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Regulation of tumour related genes 
by dynamic epigenetic alteration 
at enhancer regions in gastric 
epithelial cells infected by Epstein-
Barr virus
Atsushi Okabe1, Sayaka Funata1, Keisuke Matsusaka1, Hiroe Namba1, Masaki Fukuyo1, 
Bahityar Rahmutulla1, Motohiko Oshima2, Atsushi Iwama2, Masashi Fukayama3 & Atsushi 
Kaneda   1

Epstein-Barr virus (EBV) infection is associated with tumours such as Burkitt lymphoma, 
nasopharyngeal carcinoma, and gastric cancer. We previously showed that EBV(+) gastric cancer 
presents an extremely high-methylation epigenotype and this aberrant DNA methylation causes 
silencing of multiple tumour suppressor genes. However, the mechanisms that drive EBV infection-
mediated tumorigenesis, including other epigenomic alteration, remain unclear. We analysed 
epigenetic alterations induced by EBV infection especially at enhancer regions, to elucidate their 
contribution to tumorigenesis. We performed ChIP sequencing on H3K4me3, H3K4me1, H3K27ac, 
H3K27me3, and H3K9me3 in gastric epithelial cells infected or not with EBV. We showed that repressive 
marks were redistributed after EBV infection, resulting in aberrant enhancer activation and repression. 
Enhancer dysfunction led to the activation of pathways related to cancer hallmarks (e.g., resisting 
cell death, disrupting cellular energetics, inducing invasion, evading growth suppressors, sustaining 
proliferative signalling, angiogenesis, and tumour-promoting inflammation) and inactivation of tumour 
suppressive pathways. Deregulation of cancer-related genes in EBV-infected gastric epithelial cells 
was also observed in clinical EBV(+) gastric cancer specimens. Our analysis showed that epigenetic 
alteration associated with EBV-infection may contribute to tumorigenesis through enhancer activation 
and repression.

Aberrant DNA methylation is one of the major epigenomic alterations that affect cancer development1–3. 
Epstein-Barr virus (EBV) infection is associated with tumours such as Burkitt lymphoma, nasopharyngeal carci-
noma (NPC), and some gastric cancer. Among all human malignancies, NPC and EBV(+) gastric cancer (GC) 
presents an extremely high-methylation epigenotype. This aberrant DNA methylation causes silencing of multiple 
tumour suppressor genes (TSGs)4–6.

Other than DNA methylation, global alteration of heterochromatin-associated histone modifications, 
H3K9me2/3 and H3K27me3, were observed in many cancer cells. The Polycomb Repressive Complex 2 (PRC2) 
was mutated in many cancers such as lymphoma or malignant peripheral nerve sheath tumours and, conse-
quently, elevation or reduction of H3K27me3 was observed7. H3K27me3 deregulation leads to differentiation 
and aberrant activation of cancer-associated genes. McDonald et al. reported that large H3K9-modified hetero-
chromatin domains were changed during the progression of pancreatic ductal adenocarcinoma, and this change 
was related to metastasis8. In NPC, subunits of PRC2, BIM1 and EZH2, are highly activated9, 10, and consequent 
increase of H3K27me3 is significantly associated with patients’ poor survival and chemotherapy resistance11. We 
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previously showed that SUZ12 and BMI1 are upregulated also in EBV-infected gastric epithelial cells12, which 
might cause repressive mark alteration.

In addition to heterochromatin regions, enhancers are also important regulators of tissue-specific expression, 
and deregulation of enhancers by mutation or epigenetic alteration could lead to diseases13. Mutations in enhanc-
ers and enhancer-binding transcription factors or mutations in cofactors cause hyper-activation or repression of 
enhancers that provoke cancer. It was also reported that MLL3 and MLL4 genes, which are methyl-transferase of 
enhancer mark H3K4me1, were frequently mutated in many digestive cancers, including colon cancer or GCs14–16.  
Hyper-activated enhancer cluster, which is called super enhancer, defines cell identity in health and disease, and 
was analysed in many cancer cells17, 18. It was reported that GC-related somatic super enhancers contribute to 
cancer gene expression19.

EBV infection could also induce epigenetic alteration and concomitant deregulation of expression, which 
have been mostly studied by using permanently growing EBV-infected lymphoblastoid cell lines (LCLs)20–25. 
Several previous reports showed DNA methylation induction and aberrant expression alteration in EBV-infected 
epithelial cells26, 27. Ryan and colleagues reported 17 downregulated and eight upregulated genes by EBV using the 
gastric cancer cell line AGS, with or without EBV infection28. However, epigenetic alterations, other than DNA 
methylation, during tumorigenic processes after EBV infection are yet to be fully investigated.

In this study, we analysed alterations of histone modification to evaluate how EBV infection plays a role in 
viral-associated carcinogenesis. We used a system in vitro to infect a gastric epithelial cell line with EBV which 
can induce an extensive DNA hypermethylation5. We investigated that, while loss of repressive marks at promoter 
regions did not lead to gene activation due to alternatively acquired de novo DNA methylation, loss of repressive 
marks at enhancer regions resulted in enhancer activation due to alternatively acquired histone active marks. 
Activation and repression of enhancer regions in EBV-infected GC cells leading to aberrant activation of onco-
genes and repression of TSGs, and these genes were preferentially deregulated by epigenetic alteration at enhancer 
regions rather than at promoter regions. This comprehensive analysis of epigenetic alteration in EBV-infected GC 
cells provides insights into the molecular mechanisms underlying the development of EBV(+) GC.

