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Adult neurogenesis, a striking form of neural plasticity, is involved in the modulation

of social stimuli driving reproduction. Previous studies on adult neurogenesis have

shown that this process is significantly modulated around puberty in female mice.

Puberty is a critical developmental period triggered by increased secretion of

the gonadotropin releasing hormone (GnRH), which controls the activity of the

hypothalamic-pituitary-gonadal axis (HPG). Secretion of HPG-axis factors at puberty

participates to the refinement of neural circuits that govern reproduction. Here, by

exploiting a transgenic GnRH deficient mouse model, that progressively loses GnRH

expression during postnatal development (GnRH::Cre;DicerloxP/loxP mice), we found

that a postnatally-acquired dysfunction in the GnRH system affects adult neurogenesis

selectively in the subventricular-zone neurogenic niche in a sexually dimorphic way.

Moreover, by examining adult females ovariectomized before the onset of puberty, we

provide important evidence that, among the HPG-axis secreting factors, the circulating

levels of gonadal hormones during pre-/peri-pubertal life contribute to set-up the proper

adult subventricular zone-olfactory bulb neurogenic system.

Keywords: adult neurogenesis, puberty, hypothalamus-pituitary-gonadal axis, GnRH, subventricular zone, dentate

gyrus, main olfactory bulb, accessory olfactory bulb

INTRODUCTION

The reproductive behavior of mammals is orchestrated by a hardwired neuroendocrine network
that is greatly influenced in its sexually dimorphic organization and activation by the circulating
levels of sex hormones (Nordeen et al., 1985; Romeo, 2003; Arnold, 2009). Starting from early
postnatal life the release of sex hormones is under the control of one core part of this system, the
hypothalamic-pituitary-gonadal axis (HPG), which includes the gonadotropin-releasing hormone
(GnRH) secreting neurons. The GnRH neurons, in turn, integrate external and internal cues
perceived by sensory pathways (e.g., olfactory system) characterized by high level of neural
plasticity (Lledo and Gheusi, 2003; Boehm et al., 2005; Yoon et al., 2005; Dulac and Wagner,
2006; Oboti et al., 2011; Roa, 2013). This functional organization most likely allows the internal
state- and experience-dependent modulation of reproductive behavior. According to this idea,
over the last decade several studies in rodents (Mak et al., 2007; Larsen et al., 2008; Oboti et al.,
2011, 2017; Larsen and Grattan, 2012; Schellino et al., 2016) have shown that specific reproductive
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behaviors require a reciprocal crosstalk between the HPG
circuits/factors (e.g., gonadal hormones and gonadotropins) and
adult neurogenesis (AN) (Mak et al., 2007; Oboti et al., 2011;
Brus et al., 2016; Schellino et al., 2016), a striking form of neural
plasticity that involves genesis and integration of new neurons
during adulthood (Altman and Das, 1965; Alvarez-Buylla and
Nottebohm, 1988: Alvarez-Buylla and Garcia-Verdugo, 2002). In
mammals, AN occurs constitutively, although at different rates
throughout life and species (Lledo and Valley, 2016; Kuhn et al.,
2018), in two key sensory regions: the olfactory bulbs (main -
MOB- and accessory -AOB-) and the dentate gyrus (DG) of the
hippocampus (Bonfanti et al., 1997; Peretto et al., 2001; Alvarez-
Buylla and Garcia-Verdugo, 2002; Ming and Song, 2005; Lledo
et al., 2006; Oboti et al., 2009, 2011; Gheusi et al., 2013). In
adult mice, pheromones, chemosensory cues known to trigger
multiple social behaviors and the release of HPG-axis secretory
factors (Liberles, 2014), modulate adult neurogenesis in both OB
and DG (Mak et al., 2007; Larsen et al., 2008; Oboti et al., 2009,
2011; Feierstein et al., 2010) depending on sex, age, individual
experience and internal state of donor and receiver (Mak et al.,
2007; Oboti et al., 2009, 2011, 2017; Schellino et al., 2016). In
turn, HPG-axis sexual hormones modulate AN based on the
same above mentioned factors (Galea and McEwen, 1999; Galea,
2008; Galea et al., 2013; Zhang et al., 2013, 2016). Thus, it is
very likely that behaviors elicited by pheromones arise from
an interplay/balance between AN and reproductive hormones.
Here, to get information about this mechanism, we focused on
puberty. Puberty is a critical developmental period characterized
by a profound sex-dependent functional reorganization and
activation of brain and neuroendocrine circuits underlying
reproduction. The onset of puberty in mammals is triggered by
increase GnRH-dependent activity of the HPG axis secretion
(Romeo, 2003; Sisk and Zehr, 2005; Blakemore et al., 2010;
Roa, 2013; Piekarski et al., 2017). Notably, we have previously
shown that AN in the AOB of female mice drastically decreases
just around puberty and in parallel starts to be modulated by
exposure to male pheromones (Oboti et al., 2017), supporting
that pubertal brain reorganization also involves a set-up of
the AN process. To explore whether this is the case, we took
advantage of a mouse model of impaired HPG-axis function,
the GnRH::cre;DicerloxP/loxP (Messina et al., 2016). In these
animals Dicer, an RNAse-III endonuclease essential for miRNA
biogenesis (Bernstein et al., 2001), is selectively inactivated in
GnRH neurons resulting in absence of puberty, and severe
hypogonadism and sterility in adulthood caused by persistent
GnRH deficiency (Messina et al., 2016). Notably, in these mice
impaired gonadotropins release occurs progressively during the
infantile period, thus affecting only the onset of puberty (Messina
et al., 2016) without altering the critical perinatal endocrine-
dependent organizational phase of the brain (Bakker, 2003;
Poling and Kauffman, 2013). In addition, to test among the HPG-
axis secreting factors the specific modulatory role of pre-/peri-
pubertal gonadal hormones on adult neurogenesis, we extended
our study on adult females gonadectomized prior to puberty.
This model does not reduce (rather it increases) the activity
of GnRH and gonadotropins secretions (Czieselsky et al., 2016;
Dubois et al., 2016), whereas it excludes the activity of gonadal

hormones. Together, our data indicate the levels of pre-/peri-
pubertal circulating sex hormones are critical to modulate AN in
a sexually dimorphic way, thus suggesting the onset of puberty as
a critical time window to set-up this process.

