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Abstract

Background: The Drosophila pupal eye has become a popular paradigm for understanding morphogenesis and tissue
patterning. Correct rearrangement of cells between ommatidia is required to organize the ommatidial array across the eye
field. This requires cell movement, cell death, changes to cell-cell adhesion, signaling and fate specification.

Methodology: We describe a method to quantitatively assess mis-patterning of the Drosophila pupal eye and objectively
calculate a ‘mis-patterning score’ characteristic of a specific genotype. This entails step-by-step scoring of specific traits
observed in pupal eyes dissected 40–42 hours after puparium formation and subsequent statistical analysis of this data.

Significance: This method provides an unbiased quantitative score of mis-patterning severity that can be used to compare
the impact of different genetic mutations on tissue patterning.
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Introduction

The Drosophila compound eye has emerged as a superb tissue in

which to study a variety of processes. In particular, pupal eye tissue

provides opportunities to examine cell death, signaling, fate

specification, cell movement, adhesion and regulation of the

cytoskeleton [1]. Errors in these processes produce irregular numbers

and organization of cells. These changes can consequently disrupt

the precise hexagonal outlines of ommatidia and if sufficiently severe

lead to rough adult eye phenotypes. As our understanding of these

processes and the group of genes we study increases in sophistication,

it becomes increasingly important to account for multiple compo-

nents of a mutant phenotype rather than a single aspect (such as cell

number). We have therefore developed a simple system to

systematically analyze and record multiple components of pupal

eye phenotypes. This quantitative assessment enables efficient,

thorough comparison of genotypes as well as meaningful statistical

analyses because each genotype is objectively ranked according to

the scope and severity of mis-patterning. An earlier version of this

method was successfully used to assess and validate genetic

interactions between cindr (which encodes an adaptor protein with

roles including actin regulation and endocytosis) and loci encoding

actin regulators and junction components [2].

The wild type fly pupal eye has a limited number of cell types

[3]: eight photoreceptors that are recruited a full day earlier during

the third larval instar and subsequently organized into character-

istic positions within each ommatidium, bristle cell organules

(composed of four different cells) and four glial-like accessory cell

types that take on distinctly recognizable shapes and positions.

These are the cone cells (that lie mainly above the photoreceptors

with basal processes during development), the primary (1u)

pigment cells (which surround the cone cells), and secondary (2u)
and tertiary (3u) pigment cells that form a honeycomb lattice across

the eye field enclosing and separating neighboring ommatidia.

Patterning of these lattice cells occurs between 18–28 hours after

puparium formation (h APF) at 25uC: a process of active cell

rearrangement and programmed cell death (PCD) reorganizes

these cells into their final pattern [4,5] (Figure 1A-D). The final

surface pattern is most usefully scored at 40–42 h APF (Figure 1E).

Here we describe typical mutant phenotypes and a simple method

to score them to comprehensively quantify mis-patterning.

Photoreceptor cells are not present at the surface of the pupal

retina and are not included in this analysis.

Results

A hexagonal grid was superimposed on images of the apical

profile of pupal eyes dissected at 41 h APF (Figure 1F) as follows:

each hexagon was drawn to connect the centre of 6 ommatidia

surrounding a central ommatidium; this field was then utilized as a

single data point as we scored defects observed within each

hexagonal area. One ‘point’ was awarded per defect and recorded

in a spreadsheet (Microsoft Excel) and then summed to give a total

number of defects per field. We found that analyzing 75

ommatidia of a genotype and then determining the average

number of errors per ommatidium provided a reliable ‘ommatidial

mis-patterning score’ (OMS) characteristic of that genotype;

variance and standard deviation were also included. Some mutant

eyes displayed position-specific defects. For example we consis-

tently found more severe phenotypes in the posterior hemisphere

of the eye when expressing an RNAi transgene. In addition bristle

groupings were often observed to be missing or mis-positioned
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toward the periphery of the eye field. To prevent such position-

dependent effects from skewing the final OMS, we routinely

imaged and analyzed only the central region of the pupal eye. In

addition the 75 data points were collected from images obtained

from between 8 and 12 pupal eyes, and dissections were repeated

to ensure that observations fairly represent each genotype.

Inevitably it is also important to culture and dissect control and

experimental genotypes simultaneously to allow proper compar-

ison of age-matched phenotypes.

The following features were scored (summarized in Table 1; all

phenotypes refer to the apical surface, refer to Materials and

Methods for genotypes):

Cone cell defects

N Four cone cells lie atop wild type ommatidia (Figure 2A). Each

field was allocated a point for each missing (Figure 2B) or

additional (Figure 2C) cone cell.

N Wild type cone cells arrange in an energetically stable manner

that minimizes surface area whilst maximizing adhesion between

cone cells [6] (Figure 2A). Any errors in this arrangement

(Figure 2D, E) may indicate aberrant junction components or

assembly, and were scored by allocating one point.