Results
Epigenetic alteration at promoters and enhancers in EBV-infected GC cells.  To identify genome-
wide epigenetic alterations in EBV-infected GC cells, we performed ChIP-seq analyses for H3K4me3, H3K4me1, 
H3K27ac, H3K27me3, and H3K9me3 using a low-methylation GC cell line, MKN7, and one of the previously 
established EBV-infected MKN7 clones5. To clarify the relationship between de novo DNA methylation and 
each histone modification alterations, we performed ChromHMM analysis using ChIP-seq data and divided the 
genome into 9 chromatin states (Supplementary Fig. S1a). We then compared each histone modification alteration 
with DNA methylation alteration in EBV-infected MKN7 cells. Consistent with previous results, de novo DNA 
methylation was preferentially acquired at repressive and poised promoter regions. In addition, active enhancer, 
polycomb target regions, and heterochromatin regions also acquired DNA methylation (Supplementary Fig. S1b). 
These results suggest that EBV infection could induce de novo DNA methylation on promoter regions as well as 
on enhancers and repressive regions.

To investigate the effect of de novo DNA methylation on enhancer regions, we analysed H3K4me1 alteration 
on a genome-wide scale after EBV infection (Fig. 1). We defined enhancer regions as H3K4me1 peaks without 
H3K4me3 signal. First, we identified 5,496 enhancers with increased H3K4me1 signal (E1) and 8,126 enhanc-
ers with decreased H3K4me1 signal (E2) (Fig. 1a,f). Enhancer subgroup E1 showed increase of H3K27ac level 
(Fig. 1g) with a DNA methylation level <0.2 (Fig. 1h), whereas subgroup E2 showed decrease of H3K27ac level 
(Fig. 1g) with a DNA methylation level significantly increased to >0.4 (P < 1 × 10−15, paired t-test) (Fig. 1h). 
Enhancers without repressive marks were preferentially repressed by de novo DNA methylation and concomitant 
decrease of H3K27ac.

Next, we explored enhancer regions associated with alteration of repressive histone modification levels in 
EBV-infected MKN7 cells, e.g. H3K27me3 and H3K9me3. According to ChromHMM chromatin states, occu-
pancy of polycomb target regions was notably reduced in EBV-infected MKN7 cells (Supplementary Fig. S2a). 
These H3K27me3 reductions were observed at promoters or gene body regions (Supplementary Fig. S2b). 
The average distribution of H3K27me3 signal on genetic regions revealed that the H3K27me3 signal at pro-
moter regions was significantly reduced (Supplementary Fig. S2c). Besides, genome-wide analysis revealed that 
H3K9me3 distribution was widely changed. Alteration of H3K9me3 signal was inversely correlated with alter-
ation of activation marks (Supplementary Fig. S3a). H3K9me3 level was increased at 9% of H3K9me3 enriched 
regions and decreased at 22% of H3K9me3 enriched regions (Supplementary Fig. S3b). At enhancer regions 
showing H3K4me1 peaks before and/or after EBV infection, 65% of enhancers with decreased H3K27me3 
showed increase of H3K4me1 levels (E3) and only 13% showed decrease of H3K4me1 levels (E4) (Fig. 1b,d,f). 
H3K27ac signal in the E3 subgroup was also preferentially increased (Fig. 1g) and DNA methylation level was 
maintained at <0.2 (Fig. 1h). Epigenetic switch from repressive H3K27me3 mark to active marks could occur at 
enhancer regions. Besides, 88% of enhancer regions with decreased H3K9me3 showed an increase of H3K4me1 
levels (E5) and only 1% showed loss of H3K4me1 peaks (Fig. 1b,d,F). H3K27ac signal in the E5 subgroup was also 
preferentially increased (Fig. 1g) and DNA methylation level was not significantly altered. These results showed 
that switch from repressive H3K9me3 mark to active marks could also occur at enhancer regions. Interestingly, 
H3K4me1 level was increased, but H3K27ac level was not increased at enhancer regions with loss of H3K27me3 
and maintenance of H3K9me3. Furthermore, 53% of enhancers with increased H3K9me3 showed decrease of 
H3K4me1 (E7), which concomitantly reduced H3K27ac signal (Fig. 1b,f,g). These results suggest that enhancers 
with maintained or increasing H3K9me3 levels were preferentially repressed without H3K27ac induction.

