 44 and
45), whereas confrontation naming activated areas of the
temporal-occipital cortices (areas 18, 19, and 37) and the
inferior frontal gyrus. The authors concluded that these two
paradigms successfully activated the regions involved in exec-
utive (frontal lobe areas associated with the verbal fluency
task) and word retrieval processes (temporal-occipital areas
in the left hemisphere).

Figures 4, 5, and 6 present some examples of fMRI
activation during different language tasks.

Briefly, normal adults present greater activation in the
left inferior frontal and lateral temporal cortex during both
VF and CN. As mentioned above, bilateral activation has
been reported in children, but adolescents aged 13 manifest
activation of the left hemisphere similar to that of adults when
performingVF tasks [58]. It is worth noting that this is the age
(around 13 years) at which the most significant improvement
in performance on VF tasks is usually seen [57].

One of the areas clearly associated with word production
and one that requires special analysis is Broca’s area, which
corresponds to Brodmann areas 44 and probably also 45, in
the left hemisphere. Both VF tasks (semantic and phone-
mic) involve Broca’s area but differ in their participation
in semantic processing, as the left Brodmann area 45 is
more highly involved in verbal fluency tasks with high
semantic load [99]. Regardless of the diversity of functions
of Brodmann area 44 ([101] see http://www.fmriconsult-
ing.com/brodmann/Introduction.html), it could be regarded
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Figure 4: fMRI activation in a right handed 13-year-old boy while
performing a verb generation task. Activation of left Broca’s area
is observed. The small coactivation of the medial frontal cortex is
most likely related to selective attention, required during the task.
Courtesy Dr. Byron Bernal, Miami Children’s Hospital, Radiology
Department. Miami, FL, USA.

Figure 5: fMRI activation of the left superior temporal lobe
(Wernicke’s area) during a receptive language task (discriminating
antonyms from synonyms) in a right handed 13-year-old boy.
Courtesy Dr. Byron Bernal, Miami Children’s Hospital, Radiology
Department, Miami, FL, USA.

as more of a “motor programming” area, whereas Brodmann
area 45 is more of a “language conceptual” area. Damage
in Brodmann area 44 (and in the anterior insula) has been
associatedwith speech apraxia [102, 103], whereas pathologies
of Brodmann area 45 have been related to extrasylvian
(transcortical) motor aphasia [104].

Taken together, all these neuroimaging studies contribute
to a better understanding of the neurological bases of lan-
guage development across the life span [105], particularly the
development of word recall as measured by verbal fluency
and confrontation naming tasks. Table 6 presents the main
findings of these studies.

5. The Effect of Some Specific Variables

As this literature review suggests, age constitutes the essen-
tial variable of language changes across the life span and

Figure 6: fMRI activation rendered in a 3D brain volume. The left
hemisphere is depicted. Activation is seen on the foot of the motor
primary area, Broca’s and Wernicke’s areas during a task involving
expressive and receptive language functions (discriminating cor-
rectness of sentences describing objects) in a right handed adoles-
cent boy. Courtesy Dr. Byron Bernal, Miami Children’s Hospital,
Radiology Department, Miami, FL, USA.

correlates with modifications in brain activation during
performance of language tasks. There are, however, other
variables that may modulate age effects, among which we
canmention gender, level of education, socioeconomic status,
and bilingualism.

5.1. Gender. Gender differences in language abilities have
been widely analyzed in the psychological and neuropsy-
chological literature, with frequent statements that women
achieve higher performance on several verbal tests (e.g.,
[84, 106, 107]), usually show faster language development
[31, 108], and have a larger vocabulary, more accurate speech
production, and greater fluency [109, 110]. It is important
to mention, however, that the proportion of this variance
explained by gender is usually small [111, 112] and that in some
reports the language advantage favors boys rather than girls
[113]. In addition to behavioral dissimilarities between males
and females, sexual differences in white and gray matter
volume and brain functioning have been well documented
[114–116].Moreover, gender effects have been described in the
reduction of gray matter and the increase in the volume of
white matter that occurs in brain development during child-
hood and adolescence [51, 117, 118]. For instance, de Bellis et
al. [119] found a greater age-related decline in graymatter and
a corresponding increase inwhitematter in boys compared to
girls. Although girls also showed significant developmental
changes, these modifications took place at a slower rate than
that in boys. These gender differences in brain development
have been corroborated by other authors [120].