MATERIALS AND METHODS

Animals
All animals were group-housed under specific pathogen-
free conditions in a temperature-controlled room (21–22◦C)
with a 12-h light-dark cycle and ad libitum access to food
and water. GnRH::cre(Tg(Gnrh1::cre)1Dlc) and DicerloxP/loxP

transgenic mouse lines were a generous gift of Dr. Catherine
Dulac (Howard Hughes Medical Institute, Cambridge MA) and
Dr. Brian Harfe (University of Florida, FL), respectively. CD-
1 wild-type mice were purchased from Charles River (Italy).
Animal studies were approved by the Institutional Ethics
Committees for the Care and Use of Experimental Animals of
the Universities of Lille (APAFIS#13387–2017122712209790 v9)
and Turin (Protocol Number DGSAF0007085-A05/04/2013); all
experiments were performed in accordance with the guidelines
for animal use specified by the European Union Council
Directive of September 22, 2010 (2010/63/EU). The total number
of animals used in this study is n = 44. The sex and the number
of the animals used in each experiment are specified in figure
legends. Transgenic mice were genotyped by PCR using primers
listed in Supplementary Table 7. Gnrh::Cre/DicerloxP/loxP male
and female mice were generated by breeding heterozygous
males Gnrh::cre;DicerloxP/wt with homozygous DicerloxP/loxP

females (Gnrh::cre−/−). Homozygous DicerloxP/loxP littermates
(Gnrh::cre−/−) were used as control animals. Experiments were
designed to minimize the number of animals used.

Ovariectomy
Juvenile (p21) wild-type female mice were deeply anesthetized
with a 3:1 solution of ketamine (Ketavet; Gellini, Italy) and
xylazine (Rompun; Bayer, Germany). Two small incisions were
performed on each side in the abdominal area, one through the
skin and then another through the muscle wall, and ovaries were
tied off with absorbable surgical thread and removed (Ström
et al., 2012). The muscle and skin incisions were then closed
using sutures. After surgery, the animals were positioned under
a heat lamp and monitored until recovery. Sham- operated
juvenile (p21) female mice have been subjected to the same
surgical manipulations without removal of the ovaries. Mice
were daily monitored and allowed to recover for 1 week before
BrdU injection.

5-Bromo-2′-deoxyuridine (BrdU) Treatment
To identify newly generated cells in the AOB, MOB, and DG,
adult (p60) GnRH::Cre/DicerloxP/loxP, DicerloxP/loxP male and
female mice and juvenile (p28) wild-type female mice were
intraperitoneally injected with BrdU in 0.1M Tris (pH 7.4) twice
a day (interval = 8 h, 100 mg/kg body weight) and sacrificed 28
days later to evaluate survival of adult-generated neurons.
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Tissue Preparation and Sectioning
Mice were deeply anesthetized via an intraperitoneal injection of
a 3:1 ketamine (Ketavet; Gellini, Italy) and xylazine (Rompun;
Bayer, Germany) solution. All the animals were transcardially
perfused with a 0.9% saline solution followed by cold 4%
formaldehyde (paraformaldehyde diluted in 0.1M phosphate
buffer, PB), pH7.4. The brains were removed from the skull and
post-fixed for 4–6 h in 4% formaldehyde at 4◦C. Post-fixation
was followed by a cryopreservation step with a 30% sucrose
solution in 0.1M PB pH 7.4 at 4◦C. The two hemispheres
were separated and embedded in OCT (Sakura Finetek, CA,
USA), frozen and cryostat sectioned. Free-floating parasagittal
and coronal sections (30µm) were collected in multi-well dishes
to provide representative series of the AOB and MOB/SVZ/DG,
respectively. The sections were stored at −20◦C in an antifreeze
solution (30% ethylene glycol, 30% glycerol, 10% PB: 189mM
NaH2PO4, 192.5mM NaOH; pH 7.4) until use.

Immunohistochemistry
Sections were rinsed in PBS and incubated for 48 h at 4◦C
in primary antibodies diluted in 0.01M PBS, pH 7.4, 0.5%
Triton X-100, and 1% normal sera that matched the host
species of the secondary antibodies. The following primary
antibodies were used: anti-Ki67, rabbit IgG polyclonal, dilution
1:1,000, Abcam (ab15580); anti-doublecortin (DCX), goat IgG
polyclonal, dilution 1:2,000, Santa Cruz Biotechnology (sc-8066);
anti-BrdU, rat IgG monoclonal, dilution 1:5,000, AbD serotec,
Bio-Rad Laboratories (OBT0030CX) (Liu et al., 2009). For BrdU
immunostaining, sections were pre-treated with 2N HCl for
30min at 37◦C for antigen retrieval and neutralized with borate
buffer, pH 8.5, for 10min. For the avidin-biotin peroxidase
method, sections were incubated for 1 h at room temperature
in a biotinylated secondary antibody (anti-rat IgG; Vector
Laboratories) diluted 1:250 in 0.01M PBS, pH 7.4, followed by
incubation with the avidin-biotin-peroxidase complex (Vector
Laboratories). To reveal immunoreactivity, we used 0.015%
3,3′ -diaminobenzidine and 0.0024% H2O2 in 0.05M Tris-HCl,
pH 7.6. After adhesion on gelatin-coated glass slides, sections
were mounted in DPX (Merck-Millipore, VWR International
PBI, Milan, Italy). For Ki67 and DCX immunostaining, after
incubation with primary antibodies, sections were incubated
with appropriate fluorochrome-conjugated secondary antibodies
for 1,5 h at room temperature. Secondary antibodies were
used as follow: anti-rabbit 647-conjugated (1:600; Jackson
ImmunoResearch) and anti-goat 488-conjugated (1:400; Jackson
ImmunoResearch). Sections were then counterstained with
the nuclear dye 4′,6-diamidino-2-phenylindole (DAPI) and
coverslipped with the anti-fade mounting mediumMowiol (4–88
reagent, Calbiochem 475904).