Finally, we identified alterations at H3K4me3(+) promoter regions with repressive marks. A percentage 
of 19.9% of promoter regions losing H3K27me3 showed decreased H3K4me3 level (P1) and 74.5% showed 
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Figure 1.  Global epigenetic alteration at enhancer and promoter regions. WT, MKN7 without EBV infection. 
EB, EBV-infected MKN7 cells. (a,b) Histone modification alteration at enhancer regions with or without 
repressive marks. Heatmaps represent read density of H3K4me1, H3K4me3, H3K27ac, FAIRE, H3K27me3, 
and H3K9me3 profiles in ± 5-kb regions centred on H3K4me1 peaks without H3K27me3 and H3K9me3 
modifications (a), or with H3K27me3 or H3K9me3 alteration (b). H3K4me1 level was increased in subgroups 
E1, E3, E5, and E6, while H3K4me1 level was decreased in subgroups E2, E4, and E7. (c) Histone modification 
alteration at promoter regions with repressive marks. Read densities of H3K4me1, H3K4me3, H3K27ac, 
FAIRE, H3K27me3, and H3K9me3 in ± 5-kb regions are represented in heatmaps, centred on H3K4me3 peaks. 
H3K4me3 level was decreased in P1, and increased in P3, while H3K4me3 level was not changed in P2, P4, and 
P5. (d) Fractions of each enhancer subgroup in H3K4me1 gain, loss, or unchanged peaks. (e) Fractions of each 
promoter subgroup in H3K4me3 gain, loss, or unchanged regions. (f) Profiles of average H3K4me1 distribution 
at each enhancer subgroup. (g) Profiles of average H3K27ac distribution at each enhancer subgroup. (h) 
Average DNA methylation level at the centre of each enhancer. *Significant increase (P < 0.05: paired t-test) of 
β value from < 0.2 to > 0.4. (i) Profiles of average H3K4me3 distribution at each promoter subgroup. (j) Profiles 
of average H3K27ac distribution at each promoter subgroup. (k) Average DNA methylation level at overlapping 
gene promoters. * Significant increase (P < 0.05: paired t-test) of β value from < 0.2 to > 0.4.
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unchanged H3K4me3 level (P2) (Fig. 1c,e,i). Consistent with previous results, DNA methylation was signifi-
cantly increased at P1 and P2 promoter regions (P < 1 × 10−15, paired t-test) (Fig. 1k)29. H3K27me3(+) promoters 
preferentially acquired de novo DNA methylation and were hardly activated in EBV-infected MKN7 cells, despite 
enhancer activation associated with decrease of H3K27me3 (Fig. 1g). On the other hand, 62% of promoters with 
decreased H3K9me3 (P3) showed simultaneous increase of H3K4me3 and H3K27ac levels (Fig. 1e,i,j). These 
results suggest that H3K9me3 reduction might contribute to promoter activation as observed at enhancer regions. 
Most P4 and P5 promoter subgroups, which maintained or gained H3K9me3 modification, did not show increase 
of H3K4me3 levels (Fig. 1i). These subgroups showed high H3K27ac signal (Fig. 1j), but increase of DNA meth-
ylation (Fig. 1k).

Epigenetic status of EBV genome in EBV infected GC cells.  We identified epigenetic status of EBV 
genome in EBV-infected MKN7 cells by using ChIP-seq data. Whereas most parts of EBV genome were mod-
ified with repressive marks e.g. H3K9me3 or H3K27me3 (Supplementary Fig. S4a), there were several regions 
activated with H3K27ac. One of those was observes at Q promoter of EBNA1 (Qp-EBNA1) (Supplementary 
Fig. S4b). Activation with H3K27ac was also observed at EBER1, EBER2 and OriP, which are reportedly activated 
by EBNA1 in latent state of EBV in LCLs30. Although H3K27ac signal was rather weak, strong FAIRE signal was 
identified at the promoter region of LMP2A, which is also active in latent state of EBV.

Genes activated with increase of H3K27ac mark at promoter and enhancer regions.  We sought 
to determine whether a subset of enhancers could be abnormally activated in EBV-infected MKN7 cells. We 
defined activation as >2-fold H3K27ac signal alterations after EBV infection. We identified 4,875 activated 
enhancers without repressive marks (AE1), 298 activated enhancers with decrease of H3K27me3 (AE2), 279 
activated enhancers with decrease of H3K9me3 (AE3), and 1,284 activated promoters without repressive marks 
(AP1) (Fig. 2a). EBV infection activates MAX enhancers, which were reported as the EBV specific super-enhancer 
in LCLs20 (Supplementary Fig. S5a). Another well-known target of EBNA proteins, MYC, was already activated 
in MKN7 GC cells before EBV infection (Supplementary Fig. S5b). To clarify the contribution of these activated 
enhancers toward gene expression, we analysed the expression of the nearest gene of each activated enhancer 
region. Genes associated with AE1 and AE3 showed significantly higher expressions in EBV-infected cells than 
in WT (P < 1 × 10−15 for AE1; P = 0.0003 for AE3, paired t-test) (Fig. 2b). The expression of genes associated 
with AE2 was not significantly increased, but it tended to be upregulated. Whereas there was an overlap of 
AE1-associated genes and AP1-associated genes (Fig. 2c), as many as 339 genes were upregulated by enhancer 
activation without increase of H3K27ac at promoters (Fig. 2c). Therefore, enhancer activation is suggested to be 
important for aberrant gene activation in EBV-infected GC cells.