5.2. Education and Socioeconomic Status. Language abilities
have also been strongly correlated with socioeconomic status
and levels of education [121, 122]. For example, parents from
low socioeconomic households use more nonverbal than
verbal strategies with their children [123], which results in
slower language acquisition. The language used by people
from low socioeconomic sectors has also been reported as less
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fluent, characterized by a simpler grammatical structure, and
much more reliant on emotional than logical strategies [124].
Performance on phonemic fluency tests by illiterate people
is extremely poor, and the data currently available suggest
that fluency in illiterate individuals may reach only 3-4 words
per minute, at least for Spanish and Greek, though this may
vary by language [125–127]. Language repetition ability in
illiterate individuals is equivalent to that of schooled literates
as long as real, high-frequency words are presented; however,
when pseudowords are used, discrepancies become apparent
[125, 128, 129].

It seems then that formal education facilitates the devel-
opment of language into a fully symbolic tool. However, lan-
guage development is strongly dependent on cultural values
as well. At least one study [130] has shown that rural children
with little schooling performed better than schooled Indian
or American children in coding and decoding culturally
relevant objects, such as grains and seeds. Thus, children
with no formal schooling were able to separate language
symbols from their physical referents and then use them to
communicate accurately, though their displays of this ability
depended on the cultural relevance of the stimuli used [131].

Schooling appears to influence functional brain organi-
zation [132] (for a review see Ardila et al. [121]), and SES
differences in the function and structure of certain language-
supporting brain regions have been reported [133, 134].

5.3. Bilingualism. Another variable that may influence the
effects of age on the brain’s organization of language is the
subject’s experience with one or more languages. It has been
shown, for example, that infants who grow up in bilingual
environments may have different windows for perceptual
narrowing by retaining greater sensitivity to nonnative con-
trasts that reached a less narrow end state than monolingual
infants [135]. There is also evidence of differences in white
matter between monolinguals and bilinguals. Luk et al. [136]
used diffusion tensor imaging (DTI) and fMRI to measure
white matter integrity and resting-state functional connec-
tivity in a comparative study of monolingual and bilingual
older adults. The latter showed higher white matter integrity
mainly in the corpus callosum that extended into the bilateral
superior longitudinal fasciculi, the right inferior frontal-
occipital fasciculus, and the uncinate fasciculus. While bilin-
gualism plays an important role at older ages, potentially
protecting against age-associated cognitive decline, its effect
is somewhat muted in adulthood [137, 138].

Also worth noting is the fact that the characteristics
of language circuitry seem to be susceptible to the way in
which bilinguals acquire the second language. Mohades et
al. [139] obtained the mean fractional anisotropy (FA) for 4
major white matter pathways in 45 children aged 8–11, sub-
divided into 3 groups (15 simultaneous bilinguals, 15 sequen-
tial bilinguals, and 15monolinguals).The 3 groups showed no
significant differences in mean FA over the left arcuate fasci-
culus/superior longitudinal fasciculus or the fibers emerging
from the anterior mid-body of the corpus callosum that
are associated with the premotor and supplementary motor
cortices. In simultaneous bilingual subjects, the left inferior

frontooccipital fasciculus had higher mean FA values com-
pared to monolinguals and sequential bilinguals, whereas
comparisons of the bundle that arises from the anterior area
of the corpus callosum and projects into the orbital lobe
fibers yielded a significantly lower mean FA value in simulta-
neous bilingual subjects compared to monolinguals. In both
cases, the FA values for sequential bilinguals were interme-
diate between those of the other two groups. To the best
of our knowledge, this study provides the first evidence of
bilingualism-related adaptations of white matter microstruc-
ture in the human brain.