Cell Counting
Image acquisition and analysis were performed on either
Leica SP5 confocal microscope (Leica Microsystems) or a
Nikon microscope coupled with a computer-assisted image
analysis system (Neurolucida software, MicroBrightField). For
data presented in Figures 1, 2, confocal image z-stacks were
captured through the thickness of the slice at 1µm optical step

with 40x objective and three representative coronal sections
(30µm thickness; selected one every 540µm) per animal were
acquired for both the SVZ and DG (for sampling details
see Supplementary Figure 1). Z-stacks were imported in NIH
Image J software (http://rsb.info.nih.gov/ij/) and analyzed for
cell counting. Brightness, color, and contrast were balanced
and assembled into panels using Inkscape (Free vector graphics
editors). All cell counts were performed blind to the genotype
and/or the gender and by taking into account the whole
extent of the lateral SVZ (dorso-lateral + ventro-lateral SVZ;
Supplementary Figure 1B, left panels) and the hippocampal
DG (SGZ+GCL subregions; Supplementary Figure 1B, right
panels). The number of Ki67-positive nuclei and double-labeled
Ki67 and DCX positive cells was manually counted in the
SVZ and in the hippocampal DG. The number of DCX-
positive cells was established only in the SGZ/GCL. In each
section, the boundaries of the SVZ or of the DG were traced
using DAPI staining and areas were automatically calculated
using Image J software and multiplied by the thickness of the
section (30µm) to estimate the volume in µm3 and finally
converted into mm3. Cell density was calculated for each
section by dividing the total number of labeled cells within
the section by the volume of the area of interest (either SVZ
or SGZ+GCL) and expressed as number of labeled cells per
mm3. To estimate the total volume of the lateral SVZ area
(comprising the dorso-lateral corner and the whole lateral wall
up to the most ventral tip; Supplementary Figure 1C), the area
of each section encompassing the SVZ (six to seven sections
out of one series per animal, 180µm intersection intervals;
anteroposterior axis: Bregma from +1.3mm to −0.6mm) were
manually traced based on DAPI staining and automatically
calculated by Neurolucida software and the total volumes were
estimated by applying the Cavalieri method (Prakash et al., 1994).
The same strategy was used for the analysis of the dorsal DG
(Supplementary Figure 1D), wherein the area comprising SGZ
plus GCL subregions (SGZ+GCL; six to eight sections out of one
series per animal, 180µm intersection intervals; anteroposterior
axis: Bregma from −1.3 to −3.3mm) was manually traced based
on DAPI signal and the total volumes were estimated by applying
the Cavalieri method (Prakash et al., 1994).

For data presented in Figures 3–6, the number of BrdU-
positive nuclei was established using the Neurolucida software
(MicroBrightField) by counting peroxidase/DAB-stained nuclei
in three representative MOB coronal (anterior, medial, and
posterior) sections (30µm thickness; 180µm intersection
interval) per animal in the granular cell layer (GcL; 40x objective).
In each section, the boundaries of the GcL were traced and its
area was automatically calculated by Neurolucida software. To
identify the anterior and posterior subdivisions of the AOB GcL,
we first measured the total length of the AOB glomerular layer
and then we traced a line in the exact half of the glomerular
layer to define the underlying subdivision of the granular cell
layer. This subdivision has been previously described based
on Gαi immunohistochemical staining, which selectively labels
the anterior half part of the glomerular layer of the AOB (Jia
and Halpern, 1996; Dudley and Moss, 1999). Counting was
conducted using a systematic random sampling method by
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FIGURE 1 | Progenitor proliferation and neuronal differentiation in the dorso-lateral SVZ (dlSVZ) of GnRH::cre/DicerloxP/loxP and DicerloxP/loxP mice. (A) Representative

coronal section of the SVZ, immunolabeled for Ki67 (red), DCX (green), and DAPI (blue) in an adult (P90) DicerloxP/loxP male mouse. The dotted line indicates the dlSVZ.

Scale bar in A = 100µm. (B,C) Immunofluorescence for DCX and Ki67 (B,C), for Ki67 only (B’,C’), and for DCX only (B”,C”) at the level of the dlSVZ in DicerloxP/loxP

(B–B”) and GnRH::cre/DicerloxP/loxP male mice (C–C”). Inset in (B) shows a confocal identification of a double-labeled cell (Ki67+/DCX+) including orthogonal planes.

Scale bar in inset = 5µm. Scale bar in C” = 50µm and applies to (B,C,B’,C’,B”). (D–F) Density of Ki67+ (D), Ki67+/DCX- (E), and Ki67+/DCX+ (F) cells in the

dlSVZ of DicerloxP/loxP and GnRH::cre/DicerloxP/loxP male (n = 4 for each genotype) and female mice (n = 4 for each genotype). Two-way ANOVA and Tukey’s post-hoc

test, **p = 0.008 in D and **p = 0.009 in F. dlSVZ, dorso-lateral subventricular zone; CC, corpus callosum; Str, striatum; LV, lateral ventricle.

overlaying each section with a virtual counting grid (squares
size 80 × 80µm) and counting the number of positive cells in
one square of the grid (one of every two) through sequential
translation of the counting frame until the area of interest was
entirely covered. This procedure allowed us to analyze about one-
fourth of the area of interest. Cell density (number of labeled
profiles/mm3) was calculated by multiplying cells x four and
by multiplying the area measurements by the mean section

thickness (30µm) [6 of sampled areas µm2 × 30µm]. In
the AOB, the number of BrdU-positive nuclei was established
by counting peroxidase/DAB-stained nuclei in six para-sagittal
(representing the entire AOB) sections (30µm thickness, 60µm
intersection interval) per animal in the granular cell layer. For
data presented in Figure 5, the number of BrdU-positive nuclei
was established by counting peroxidase/DAB-stained nuclei in 8
coronal (representing the entire DG) sections (30µm thickness,
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FIGURE 2 | Progenitor proliferation and neuronal differentiation in the DG of GnRH::cre/DicerloxP/loxP and DicerloxP/loxP mice. (A–C) Representative coronal sections

showing the dentate gyrus of the hippocampus in adult (P90) DicerloxP/loxP female (A) and male (B) mice, and in a GnRH::cre/DicerloxP/loxP male mouse (C)

immunolabeled for Ki67 (red), DCX (green), and DAPI (blue). Insets in (A–C) are represented at higher magnification in a’–a”’, b’–b”’, and c’–c”’. Asterisks in insets

indicate Ki67+/DCX- cells, arrows indicate DCX+/Ki67- cells and arrowheads indicate double-labeled Ki67+/DCX+ cells. Scale bar in C = 50µm and applies to

(A,B); scale bar in c”’ = 10µm and applies to a’–a”’, b’–b”’, and c’–c” (D–F). Density of Ki67+/DCX- (D), Ki67+/DCX+ (E), and DCX+/Ki67- (F) cells in DicerloxP/loxP

and GnRH::cre/DicerloxP/loxP male (n = 4 for each genotype) and female (n = 4 control and n = 5 GnRH::cre/DicerloxP/loxP ) mice. Two-way ANOVA and Tukey’s

post-hoc test. **p = 0.009. GCL, Granule cell layer; SGZ, subgranular zone.