Next, we performed GO enrichment analysis of each enhancer subgroup-associated genes to identify acti-
vated pathways in EBV-infected MKN7 cells. This analysis revealed significant enrichment of the following cat-
egories: regulation of cell migration, single organismal cell-cell adhesion, and response to growth factors for 
AE1-associated genes (Supplementary Table S1). AE2-associated genes showed enrichment of the following cate-
gories: response to external stimulus, differentiation and cell adhesion (Supplementary Table S2). AE3-associated 
genes showed enrichment of the following categories: cell development and morphogenesis (Supplementary 
Table S3). Consistent with a previous study, AP1-associated genes showed enrichment of the following catego-
ries: DNA replication and cell cycle (Supplementary Table S4)29. Clustering analysis of GO enrichment terms 
revealed that, while genes associated with DNA replication are preferentially regulated by promoter activation, 
those associated with cell adhesion, proliferation, and differentiation are preferentially regulated by enhancer 
activation (Fig. 2d).

To predict transcription factors that activate enhancer regions in EBV-infected MKN7 cells, we performed 
motif analysis at open chromatin regions detected by FAIRE-seq overlapped with AE1. Consensus sequence of 
RUNX1 and ETS1 were highly enriched in AE1 regions (Fig. 2e). For example, activated enhancers were observed 
around BCL10, which was included in the following GO categories: single organism cell adhesion and positive 
regulation of cell proliferation; RUNX1 and ETS1 motifs were also observed at activated enhancer regions around 
this gene.

Genes repressed with decrease of H3K27ac mark at promoter and enhancer regions.  We next 
examined repression of enhancers through aberrant deacetylation of H3K27ac in EBV-infected MKN7 cells on 
genome-wide scale. We defined repression as the reduction of H3K27ac signal to <0.5-fold after EBV infec-
tion. We identified 8,032 repressed enhancers without H3K9me3 or H3K27me3 (RE1), 118 repressed enhancers 
gaining H3K9me3 (RE2), and 1,030 repressed promoters without H3K9me3 or H3K27me3 (RP1) (Fig. 3a). The 
expression of associated genes of RE1 was significantly reduced after EBV infection (P < 1 × 10−15; RE1) (Fig. 3b). 
As many as 587 genes were downregulated by enhancer repression without decrease of H3K27ac at the promoter 
(Fig. 3c). These results suggest that repression of enhancer regions in EBV-infected MKN7 cells resulted in aber-
rant gene repression.

To identify repressed targets of RE1 and RP1, GO enrichment analysis was performed. RE1-associated genes 
showed enrichment of the following categories: positive regulation of differentiation, epithelial cell differentiation, 
and negative regulation of cell death (Supplementary Table S5). RP1- and RE1-associated genes showed similar 
enrichment of categories, which suggested that deacetylation at both promoters and enhancers were important to 
repress gene expression (Supplementary Table S6, Fig. 3d).

To predict transcription factors repressed in EBV-infected MKN7 cells, we performed motif analysis at open 
chromatin regions detected by FAIRE-seq overlapped with RE1. GATA3 and GRHL1 motifs were enriched at 
RE1 regions (Fig. 3e). Representative repressed enhancer regions were observed around KLF5, which is known 
as a TSG (Fig. 3f).
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Figure 2.  Epigenetic activation of enhancers and promoters in EBV-infected MKN7 cells. WT, MKN7 without 
EBV infection. EB, EBV-infected MKN7 cells. (a) Heatmaps representing read densities of H3K27ac, H3K4me1, 
H3K4me3, FAIRE, H3K27me3, and H3K9me3 in ± 5-kb regions centred on activated enhancers and promoters. 
AE1, AE2, and AE3 are subgroups of activated enhancers in E1, E3, and E5, respectively. AP1 is subgroup of 
activated promoters without repressive histone modification. (b) Expression levels of genes nearest to each 
activated enhancer and H3K27ac unchanged enhancers. Genes were significantly upregulated in EBV-infected 
GC cells in AE1 (P < 1 × 10−15: calculated by paired t-test) and AE3 (P = 3 × 10−4: calculated by paired t-test). 
(c) Overlap of AE1-associated genes (red) and AP1-associated genes (green). This Venn diagram showed that 
as many as 339 genes were upregulated by enhancer activation without increase of H3K27ac at promoter. (d) 
GO enrichment analysis of genes with enhancer or promoter activation. Colour scale represents binomial P-
values (in −log10 scale). While genes associated with “DNA replication” are preferentially regulated by promoter 
activation, those associated with “cell adhesion”, “proliferation”, and “differentiation” are preferentially regulated 
by enhancer activation. (e) Enriched known motif at open chromatin region detected by FAIRE-seq overlapped 
with AE1. (f) Histone modification and position of enriched motifs around the representative activated gene, 
BCL10.
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Figure 3.  Epigenetic repression of enhancers and promoters in EBV-infected GC cells. WT, MKN7 without 
EBV infection. EB, EBV-infected MKN7 cells. (a) Heatmaps representing read densities of H3K27ac, H3K4me1, 
H3K4me3, FAIRE, H3K27me3, and H3K9me3 in ±5-kb regions centred on repressed enhancers and 
promoters. RE1 and RE2 are subgroups of repressive enhancers in E2 and E7 respectively. RP1 is a subgroup of 
repressed promoters without repressive mark. (b) Expression level of genes nearest to each repressed enhancer 
and H3K27ac unchanged enhancers. Genes were significantly downregulated in EBV-infected MKN7 cells in 
RE1 (P < 1 × 10−15: calculated by paired t-test). (c) Overlap of RE1-associated genes (red) and RP1-associated 
genes (green). This Venn diagram showed that as many as 587 genes were downregulated with enhancer 
repression without a decrease of H3K27ac at the promoter. (d) GO enrichment analysis of genes with enhancer 
or promoter repression. Colour scale represents binomial P-values (in -log10 scale). Genes associated with 
“Negative regulation of cell proliferation” and “Epithelial cell differentiation” were preferentially regulated 
by both promoter and enhancer repression. (e) Enriched known motif at open chromatin regions detected 
by FAIRE-seq overlapped with RE1. (f) Histone modification and position of enriched motifs around the 
representative repressed gene, KLF5.
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Activation of cancer hallmark genes and repression of TSGs in EBV-infected MKN7 cell line.  
Aberrant enhancer activation is associated with key oncogenes in several cancers (15, 16). Hanahan and Weinberg 
proposed that cancer cells acquire a number of hallmark biological capabilities during the multistep process 
of tumour pathogenesis31. In EBV-infected MKN7 cells, 8,319 genes were activated (Supplementary Table S7). 
Upregulated genes around enhancers activated in EBV-infected MKN7 cells were associated with positive reg-
ulation of cell proliferation, differentiation, and cell adhesion (Fig. 2d), and these pathways were included in 
the hallmarks of cancer31. In addition, motif analysis revealed that RUNX1 and ETS1 were related to aberrant 
enhancer activation and these transcription factors were reported as oncogenes32–35. We therefore analysed cancer 
hallmark genes to elucidate the contribution of activated enhancers to activation of cancer hallmark genes. Of ten 
cancer hallmarks, EBV-induced active enhancers were significantly associated with activation of genes involved 
in the following cancer hallmarks: resisting cell death (P = 7 × 10−6, Kolmogorov-Smirnov test), disrupting cel-
lular energetics (P = 0.002, Kolmogorov-Smirnov test), activation invasion (P = 9 × 10−7, Kolmogorov-Smirnov 
test), evading growth suppressors (P = 0.002, Kolmogorov-Smirnov test), sustaining proliferative signalling 
(P = 2 × 10−4, Kolmogorov-Smirnov test), angiogenesis (P = 0.03, Kolmogorov-Smirnov test), and tumour pro-
moting inflammation (P = 0.04, Kolmogorov-Smirnov test) (Fig. 4a). Thus, enhancers activated in EBV-infected 
MKN7 cells can stimulate such oncogenic pathways, which might involve traits associated with aggressive GC.