N As the four cone cells are initially assembled, the anterior and

posterior cone cells are in direct contact (Figure 1A). At 18–

19 h APF; contact orientation then switches (Figure 1B, C): the

polar and equatorial cells contact at the center of the group

(Figure 2A). Partial or complete failure to re-orient (Figure 2G

and F respectively) was scored by allocating one point.

N Wild type cone cell clusters are precisely oriented within the

equatorial-polar plane of the eye epithelium, reflecting proper

planar cell polarity. Mis-orientation of the cluster (Figure 2H)

was allocated one point.

Primary pigment cell defects

N Two symmetrical 1us surround the cone cells (Figure 3A). One

point was allocated for each additional (Figure 3B) or missing

(Figure 3C) 1u. Additional 1us may indicate ectopic 1u cell

recruitment early (16–19 h APF) or later (.19 h APF) due to

unstable 1u:1u cell junctions (see below) or excess 2u/3us that

promote crowding around ommatidia.

N The anterior and posterior 1us are specified between 16–19 h

APF. By 22 h APF, both 1us are extended around the cone

cells and are equal in area. If one 1u was smaller, one point was

allocated (Figure 3D). Similarly, if three or more 1us
surrounded the cone cells and were not equal in size one

point was allocated.

N Wild type 1us form stable polar and equatorial boundaries with

each other. One point was allocated for any compromise in the

fidelity of either of these junctions (Figure 3E-G). To score for

the severity of disruption, an additional point was allocated for

each interommatidial cell that made direct contact with the

central cone cells (termed cone contact cells) consequent to the

open 1u phenotype (Figure 3F, G).

Bristle grouping defects

N Bristle organules are comprised of four cells— neuron, glia,

trichogen, and tormogen [3]— that are difficult to resolve with

standard fluorescence imaging. Hence only gross defects

pertaining to overall patterning of the tissue were assessed.

Three characteristically positioned bristle groupings surround

each wild type ommatidium (Figure 4A); this positioning can

be aberrant at the posterior of wild type eye fields but rarely at

Figure 1. Patterning the wild type fly pupal eye. A-E. Commencing
19 h APF, two 1us (labeled, pseudo-colored orange) encircle the central
four cone cells of each ommatidium (labeled c in B, also orange). Three
bristle groups (purple) position at three vertices of the final hexagon.
Lattice cells (in green) gradually reorganize coming into single file at
around 24 h APF. Frequently three cells occupy the 3u cell niche (asterisks
in C) before this is resolved to a single cell (asterisks in D, labeled 3u in E).
Excess cells are removed by apoptosis, leaving single 2u cells extending
along each side of the hexagon (E). F. For analysis a hexagonal lattice is
superimposed onto an image to create data points (seven shown).
doi:10.1371/journal.pone.0007008.g001

Analysis of Fly Eye Patterning

PLoS ONE | www.plosone.org 2 September 2009 | Volume 4 | Issue 9 | e7008



the center. Points were allocated to fields for each missing

(Figure 4B), mis-positioned (Figure 4C) or additional

(Figure 4D) bristle group.

Tertiary pigment cell defects

N Individual 3us inhabit specific niches at the three hexagon

vertices surrounding each ommatidium (Figure 5A). A point

was allocated per missing 3u cell (Figure 5B, C). A maximum

score of three errors for 3u cell defects can be allocated per

data point: points were not allocated for additional (more than

three) or misplaced 3u’s since these positional defects are

accounted for when assessing bristle defects.

Rotation defects

N Cone and 1u cells are oriented precisely within the plane of the

epithelium (Figure 6A) along an equatorial-polar axis. This

arrangement is usually consistent with the arrangement of

underlying photoreceptors. Defects in this orientation greater

than 30u were termed mis-rotated ommatidia (Figure 6B) and

allocated one point. However this classification is arbitrary:

whether or not the underlying photoreceptor group and entire

ommatidia is mis-rotated is not readily assessed when imaging

the apical surface with junctional markers.

Interommatidial cell number

N In wild type tissue twelve interommatidial pigment cells (IPCs)

lie within the hexagonal area of a data point: three 3us, six

complete 2us, plus the halves of six additional 2us (illustrated in

Figure 7A). For an experimental data point, one point was

allocated per additional or missing cell above/below the total

of twelve. Cells were counted regardless of their position, size

or apparent fate (Figure 7B). Any cells lying partly within the

superimposed hexagonal area were scored as half a cell

regardless of what proportion of the cell actually lay within the

data point area. Additional or missing lattice cells may be

consequent to either direct mis-regulation of the apoptotic

machinery, signaling to enhance cell survival, or defective cell

movements that target cells to specific zones surrounding each

ommatidium where apoptosis preferentially occurs [4,5,7,8].