180µm intersection interval) per animal in the granular cell
layer. Volumes were estimated applying the Cavalieri method
(Prakash et al., 1994).

Statistical Analysis
Values are expressed as mean ± s.e.m unless otherwise stated.
A Shapiro-Wilk normality test was run on each experimental
sample. When comparing two populations of data, two-tailed
Student’s t-test was used to calculate statistical significance.When
more than two populations of data were compared, two-way
ANOVA with Tukey’s post-hoc test was used. Statistical analysis

was performed with Origin software (OriginLab). The number
of animals and p-values are reported in figure legends and in
Supplementary Tables 1.1–6.2.

RESULTS

In order to get new insights into the mechanisms regulating
the activity of brain networks underlying reproductive behavior,
we investigated the process of adult neurogenesis in the
GnRH::cre;DicerloxP/loxP mice. These animals never go through
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FIGURE 3 | Survival of newborn granule cells in the Main Olfactory Bulb of GnRH::cre/DicerloxP/loxP and DicerloxP/loxP mice. (A) Experimental protocol. (B)

BrdU-positive cell density in the Main Olfactory Bulb (MOB) GcL of DicerloxP/loxP and GnRH::cre/DicerloxP/loxP male (n = 5 for each genotype) and female (n = 7 control

and n = 8 GnRH::cre/DicerloxP/loxP ) mice. Two-way ANOVA and Tukey’s post-hoc test, *p = 0.016 control males vs. control females, *p = 0.013 control vs.

GnRH::cre/DicerloxP/loxP females. (C–F) Representative images of MOB coronal sections showing BrdU-positive newborn neurons in DicerloxP/loxP and

GnRH::cre/DicerloxP/loxP male (C,D) and female (E,F) mice, 28 days after BrdU administration. Insets in (C–F) are represented at higher magnification in c’–f’.

Arrowheads indicate BrdU-positive nuclei. Scale bar in F = 100µm and applies to (C–E); scale bar in f’ = 10µm and applies to c’–e’. GL, glomerular layer; EpL,

external plexiform layer; McL, mitral cell layer; IpL, Internal plexiform layer; GcL, granule cell layer.

puberty due to development of a juvenile impaired secretion
of GnRH that persists during adulthood, resulting in a chronic
deficiency of secretion of gonadotropins and gonadal hormones
(Messina et al., 2016). In addition, to distinguish among these
factors the relative contribution of gonadal hormones in the
peripubertal setting of adult neurogenesis, we examined the
survival of newborn neurons in the olfactory bulb of female mice
gonadectomized soon before puberty.

Juvenile Impaired Secretion of GnRH in
Male Mice Decreases the Number of
Proliferating Neuronal-Committed
Progenitors in the Adult Dorso-Lateral SVZ
By combining the expression of Ki67, an endogenous marker of
cell proliferation expressed during all active phases of the cell
cycle with the exception of G0 phase (Zacchetti et al., 2003), with
the doublecortin (DCX), a brain-specific microtubule-associated
protein expressed in progenitors fated to the neuronal lineage,
neuroblasts, and immature neurons (Gleeson et al., 1998; Francis
et al., 1999), we examined the early critical steps of AN process

focusing on the proliferative activity of neural progenitors and
their commitment toward the neuronal lineage. The analysis
was performed in both sexes and adult neurogenic niches
of GnRH::cre;DicerloxP/loxP and DicerloxP/loxP (control) mice.
Specifically, we quantified: (i) the total number of proliferating
progenitors (Ki67+ cells); (ii) the proliferating progenitors
committed toward the neuronal lineage (Ki67+/DCX+ double-
labeled cells); (iii) the proliferating progenitors not expressing
the neuronal marker DCX (Ki67+/DCX- cells). Moreover, in the
DG of hippocampus we also quantified: (iv) the number of post-
mitotic neuroblasts/immature neurons (DCX+/Ki67- cells). This
latter cell population was not quantified in the SVZ since a careful
examination of single DCX immune-positive cells is not feasible
in this region due to its peculiar anatomical organization. Finally,
according to the existence of diverse spatio-temporal progenitor
microdomains along the rostro-caudal and dorso-ventral axes
of SVZ (De Marchis et al., 2007; Merkle et al., 2007, 2014),
quantifications in this region were performed by considering
the SVZ subdivided into dorso-lateral (dlSVZ) and ventro-lateral
(vlSVZ) sub-domains (Figure 1; Supplementary Figures 1, 2).
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FIGURE 4 | Survival of newborn granule cells in the Accessory Olfactory Bulb of GnRH::cre/DicerloxP/loxP and DicerloxP/loxP mice. (A,B) Representative images of

Accessory Olfactory Bulb (AOB) sagittal sections showing BrdU-positive newborn neurons in DicerloxP/loxP female (A) and male (B) mice, 28 days after BrdU

administration. Inset in (A,B) are represented at higher magnification in a’,b’. Arrowheads indicate BrdU-positive nuclei. Scale bar in B = 50µm and applies to (A);

scale bar in b’ = 10µm and applies to a’. (C–E) BrdU-positive cell density in the whole AOB-GcL (C), anterior GcL (D), and posterior GcL (E) of DicerloxP/loxP and

GnRH::cre/DicerloxP/loxP male (n = 4 for each genotype) and female (n = 4 for each genotype) mice. Two-way ANOVA and Tukey’s post-hoc test. GL, glomerular layer;

EpL, external plexiform layer; aGcL, anterior granule cell layer; pGcL, posterior granule cell layer; lot: lateral olfactory tract.