We next analysed possible contribution of repressed enhancers to tumorigenesis. TSGs are inactivated in can-
cer cells by genetic alteration and/or aberrant DNA methylation at promoter regions resulting in TSG repression. 
We previously showed that extensive DNA hypermethylation induced by EBV infection results in TSG repres-
sion5. In EBV-infected MKN7 cells, 8,072 genes were downregulated (Supplementary Table S8). While Ryan et al.  
showed that 17 genes in cancer-related signal transduction pathway are downregulated in EBV-infected AGS 
cells28, eight of them, BATF, COX2, TFF1, ID2, CDK2, CCND1, CDKN2A, and ID4, were also downregulated in 
EBV-infected MKN7 cells. Downregulated genes around repressed enhancers showed enrichment of the follow-
ing categories: negative regulation of cell proliferation and protein phosphorylation, which were associated with 
TSG functions. Using the TSG database36, 37, we determined the association between change in TSG expression 
and enhancer repression and found that repressed enhancers were significantly associated with TSG repression 
(P = 9 × 10−4, Kolmogorov-Smirnov test) (Fig. 4b). Thus, aberrant enhancer regulation by EBV may contribute 
to tumorigenesis by activating cancer hallmark genes and by repressing TSGs.

Expression change of cancer-related genes in GC tissue samples.  We next compared activated 
cancer-related genes and repressed TSGs in EBV-infected MKN7 cells with differentially expressed genes 
in EBV(+) GC tissue samples analysed by TCGA6, to confirm whether aberrant gene regulation observed in 
EBV-infected MKN7 cells is also observed in patients with GC (Fig. 5, Supplementary Figs S6, S7). TCGA com-
prehensively evaluated 295 primary gastric adenocarcinoma, and reported genes differentially expressed in 
EBV(+) GC tissue samples from normal tissue and/or EBV(−) GC tissue samples. Among genes in the cancer 
hallmarks “Resisting cell death”, “Disrupting cellular energetics”, “Activation invasion”, “Evading growth suppres-
sors”, “Sustaining proliferative signalling”, “Angiogenesis”, and “ Tumour promoting inflammation”, 93 genes were 
upregulated in EBV-infected MKN7 cells and in clinical EBV(+) GC tissue samples when compared with normal 
tissue and/or EBV(−) GC tissue samples (Fig. 5a, Supplementary Table S9). For example, TOP1 showed enhancer 
activation and was upregulated in EBV-infected MKN7 cells (Fig. 5b,c), and highly expressed in EBV(+) GCs 
compared to normal tissue or EBV(−) GC tissue samples (Fig. 5d).