There is also evidence for the plasticity of cortical gray
matter in response to bilingualism. For example, Mechelli
et al. [140] reported higher gray matter density in left inferior
parietal regions in a group of Italian-English bilinguals
relative to English monolinguals. The simultaneous use of
two different languages has been seen to be associated with
functional brain changes and different connectivity patterns.
Future research will determine the bilingual variables associ-
ated with these connectivity changes.

6. Conclusions

This review has attempted to elucidate the typical develop-
ment of language in relation to typical brain development
and to reach some conclusions drawn by integrating research
from the fields of neuropsychology and neuroimaging. Struc-
tural neuroimaging studies have shown a positive correlation
between language tests and WM volume; that is, as WM
increases in childhood, better performance on language tests
is seen. In contrast, a negative correlation is observed between
language test performance and GM volume in children, with
decreased GM being associated with better performance.
In senescence, there is a positive correlation between GM
volume and language test performance.

Functional brain organization shows modifications with
age, and these changes in brain dynamics are also associated
with performance on language tasks. Brain activation during
language tasksmoves frombilateral (early in life) to unilateral
(young adults) and then back to bilateral (senescence).
Although data point to an asymmetrical distribution of
language from birth, lateralization of language in the left
hemisphere is modified by experience and, according to
many authors, greater lateralization of language in the left
hemisphere seems to be an index ofmaturation. Interestingly,
older adults with bilateral activation achieve better language
test performance.

There is a clear need for additional studies on several
topics: first, well-elaborated models of neurocognitive devel-
opment for individuals across the life span that are applicable
to language development from childhood to senescence.
Some neurocognitive models have already been proposed for
older individuals, such as the vulnerability of anterior brain
systems in aging [141, 142]; the brain reorganization hypoth-
esis proposed in the HAROLD model; and the posterior
anterior shift in aging [80, 143]. However, there is an evident
need to continue advancing in this direction. A second
area should focus on implementing longitudinal designs
that combine neuroimaging and neuropsychological data
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from large sample groups at different levels of development,
ideally spanning the entire age spectrum from childhood to
senescence. Although some of the studies described in this
review were longitudinal, most were of the cross-sectional
typewhich limits the possibilities of generalizing their results.
A third research area would involve using structural equa-
tion models (i.e., predictive models; see [144]) in studies
of language development, as this would allow us to make
better predictions of the influence of age in relation to other
intervening variables, such as gender, years of schooling, SES,
and language experience.
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[157] H. Sauzéon, C. Raboutet, J. Rodrigues et al., “Verbal knowledge
as a compensation determinant of adult age differences in verbal
fluency tasks over time,” Journal of Adult Development, vol. 18,
no. 3, pp. 144–154, 2011.

[158] S.-H. Ryu, K. W. Kim, S. Kim et al., “Normative study of
the category fluency test (CFT) from nationwide data on
community-dwelling elderly in Korea,” Archives of Gerontology
and Geriatrics, vol. 54, no. 2, pp. 305–309, 2012.

[159] J. Stokholm, K. Jørgensen, and A. Vogel, “Performances on five
verbal fluency tests in a healthy, elderly Danish sample,” Aging,
Neuropsychology, and Cognition, vol. 20, no. 1, pp. 22–33, 2013.

[160] A. K. Troyer, M. Moscovitch, and G. Winocur, “Clustering and
switching as two components of verbal fluency: evidence from
younger and older healthy adults,” Neuropsychology, vol. 11, no.
1, pp. 138–146, 1997.

[161] M. Schmitter-Edgecombe, M. Vesneski, and D. W. R. Jones,
“Aging and word-finding: a comparison of spontaneous and
constrained naming tests,”Archives of Clinical Neuropsychology,
vol. 15, no. 6, pp. 479–493, 2000.

[162] N. S.Wecker, J. H. Kramer, B. J. Hallam, andD. C.Delis, “Mental
flexibility: age effects on switching,”Neuropsychology, vol. 19, no.
3, pp. 345–352, 2005.