In the dlSVZ, two-way ANOVA analysis revealed a significant
effect of gender x genotype interaction on the density of
proliferating progenitors [Ki67+ cells; Overall two-way
ANOVA, gender x genotype F(1, 12) = 5,795, p = 0.033;
Supplementary Table 1.1]. A significant decrease in the
number of Ki67+ cells emerged in GnRH::cre;DicerloxP/loxP

males compared to control males while no difference was
detected among genotypes in females (Tukey’s post-hoc
test, p = 0.008 control vs. GnRH::cre;DicerloxP/loxP males;
Figures 1B–D; Supplementary Table 1.1). The quantification
of double labeled Ki67+ and DCX+ cell density similarly
revealed a significant effect of gender x genotype interaction
[Ki67+ and DCX+ cells; Overall two-way ANOVA, gender x
genotype F(1, 12) = 6,189, p = 0.028; Supplementary Table 1.3]
and multiple comparison revealed that differences were
restricted to male mice. Indeed, the density of Ki67+ and

DCX+ cells significantly decreased in GnRH::cre;DicerloxP/loxP

compared to control males (Tukey’s post-hoc test, p = 0.009
control vs. GnRH::cre;DicerloxP/loxP males; Figures 1B,C,F;
Supplementary Table 1.3). No difference was detected in
either Ki67+/DCX- cell densities of the dlSVZ (Figure 1E;
Supplementary Table 1.2) and among all parameters (gender
and genotype) and groups when referred to the vlSVZ subdomain
of both male and female mice (Supplementary Figures 2A–F;
Supplementary Tables 1.4–1.6). Finally, we evaluated SVZ
volume to assess whether the decrease in Ki67+ and
Ki67+/DCX+ cell density in GnRH::cre;DicerloxP/loxP males
compared to control males reflected a general alteration of
SVZ volume in this group. Overall, two-way ANOVA revealed
a significant effect of genotype [genotype F(1, 8) = 8,836, p
= 0.018; Supplementary Table 1.7] on SVZ volume and a
significant decrease emerged when GnRH::cre;DicerloxP/loxP
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FIGURE 5 | Survival of newborn granule cells in the dentate gyrus of the

hippocampus of GnRH::cre/DicerloxP/loxP and DicerloxP/loxP mice. (A)

Experimental protocol (upper) and schematic coronal view of the

hippocampus (bottom) of an adult mouse brain indicating the Dentate Gyrus

(DG) and its Hilus. (B) Representative image of a coronal section of the upper

blade of the DG [approximative position inset in (A)] showing BrdU labeled

nuclei (arrowheads) in a DicerloxP/loxP female, 28 days after BrdU

administration. Scale bar in B = 20µm. (C) BrdU-positive cell density in the

GCL+SGZ of the DG in DicerloxP/loxP and GnRH::cre/DicerloxP/loxP male (n = 4

control and n = 6 GnRH::cre/DicerloxP/loxP ) and female (n = 8 for each

genotype) mice. Two-way ANOVA and Tukey’s post-hoc test. (D) Volume of

the GCL+SGZ in DicerloxP/loxP and GnRH::cre/DicerloxP/loxP male (n = 4 control

and n = 6 GnRH::cre/DicerloxP/loxP ) and female (n = 8 for each genotype)

mice. Two-way ANOVA and Tukey’s post-hoc test. DG, dentate gyrus; GCL,

granule cell layer; MCL, molecular cell layer; SGZ, subgranular zone.

males were compared to control females (Tukey’s post-hoc test,
p = 0.042; Supplementary Figure 1C), but not to control males
(Supplementary Figure 1C; Supplementary Table 1.7).

In the DG of the hippocampus, no significant difference was
found among groups when we examined the densities of either
Ki67+ and DCX- cells (Figure 2D; Supplementary Table 2.1) or
Ki67+ and DCX+ cells (Figure 2E; Supplementary Table 2.2).
By contrast, two-way ANOVA analysis revealed a significant
effect of gender on the density of DCX+ and Ki67- cells [Overall
two-way ANOVA, gender F(1, 13) = 12,139, p = 0.004]. The
Tukey’s post-hoc analysis indicated that GnRH::cre;DicerloxP/loxP

male mice show a reduction in the density of DCX+ and
Ki67- cells when compared to control females (p = 0.009;
Figure 2F; Supplementary Table 2.3). No difference in DG
volume was detected among groups (Supplementary Figure 1D;
Supplementary Table 2.4).

Overall, the above data show that impaired juvenile GnRH
secretion leads to long-term alterations of the early steps of AN

in a sex-specific way, mostly affecting the process of progenitor
differentiation in the dlSVZ of male mice.

Juvenile Impaired Secretion of GnRH
Decreases the Survival of Newborn
Neurons in the MOB of Adult Female Mice
Another critical step of the AN process is the selection phase
occurring during the integration of newborn neurons into the
target circuits (Petreanu and Alvarez-Buylla, 2002; Winner et al.,
2002; Alonso et al., 2008; Oboti et al., 2009, 2011). Although the
dynamic of this process in the OBs and DG niches occurs with
small temporal differences, after 1 month from genesis the large
majority of survived newborn neurons is functionally integrated
in both regions (Petreanu and Alvarez-Buylla, 2002; Van Praag
et al., 2002; Ambrogini et al., 2004; Ge et al., 2007; Oboti et al.,
2009, 2011; Yang et al., 2015). Thus, to evaluate whether impaired
secretion of GnRH influences newborn neurons survival in the
AN target tissues, we labeled a cohort of newly generated neurons
through i.p injection of the thymidine analog BrdU (Nowakowski
et al., 1989) and quantified their density 28 days later in both the
MOB, AOB and DG (Figures 3–5, respectively).