Next, we extracted TSGs whose expression was decreased in EBV(+) GC tissue samples. Twenty-nine TSGs 
were downregulated in EBV-infected MKN7 cells and in EBV(+) GC tissue samples when compared with nor-
mal tissue and/or EBV(−) GC tissue samples (Fig. 5e, Supplementary Table S10). A representative example of 
such TSG is IGFBP3, which is related to the apoptotic process and negative regulation of the cell cycle. A super 
enhancer observed around IGFBP3 was repressed in EBV-infected MKN7 cells (Fig. 5f), which resulted in the 
downregulation of gene expression (Fig. 5g). IGFBP3 expression was decreased in EBV(+) GC tissue samples 
when compared to that in EBV(−) GC tissue samples (Fig. 5h). Our results indicate that aberrant activation and 
repression observed in EBV-infected GC cells is also observed in clinical samples.

Discussion
We previously showed that aberrant promoter methylation was observed in EBV(+) GCs, and that in vitro EBV 
infection introduced de novo DNA methylation in gastric epithelial cells resembling the hypermethylation epig-
enotype of EBV(+) GC tissue samples5. TET family might function as a methylation resistance factor, and its 
downregulation due to EBV infection might be a cause of genome-wide DNA methylation12. Epigenetic alter-
ation induced by EBV infection into gastric epithelial cells is largely unknown, other than DNA methylation at 
promoter regions5, 12. Our results provide evidence that in vitro EBV infection in gastric cells induce alteration 
of global histone modification, including repressive histone marks. Loss of repressive marks and concomitant 
enhancer activation through increase of H3K4me1 and H3K27ac were observed. Such enhancer activation might 
contribute to the oncogenic process by activating neighbouring genes. We also showed that enhancer repression 
through H3K27ac deacetylation and de novo DNA methylation might contribute to tumorigenesis by repressing 
neighbouring TSGs.

We first revealed that differences between promoter regions and enhancer regions overlapped with repressive 
heterochromatin regions. Consistent with a previous analysis at promoter regions, enhancers losing H3K27ac 
acquired de novo DNA methylation and enhancers gaining H3K27ac maintained low level of DNA methylation. 
Although promoters with decreased H3K27me3 acquired de novo DNA methylation and maintained an inac-
tive state, enhancers losing H3K27me3 did not acquire de novo DNA methylation and were activated through 
increase of H3K27ac. Enhancers losing H3K9me3 were also activated without de novo DNA methylation acqui-
sition. Interestingly, promoters losing H3K9me3 did not acquire de novo DNA methylation and were activated 
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by H3K27 acetylation. Similar alteration in repressive marks was observed in latent III infection of EBV in LCLs, 
which was established by EBV infection to resting B cells38. Heterochromatin-associated mark impedes the repro-
gramming of cell identity39, and loss of heterochromatin causes cancer8, 40. These suggest that EBV infection could 
induce heterochromatin alteration in both B lymphocytes and gastric epithelial cells to activate genes, which are 
to be repressed during differentiation, and thus might promote oncogenesis.

Transcription factors activated in EBV-infected GC cells overlapped between gastric epithelial cells and LCLs, 
resulting in activation of similar enhancer regions. LCL-specific super enhancers such as MAX and ETS1 regions 
were also activated in EBV-infected MKN7 cells. In LCLs, such super enhancer activation was related to cell 
growth pathways and these EBV-specific super enhancers were activated by EBNA2, EBNA3A, EBNA3C, and 
host NF-κB20. However, in latent infection with EBV in gastric epithelial cells, only EBNA1, EBER1, EBER2, 
LMP2A, and BARF0 are expressed, while other regions are inactivated41. Our epigenetic data of EBV genome in 
EBV-infected MKN7 cells were in good agreement with latent state of EBV in gastric epithelial cells. FAIRE-seq 
data revealed that FR repeats at the OriP were open in EBV-infected MKN7 cells, whereas it was reported that 

Figure 4.  Epigenetic regulation of cancer hallmark genes and tumour suppressor genes. (a) Cancer hallmark 
genes. Genes were sorted according to fold expression changes. Black bars show association with activated 
promoters and repressed promoters, respectively. Red bars show association with activated enhancers (AE1). 
P-value was calculated by Kolmogorov-Smirnov test. Enhancer activation was significantly associated with 
upregulation of cancer hallmark genes, e.g., “Resisting cell death”, “Disrupting cellular energetics”, “Activation 
invasion”, “Evading growth suppressors”, “Sustaining proliferative signalling”, and “Tumour promoting 
inflammation”. (b) Black bars show association with activated promoters and repressed promoters, respectively. 
Blue bars show association with repressed enhancers (RE1). Enhancer repression was significantly associated 
with repression of tumour suppressor genes.
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EBNA1 binds to FR repeat region and activate neighbouring genes30. These active EBV transcripts might play 
important roles in epigenomic alteration of host genome, as downregulation of Ten-eleven-translocation (TET) 
proteins by BARF0 or latent membrane protein 2 A (LMP2A)12 and upregulation of DNMT1 by LMP2A42 were 
reported to cause DNA methylation induction in host genome.