N Patterning of 3us was additionally scored in our analysis (see

above) because this cell fate is dependent on cell signaling,

programmed cell death of excess cells, and regulation of

adhesion and cytoskeleton. Using live imaging we have

observed 3 cells actively compete for this position at each

vertex [8]. The 2u cell fate was not separately scored: we

consistently find that, provided approximately the correct

number of cells are removed by apoptosis and the 3us are

correctly specified, the remaining cells automatically adopt the

elongated 2u cell shape. Hence by scoring cell number we also

account for the 2u cell fate. In addition, we routinely find that

mis-patterning of the ommatidial hexagon is more severe when

3u vertices have not been correctly established than when the

2u niche is mis-specified. We do not directly measure the

angles of the hexagonal lattice because distortions are easily

introduced during normal tissue processing prior to imaging.

Example
To validate a genetic interaction between the loci for the

adaptor protein cindr and the actin regulator enabled we generated

tissue hypomorphic for cindr (Fig. 8A and B, GMR-Gal4/+ ; UAS-

cindrRNA[2.23]/+) and in a parallel cross tissue in addition

compromised for ena dosage (Figure 8C and D, GMR-Gal4/enaGC1;

UAS-cindrRNAi [2.23]/+). Images gathered from pupae dissected at

41 h APF were analyzed to generate 75 data points of each genotype.

Excerpts from each Excel database are shown in Figure 8E and F.

Specifically, for GMR-Gal4/+ ; UAS-cindrRNA [2.23]:

Data point 4 (Figure 8A and E):

N no cone or 1u cell defects were observed (though this

ommatidium is mildly distorted both 1u cells are equal in size);

N one bristle is missing (blue circle), giving a bristle cell defect

score of 1;

N two 3u cells are missing (the correctly patterned 3u is colored

green in the left panel), giving a score of 2 for 3u cell defects.

N a total of thirteen IPCs (colored green in right panel) were

counted as opposed to the normal number of twelve, giving a

score of 1 (extra cell).

N Hence the total OMS is 1+2+1 = 4.

Table 1. Patterning errors scored.

Cell type Feature scored Score allocated

Cone cells Number +1 per additional or missing cone cell

Cell arrangement +1 if arrangement not according to free energy minimization

Junction orientation +1 per incorrect orientation of cone-cell adhesion

Cluster orientation +1 if incorrect

1us Number +1 per additional or missing cell

Size +1 if one 1u is $25% larger/smaller than the other(s)

Junction +1 if junctions incomplete in any way

Cone contact cells +1 for each 2u or 3u cell that touches the central cone cells due to disrupted 1u:1u cell junction(s)

Cone & 1us Rotation +1 if the central ommatidial grouping is mis-rotated by $30u

Bristle group Missing or mis-positioned +1 per missing or mis-positioned bristle cell group (max of 3 points can be allocated per data point)

Additional +1 per additional bristle cell group

3us Number +1 per missing 3u cell

Lattice cells Number +1 per total lattice cell number above or below twelve (2us, 3us and cells of unclear fate are counted;
bristles are excluded)

doi:10.1371/journal.pone.0007008.t001
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Figure 2. Cone cell errors. A. The final wild type cone cell
arrangement, polar (po) and equatorial (e) cells touch, anterior (a)
and posterior (p) cells do not. B-H. In mutant tissue defects include loss
of cone cells (B), additional cone cells (C), incorrect arrangement of the
cells in the cluster (D and E), defects in the orientation of cone cell
junctions (F, G), and incorrect orientation of the cluster (H). All tissue
was dissected at 41 h APF, cone cells are pseudo-colored orange.
doi:10.1371/journal.pone.0007008.g002

Figure 3. Primary cell errors. A. Anterior (a) and posterior (p) 1u cells
make stable junctions enwrapping the central cone cells (pseudo-
colored orange). B-G. In mutant tissue additional (B) or too few (C) cells
may be recruited to the 1u cell niche, one 1u may be smaller than the
other (D), junctions may be incomplete (E-G, only the tips of the two 1us
have been colored for emphasis) allowing lattice cells (colored green in
F and G) to directly touch the central cone cell cluster. All tissue was
dissected at 41 h APF.
doi:10.1371/journal.pone.0007008.g003
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Data point 6 (Figure 8B and E):

N one bristle group is missing (blue circle): 1 point;

N two 3u cells are missing: 2 points;

N two additional IPCs are present: 2 points.

N Total OMS = 5

For GMR-Gal4/enaGC1 ; UAS-cindrRNA[2.23]:

Data point 32 (Figure 8C and F):

N one bristle group is misplaced (blue arrow): 1 point;

N all three 3us are not specified: 3 points;

N a total of 15 IPCs are present: 3 points.