Quantification in the MOB (Figure 3) was performed
in the granule cell layer (GcL) where the vast majority of
adult-generated interneurons integrates (Winner et al., 2002).
Two-way ANOVA analysis revealed a significant interaction
between gender and genotype [Overall two-way ANOVA, gender
x genotype, F(1,21) = 8,160, p= 0.009; Supplementary Table 3.1].
The Tukey’s post-hoc analysis showed a significant reduction
of BrdU+ cell density in GnRH::cre;DicerloxP/loxP vs. control
females (Figures 3B,E,F; p = 0.013; Supplementary Table 3.1),
while no difference was found between GnRH::cre;DicerloxP/loxP

vs. control males (Figures 3B–D; Supplementary Table 3.1).
Interestingly enough, sexual dimorphism occurs in control
animals, with females showing higher BrdU+ cell density
in the MOB GcL compared to males (Figures 3B,C,E;
Tukey’s post-hoc test, p = 0.016 control females vs. control
males; Supplementary Table 3.1). Importantly, the GcL
volume did not change among all experimental groups
(Supplementary Figure 3A; Supplementary Table 3.2), further
supporting the above results represent group specific variations
of the AN process rather than anatomical changes.

In the AOB GcL, analysis of BrdU+ cell density did not
indicate any significant difference among groups, although
control females showed in average higher values (Figure 4C;
not significant; Supplementary Table 4.1). When the AOB was
divided into its anterior and posterior functional subdivisions
(Figures 4A,B,D,E; Jia and Halpern, 1996; Sugai et al., 1997;
Dudley and Moss, 1999; Kumar et al., 1999; Martìnez-
Marcos and Halpern, 1999), overall two-way ANOVA analysis
revealed a significant effect of gender on BrdU+ cell density
in the anterior AOB [Figure 4D; Overall two-way ANOVA,
gender F(1, 12) = 5,499, p = 0.037; Supplementary Table 4.2]
although no specific differences were detected by Tukey’s
post-hoc test (Supplementary Table 4.2). No change in the
density of BrdU+ cells emerged in the pAOB (Figure 4E;
Supplementary Table 4.3) and no difference in the volume
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of the AOB GcL was detected (Supplementary Figure 3B;
Supplementary Table 4.4).

In the DG of the hippocampus, the two-way ANOVA analysis
did not show any significant difference of BrdU+ cell density
among groups (Figures 5A–C; Supplementary Table 5.1).
However, overall two-way ANOVA revealed an effect of
genotype on DG volumes [gender F(1, 22) = 4,484, p = 0.046;
Supplementary Table 5.2], although no specific differences
were identified by multiple comparison Tukey’s post-hoc test
(Figure 5D; Supplementary Table 5.2).

Overall, the above data regarding newborn cell survival
support that impaired juvenile GnRH secretion also triggers
long-term alteration in the late stages of the AN process in a
sex- and niche-specific way, involving only females and the main
olfactory bulb. In addition, considering the effect of genotype
on DG volumes, as well as in SVZ volumes (see section Juvenile
impaired secretion of GnRH in male mice decreases the number
of proliferating neuronal-committed progenitors in the adult
dorso-lateral SVZ), we cannot exclude that impaired HPG axis
could bring to developmental morphological changes including
volume variations in neurogenic niches.

Pre-pubertal Ovariectomy Affects the
Survival of Adult-Born Neurons in the MOB
Impaired juvenile GnRH secretion in GnRH::cre;DicerloxP/loxP

mice does not allow pre-pubertal rise of LH and FSH and in turn
of gonadal hormones (Messina et al., 2016). Each one of these
factors of the HPG axis can thus contribute to the alterations
of the AN process identified in this model. In this context,
we addressed the relative contribution of gonadal hormones
in females. To this aim, we investigated newborn cell survival
in the MOB (altered in the GnRH::cre;DicerloxP/loxP females)
of adult wild-type females gonadectomized just before puberty
onset. In this way, the GnRH system and gonadotropins are
preserved, but the secretion of ovarian hormones impaired.
Wild-type female mice were ovariectomized (OVX) at postnatal
day 21 (p21), just before the typical raise of gonadal hormones
that drives the puberty onset (Oboti et al., 2017), and injected
with BrdU 7 days later, at p28 (Figure 6A). The density of
BrdU+ nuclei in the GcL of the MOB was analyzed 28
days after BrdU injection. Notably, we observed a significant
reduction of BrdU+ cell density in the GcL of the MOB
in the OVX compared to sham-operated group (Student’s t-
test, p = 0.032; Figures 6B–D; Supplementary Table 6.1). No
difference was found in the MOB GcL volumes between OVX
and control animals (Student’s t-test, p = 0.785; Figure 6E;
Supplementary Table 6.2). This latter experiment supports an
important contribution of gonadal hormones to the alterations
of AN process identified in GnRH::cre;DicerloxP/loxP mouse
model (at least for what concerns cell survival in the MOB of
adult females).

DISCUSSION

We have recently shown that neurogenesis in the olfactory bulb
of female mice is significantly modulated during puberty (Oboti

et al., 2017), a critical stage of life characterized by increase
secretion of gonadal hormones (Sisk and Zehr, 2005) and
refinement of neural circuits that drive reproduction (Piekarski
et al., 2017). This supports the multimodal tuning of sex circuits
occurring during peri-pubertal life can also involve a set-up of
the AN process, possibly through gonadal hormones or more in
general HPG factors/secretions (e.g., GnRH, LH, FSH, gonadal
hormones). Accordingly, adult neurogenesis is modulated by
sexual hormones (Galea, 2008; Ponti et al., 2018), it becomes
sensitive to environmental reproductive cues (i.e., pheromones)
after puberty (Oboti et al., 2017), and it is implicated in the
control of sex-behaviors in several mammalian species (Galea
and McEwen, 1999; Mak et al., 2007; Migaud et al., 2015; Brus
et al., 2016; Alvarado-Martínez and Paredes, 2018).