Meanwhile, expression of host epigenetic factors was also altered in EBV-infected GC cells. In EBV-infected 
MKN7 cells, TET2 expression was downregulated as mentioned above (Supplementary Table S8) and DNMT1 
was upregulated (Supplementary Table S7). While these expression alterations might contribute to epigenetic 
repression of promoters and enhancers, EP300 was upregulated (Supplementary Table S7) and HDAC7, HDAC8, 
HDAC9, HDAC10, and HDAC11 were downregulated (Supplementary Table S8) in EBV-infected MKN7 cells. It 
might be suggested that these expression alterations of HAT and HDACs might contribute to enhancer activation. 
Expression of MLL3 and MLL4, which are known as lysine methyl transferases at enhancer regions, however, was 
not changed. Further investigations are necessary to fully clarify which virus or host factors induce host chroma-
tin alteration in gastric epithelial cells.

Enriched motifs, e.g., RUNX1 and ETS1, at activated enhancer regions in EBV-infected MKN7 cells were sim-
ilar to those in LCLs20. Runx1 is a key developmental regulator in hematopoietic stem cells43 and often involved 
in leukaemia32. Recent reports showed that RUNX1 is expressed in epithelial cells of several organs and presents 
stem cell functions44–46. Matsuo et al. demonstrated RUNX1 expression in stem cells of the stomach corpus and 

Figure 5.  Differentially expressed genes in tissue samples of EBV(+) gastric cancer (GC). WT, MKN7 without 
EBV infection. EB, EBV-infected MKN7 cells. (a) Fold expression change of cancer hallmark genes in EBV-
infected MKN7 cells and EBV(+) GC tissue samples. Among cancer hallmark genes in “Resisting cell death”, 
“Disrupting cellular energetics”, “Activation invasion”, “Evading growth suppressors”, “Sustaining proliferative 
signalling”, and “Tumour promoting inflammation”, 92 genes were upregulated in EBV-infected MKN7 cells 
and in EBV(+) GC tissue samples when compared with normal tissue and/or EBV(−) GC tissue samples. (b) 
Histone modification alteration around a representative cancer hallmark gene in “negative regulation of cell 
death”, TOP1. (c) Expression of TOP1 in WT and EBV-infected MKN7 cells. (d) Average expression of TOP1 in 
normal gastric tissue, EBV(−) GC, and EBV(+) GC tissue samples. (e) Heatmaps representing expression fold 
change of tumour suppressor genes in EBV cells and EBV(+) GC tissue samples. (f) ChIP-seq signal around 
a representative tumour suppressor gene, IGFBP3. (g) Expression of IGFBP3 in WT and EBV-infected MKN7 
cells. (h) Average expression of IGFBP3 in EBV(−) GC and EBV(+) GC tissue samples.
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antrum47. These reports suggest that aberrant RUNX1 expression in gastric epithelial cells might deregulate the 
differentiated state and promote cancer. ETS1 is a proto-oncogene associated with several cancers33, 34, including 
GC35. Therefore, host transcription factors activated by EBV infection might regulate EBV-specific enhancers to 
promote oncogenesis. We showed that enhancer activation might contribute to upregulation of cancer hallmark 
genes, and altered expression of these genes was confirmed in clinical EBV(+) GC specimens. These upregu-
lated cancer hallmark genes or their activated enhancer regions could be used as drug targets to prevent cancer 
development.

Saha et al. reported TSG silencing by promoter DNA methylation in EBV-infected cells using B lymphocytes25. 
While there is no report about enhancer repression by aberrant DNA methylation in EBV-infected GC cells, we 
revealed that de novo DNA methylation was introduced not only to promoter regions, but also to active enhancer 
regions, and the increase of DNA methylation together with loss of active histone marks at enhancer regions 
might contribute to TSG repression.

We showed that the GATA3 and GRHL1 motifs were enriched at repressed enhancers. GATA3 is a tumour 
suppressor, and decreased expression of GATA3 is associated with poor prognosis in primary gastric adenocar-
cinoma48. GRHL1 is also a tumour suppressor in neuroblastoma49. GRHL2, whose binding motif is similar to 
that of GRHL1, functioned as a tumour suppressor, and its expression reduces invasion and migration in GC50. 
Their expression was not changed in EBV-infected MKN7 cells, but repression of their binding enhancers might 
promote oncogenesis by repressing their downstream pathways.

Although our comprehensive analysis suggested that enhancer alteration could contribute to carcinogenesis, 
and may provide a novel target to facilitate therapeutic strategy, genome editing or epigenome editing at pre-
dicted enhancers are necessary to fully clarify contribution of each enhancer to transcription regulation. Recently, 
CRISPR/Cas9 based technologies have been developed and enable us to perform site-specific editing of genome/
epigenome51, 52. These analyses would elucidate targets of each enhancer and transcription regulation by enhanc-
ers, and be helpful for development of therapeutic strategy.

In summary, dynamic epigenetic activation and repression occur in enhancer regions in EBV-infected GC 
cells, including gain/loss of H3K27ac, loss of H3K27me3, relocation of H3K9me3, and acquisition of de novo 
DNA methylation. These epigenetic alterations at enhancer regions are markedly associated with imbalance of 
oncogenes and TSGs.