N Total OMS = 7

Data point 33 (Figure 8D and F):

N the cone cell contacts are incorrectly oriented: 1 point;

N the lower junction between the 1usis incomplete (colored

orange): 1 point

N the ommatidium is mis-rotated by more than 30u: 1 point

N one bristle group is misplaced: 1 point

N no 3us have been specified: 3 points

N a total of 10K IPCs are present (1K cells missing): 1K points

N Total OMS = 8K

The mean OMS values for GMR-Gal4/+ ; UAS-cindrRNA[2.23]/+
and GMR-Gal4/enaGC1; UAS-cindrRNA[2.23]/+ were calculated

(Figure 8E and F; presented graphically in Figure 8G). A Students

T-test was used to compare OMS values of the complete datasets

(N = 75) to determine statistical significance: this confirmed that

enaGC1 mildly enhanced cindrRNAi mis-patterning (p-value = 0.02438,

significant at the 5% level). In particular the number of rotation and

1u cell defects approximately doubled when ena was compromised

Figure 4. Bristle group errors. A. Three bristle cells (purple) occupy
characteristic niches about each ommatidium. B-D. In mutant tissue these
may be missing (circles in B), incorrectly placed (arrows in C) or additional
bristle groups may be present (D). All tissue was dissected at 41 h APF.
doi:10.1371/journal.pone.0007008.g004

Figure 5. Tertiary cell errors. A. Three 3u cells occupy specific
positions in wild type tissue (pseudo-colored green). B and C. In
mutant tissue these are frequently not specified (green circles). All
tissue was dissected at 41 h APF.
doi:10.1371/journal.pone.0007008.g005
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(compare mean and standard deviations shown in Figure 8E and F)

emphasizing that the role of these loci in 1u:1u junction formation or

maintenance, actin regulation and ommatidial rotation warrant

further investigation.

Discussion

Here we present a simple method set to assess apical mis-

patterning of the pupal eye. This provides a systemized and unbiased

approach useful for quantifying and comparing genotypes. Data sets

and derived ommatidial mis-patterning scores are readily assessed

for significance using a suitable statistical test if an investigator’s aim

is to show a clear difference between two or more genotypes (e.g.,

Student T-test, found in most spreadsheet programs such as

Microsoft Excel). Frequently, investigators utilizing the fly pupal

eye as an assay have focused on a single aspect of mis-patterning such

as interommatidial cell number. However we have found that simply

scoring a single component such as cell number does not sufficiently

encompass patterning defects and fails to provide a meaningful

assessment of mis-patterning. Further, by recording this fuller set of

defects, an investigator can additionally evaluate phenotypes specific

to one cell type or feature and relate the information to mutants in

other loci. Through this approach, we have been able to place loci

into functional groups based on the details of their scoring [2] and

unpublished data).

Materials and Methods

Fly husbandry and genetics
All crosses were cultured as per standard protocols. Pupae were

gathered at 0 h APF and cultured at 25uC until dissected as

described previously [2].

Genotypes of images presented:

Wild type tissue:

Figure 1, panel A of Figure 2–7: GMR-Gal4/+ ; UAS-lacZ/+
Mutant tissue:

Figure 2B and 3C: GMR-Gal4, UAS-dicer2/+; UAS-klarRNAi[v32836]/+ [9]

Figure 2C and 2D: hsFLP/+; cblF165, FRT80B [10]

Figure 8C and 8D: GMR-Gal4/enaGC1; UAS-cindrRNAi [2.23]/+ [11]

All other panels: GMR-Gal4/+; UAS-cindrRNAi [2.23]/+ [2]

Imaging
Dissected tissue was fixed and processed as described previously

[2]. Rat anti-DE-Cadherin (1:20, DSHB) was used to visualize

adherens junctions. Tissue was imaged using a Leica DM5500

microscope. Images have been minimally processed and pseudo-

colored using Photoshop to emphasize specific cell types or features.

Additional information
Raw images were printed and hexagonal areas superimposed by

hand to create data points for scoring as described above. Analyses

were recorded in databases generated using Microsoft Excel.
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Figure 6. Rotation errors. A. Cone and 1u cells and the underlying
ommatidia are precisely oriented along the equatorial-polar axis
(arrow). B. In some mutants this orientation is incorrect (orange
pseudo-colored group, and arrow), likely the result of incorrect rotation
earlier in development. All tissue was dissected at 41 h APF.
doi:10.1371/journal.pone.0007008.g006

Figure 7. Lattice cell number. A. Twelve cells lie within a data point
in wild type tissue: three 2u and 3u cells (labeled with a N) and six half
cells (as indicated). B. When a hexagon is superimposed on mutant
tissue a change in the number of lattice cells may be observed. All
tissue was dissected at 41 h APF; lattice cells are pseudo-colored green.
doi:10.1371/journal.pone.0007008.g007
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