Here, to investigate how the pubertal hormonal milieu can
influence the AN process, we have exploited two different
mouse models characterized by alterations of HPG axis
factors/secretions around puberty. Firstly, we studied the
GnRH::cre;DicerloxP/loxP mice (Messina et al., 2016). These
animals show a gradual loss of GnRH expression and secretion,
which starts during the infantile period (p7-p20; Prevot, 2015)
and accelerates in the juvenile animals after weaning (i.e., p21–
∼p35). Thus, in these mice the increased secretion of GnRH and
downstream factors (LH, FSH, and gonadal hormones) driving
the onset of puberty is impaired. This condition results in animals
characterized by a severe hypogonadism and sterility strictly
related to GnRH deficiency, as demonstrated by physiologic
and anatomical analyses performed during adulthood (Messina
et al., 2016). For example, a marked reduction of the serum
level of gonadotropins (a proxy for GnRH secretion in smaller
species) despite an intact pituitary function indicated that the
hypogonadism and sterility in these animals were primarily
due to a GnRH deficiency (Messina et al., 2016). Notably,
the critical perinatal GnRH- independent (release of LH and
testosterone) and -dependent organization of sex brain circuits
remains preserved (O’Shaughnessy et al., 1998; Glanowska et al.,
2014), indicating this model can be informative as concerns the
impact of peri-pubertal alterations of HPG factors in shaping
adult neural networks. In addition, to investigate among the HPG
factors the relative contribution of gonadal hormones, we also
analyzedmice gonadectomized just before the onset of puberty in
which the level of gonadal hormones is depleted whereas GnRH
and gonadotropins remain functionally active (Czieselsky et al.,
2016; Dubois et al., 2016).

HPG Axis Impairment in the
GnRH::cre;DicerloxP/loxP Mice Results in
Peculiar Alterations of Adult Neurogenesis
The analysis of early steps of adult neurogenesis in
GnRH::cre;DicerloxP/loxP mice showed a sex specific reduction
in the number of proliferative progenitors (Ki67+ cells) and
proliferating progenitors committed toward the neuronal lineage
(Ki67+ and DCX+ cells) restricted to males and to the SVZ
(Figure 1). In this neurogenic niche, this effect was limited
only to the dorso-lateral subdomain, thus potentially involving
only certain types of OB newborn interneuron progenitors
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FIGURE 6 | Survival of newborn granule cells in the Main Olfactory Bulb of Sham and ovariectomized female mice. (A) Experimental protocol: female mice were

ovariectomized at p21 and injected with BrdU 1 week later (p28). Newborn cells were then quantified in the GcL of the main olfactory bulb (MOB) 28 days after BrdU

injection (p56). (B,C) Representative images of MOB GcL coronal sections showing BrdU-positive newborn neurons in sham (B) and ovariectomized, OVX (C), females

28 days after BrdU administration. Scale bar in C = 100µm and applies to (B); scale bar in c’ = 10µm and applies to b’. (D) BrdU-positive cell density in the MOB

GcL of sham (n = 6) and ovariectomized (n = 5) female mice. (E) Volume of GcL in sham (n = 6) and ovariectomized (n = 5) female mice. Student’s t-test, *p = 0.032.

(Merkle et al., 2007, 2014). Interestingly, a sexually dimorphic
modulation of AN was also found when considering the
process of newborn cell survival in the OB region, which shows
a significant decrease in the survival of newly-generated
cells selectively in the MOB of GnRH::cre;DicerloxP/loxP

females (Figure 3). By contrast, both male and female
GnRH::cre;DicerloxP/loxP mice do not show any alteration of
progenitor proliferation, early neuronal specification, as well
as newborn cell survival, in the DG. Overall, these data suggest
that the HPG-axis secretory activity around puberty impacts the
process of AN selectively in the SVZ neurogenic niche and that
this activity appears critical to control sexually dimorphic aspects
of neurogenesis during adulthood.

It is known that in rodents both level and type of
circulating sexual hormones and expression of their receptors can
differentially modulate the AN process in the two neurogenic
niches, depending on a complex plethora of interrelated
factors, which actually include sex, age, species, individual
experience, physiologic and pathological states (Kuhn et al.,
1996; Banasr et al., 2001; Leuner et al., 2007; Crews et al.,
2010; Nunez-Parra et al., 2011; Epp et al., 2013; Díaz et al.,
2017). Therefore, although the more mechanistic aspects
underlying such sexually dimorphic and niche-specific alteration
of AN in the GnRH::cre;DicerloxP/loxP mice need further
investigation, the occurrence of functional impairment of the
HPG axis affecting AN is rather expected. Nevertheless, one
key point of this study arises by comparing the results (on
both cell proliferation/differentiation and survival) obtained in
GnRH::cre;DicerloxP/loxP mice (males and females), which are
featured by a HPG impairment starting just before puberty, with
those from models/studies wherein the impact of the HPG axis

factors on AN has been evaluated during adulthood (i.e., in fully
mature animals), or early postnatal life (i.e., in pre-/peri-pubertal
animals; reviewed in Galea et al., 2013; Mahmoud et al., 2016).

For example, it is known that low level of circulating steroids,
obtained through testicular removal during adulthood, affects
cell survival in the DG of male rodents (Ormerod et al., 2004;
Mak et al., 2007; Spritzer and Galea, 2007; Spritzer et al.,
2011), whereas both cell proliferation and survival in the DG
of GnRH::cre;DicerloxP/loxP males is not altered. Similarly, in
females, endogenous fluctuations in ovarian hormones (Tanapat
et al., 1999; Lagace et al., 2007; Rummel et al., 2010; Tzeng et al.,
2014), aging (Barha et al., 2015), depletion (ovariectomy), and
acute (Barker and Galea, 2008) but not chronic (Tanapat et al.,
2005; Chan et al., 2014) replacement of estradiol, influence cell
proliferation and survival in the DG, whereas proliferation and
survival in theGnRH::cre;DicerloxP/loxP females are not affected in
this region. Moreover, in the SVZ neurogenic niche, diverse HPG
secreted factors, including gonadotropins, prolactin and estradiol
can modulate cell proliferation during adulthood in female mice
(Shingo et al., 2003; Mak et al., 2007; Brock et al., 2010; Larsen
andGrattan, 2012), whereas the impairment of HPG activity does
not modulate proliferation in GnRH::cre;DicerloxP/loxP females.
In addition, gonadectomy in different strains of adult males
increases the number of SVZ proliferating cells (Tatar et al.,
2013), in opposition to what found in GnRH::cre;DicerloxP/loxP

males. These data support the occurrence of a specific temporal
modulatory relationship between the HPG factors and the
process of adult neurogenesis.

Unique data in the GnRH::cre;DicerloxP/loxP mice arise also
when it is considered the newborn cell survival in the OB,
although a comparison with other models of HPG dysfunction
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in this region is complicated by the paucity of data available on
this issue (see for review Ponti et al., 2018), and the fact that
the number of newborn neurons integrating in the OBs depends
on both the proliferation rate of SVZ progenitors (Larsen et al.,
2008) and/or an activity-dependent survival (Oboti et al., 2011,
2017; Moreno et al., 2012; Oboti and Platel, 2012; Lepousez
et al., 2014; Schellino et al., 2016). In the GnRH::cre;DicerloxP/loxP

mice, a significant reduction of newborn cell survival was found
in the MOB of females only (Figure 3). This result appears
consistent with previous data showing that direct contact with
pheromones, which actually stimulates the release of HPG axis
factors (Gore et al., 2000; Richardson et al., 2004), promotes
directly, or through increased SVZ proliferation, the survival
of newborn neurons in the OB region of female mice (Shingo
et al., 2003; Mak et al., 2007; Larsen et al., 2008; Oboti et al.,
2009, 2011, 2017; Mak and Weiss, 2010; Larsen and Grattan,
2012; Schellino et al., 2016). Nevertheless, short-term treatment
with estradiol reduces cell survival in the OB of adult female
mice, as a consequence of a drop in SVZ proliferation (Brock
et al., 2010). Moreover, exposure to estradiol in adult female-
aromatase knockout mice, which are unable to produce estradiol
across their entire lifespan (Bakker et al., 2002; Bakker, 2003),
does not influence cell proliferation in the SVZ, but still reduces
survival of newborn neurons in the MOB, but not in the AOB
(Veyrac and Bakker, 2011; Brus et al., 2016). By contrast, the
modulation of cell survival occurs in the AOB but not in the
MOB when estradiol exposure starts before puberty (Veyrac
and Bakker, 2011). Overall, besides the high level of complexity
underlying the regulation of survival of newborn neurons via
sexual hormones in the OB region, where newborn neurons
are directly involved in the processing of salient cues (Mak
et al., 2007; Larsen et al., 2008; Larsen and Grattan, 2010; Oboti
et al., 2011; Schellino et al., 2016), these data support a diverse
modulatory role of hormones depending on their exposure
period (perinatal, pubertal or adult life).

Cell Survival in the MOB Decreases in
Pre-pubertal Ovariectomized Females
From the above discussion clearly emerges that the peculiar
alterations of AN identified in the adult GnRH::cre;DicerloxP/loxP

mice cannot be solely attributable to impaired secretion of
sexual hormones during adulthood. To further interpret these
results it is also necessary to consider that the inactivation of
the GnRH peptide production in the GnRH::cre;DicerloxP/loxP

mice results in impairment of secretory activity/factors along the
whole HPG axis. Thus, it is likely that our data on AN arise from a
crosstalk between direct and/or synergistic effect of each different
HPG secretory factors (GnRH, gonadotropins, sex steroids and
other circulating hormones). For example, as above mentioned,
gonadotropins or prolactin alone, can actually modulate AN
(Mak et al., 2007; Larsen et al., 2008; Larsen and Grattan,
2010). Moreover, previous studies on the GnRH peptide function
indicate that GnRH per semay play extra-reproductive functions
in the brain (Merchenthaler et al., 1989; Shinoda et al., 1989;
Lin et al., 2004; Balasubramanian et al., 2010), and, accordingly,
a link between GnRH secretion and DG neurogenesis has been
previously suggested in aged mice (Zhang et al., 2013). To shed
light on the relative contribution of diverse HPG axis factors in

modulating AN at puberty, we chose to examine AN in females
ovariectomized at p21 (soon before puberty) and treated with
BrdU at p28, the puberty onset in mice (Oboti et al., 2017).
Importantly, p28 it is exactly the age at which the GnRH peptide
content significantly reduces in the GnRH::cre;DicerloxP/loxP mice
(Messina et al., 2016). In the OVX model, instead of a general
deficiency of the whole HPG axis secretory activity, we measured
the effect given by the loss of (pre-pubertal) gonadal hormone
secretion on AN.We focused on the survival of newborn neurons
in the main OB of female animals, since it is significantly
reduced in GnRH::cre;DicerloxP/loxP female mice. Our results on
the pre-pubertal OVX females show the same trend found in
the GnRH::cre;DicerloxP/loxP females (Figures 3, 6), although the
ovariectomized mice were subjected to a hormonal depletion
for a shorter period of time (i.e., 35 days) compared to the
GnRH::cre;DicerloxP/loxP model (i.e., ∼50 days) and despite AN
occurs at different rates throughout life, with an age-related
decline (Ben Abdallah et al., 2010; Spalding et al., 2013) that is
sharper after puberty (He and Crews, 2007). This result suggests
that the alterations of AN identified in this mutant model
could be attributable to an impaired gonadal hormone secretion
occurring during the peri-pubertal life, although we cannot
exclude our results on OVX animals could be also influenced by
GnRH or gonadotropins rise elicited in absence of the estrogen
negative feedback on the GnRH system (Czieselsky et al., 2016;
Dubois et al., 2016). Nevertheless, it is to note that a previous
study in rodents (Farinetti et al., 2015) showed that impaired
gonadal hormone secretion just before puberty (gonadectomy
at p21), as in the GnRH::cre;DicerloxP/loxP male mice, results in
decreased proliferation of primary and intermediate progenitors
in a subregion of the SVZ neurogenic niche, which is restored
by treatment with estradiol and testosterone, thus supporting
our data regarding the involvement of peripubertal gonadal
hormones in shaping the AN process.

In conclusion, this study, although not yet conclusive as
regards the modulatory role on adult neurogenesis of each
pre- and peri-pubertal secretion of the HPG-axis, underlines
the pubertal activation of the HPG axis system (i.e., GnRH,
gonadotropins, and gonadal hormones) is crucial to set up the
AN process selectively in the SVZ. Interestingly, this mechanism
seems to occur differentially in males and females, influencing
cell proliferation in males and cell survival in females, thus
suggesting that it is critical for establishing a sexually dimorphic
function of the AN process.
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