Methods
Cell culture.  The human GC cell line, MKN7, which exhibits low DNA methylation epigenotype5, was pur-
chased at Riken BioResource Center Cell Bank (Ibaraki, Japan) and cultured in RPMI-1640 medium supple-
mented with 10% FBS and penicillin/streptomycin. MKN7 cells were infected with EBV-Akata recombinant virus 
carrying a neomycin resistance gene53 and EBV-infected MKN7 cells were selected by G418 (Roche Diagnostics, 
Basel, Switzerland) at 200 μg/mL as previously reported5. The study design was approved by the institutional 
review board in Chiba University and The University of Tokyo, and the study was carried out in accordance with 
the institutional guidelines.

Chromatin Immunoprecipitation (ChIP) and library construction.  ChIP assays were performed 
from approximately 107 cells as previously reported54. Cells were crosslinked with 1% formaldehyde for 10 min 
at room temperature and formaldehyde was quenched by addition of 2.5 M glycine to a final concentration of 
0.125 M. Crosslinked chromatin was sonicated to a size of 0.2–1 kb using an ultrasonic disruptor, BRANSON 
Digital Sonifier (BRANSON, Danbury, CT, USA ). A total of 2–5 μg of antibody and 20 μL of Protein G sepharose 
beads or 20 μL of anti-Mouse IgG Dynal magnetic beads were mixed in IP dilution buffer and incubated for 6 hour 
at 4 °C. After washing with IP dilution buffer, antibody-binding beads were added to the sonicated-chromatin 
sample and incubated overnight at 4 °C. Beads were washed and chromatin was eluted, followed by reversal of the 
crosslinking and DNA purification. Chromatin-immunoprecipitated DNA was dissolved in EB buffer (Qiagen, 
Hilden, Germany). Libraries were constructed by using NEBNext ChIP-seq Library Prep Reagent Set for Illumina 
(NEB, Ipswich, MA, USA) according to the manufacturer’s instructions. ChIP-seq libraries were quantified by 
Bioanalyzer (Agilent, Santa Clara, CA, USA) and sequenced at a concentration of 4 pM on an Illumina Hiseq 
(Illumina, San Diego, CA, USA).

FAIRE-seq.  FAIRE experiment were performed as previously reported55. Cells were crosslinked with 1% for-
maldehyde for 10 min at room temperature and formaldehyde was quenched by addition of 2.5 M glycine to a 
final concentration of 0.125 M. Crosslinked chromatin was sonicated to a size of 0.2–1 kb using an ultrasonic dis-
ruptor (BRANSON Digital Sonifier). Aliquot was taken, de-crosslinked, purified by phenol/chloroform extrac-
tion, and run on a gel to ensure average fragment sizes of 300 bp. Remaining samples were processed three times 
by phenol/chloroform extraction to recover DNA not bound by nucleosome in the water phase. The samples were 
de-crosslinked by overnight incubation at 65 °C and purified by ethanol precipitation. They were subsequently 
treated with RNase A (final 50 ug/ml), purified by QIAquick PCR purification kit (Qiagen). Libraries were con-
structed by using NEBNext ChIP-seq Library Prep Reagent Set for Illumina (NEB) according to the manufactur-
er’s instructions. The ChIP DNA was used to prepare library samples following the manufacturer’s instructions 
(Illumina). Deep sequencing was performed on the Solexa Genome Analyzer II to obtain 36-bp single reads.

ChIP sequencing (ChIP-seq) and FAIRE-seq analysis.  Sequenced reads in ChIP-seq experiment were 
mapped to UCSC human genome (hg19) using bowtie. Duplicated reads were removed with Picard tools. Peak 
calling and motif analysis were performed by using HOMER software (http://homer.salk.edu/homer/index.
html)56. HOMER was also used to get differential peaks. Enhancer annotation to the nearest genes was performed 
by using GREAT (http://bejerano.stanford.edu/great/public/html/index.php)57. Peak heatmaps were produced 
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with the use of HOMER and TreeView for enrichment calculation and visualisation. H3K27me3 distribution at 
genetic regions was produced using NGSplot58. To divide genomic regions based on histone modification status, 
ChromHMM analysis was performed59. Gene Ontology (GO) analysis was performed by using Metascape (http://
metascape.org/gp/index.html#/main/step1)60.

For analysis on histone modification of EBV genome, sequenced reads in ChIP-seq experiment were mapped 
to Akata-EBV genome61.

Library construction for RNA sequencing (RNA-seq).  RNA was extracted by using the RNeasy Mini 
Kit (Qiagen) following the manufacturer’s protocol, and treated with DNaseI (Qiagen). Libraries for RNA-seq 
were prepared using the TruSeq Stranded mRNA Sample Prep Kit (Illumina), following the manufacturer’s pro-
tocol. Deep sequencing was performed on the Illumina HiSeq. 1500 or NextSeq. 500 platform using the TruSeq 
Rapid SBS Kit (Illumina) in 50-base single-end mode according to the manufacturer’s protocol.

RNA-seq analysis.  Sequenced reads from RNA-seq experiment were aligned by using TopHat, and Cufflinks 
was used for transcript assembly. Gene expression levels were expressed as fragments per kilobase of exon per 
million mapped sequence reads (FPKM).

Infinium assay.  Genome-wide DNA methylation analysis was performed by using Infinium 
HumanMethylation450 BeadChip (Illumina) as previously described12. Briefly, bisulphite conversion was per-
formed by using the Zymo EZ DNA Methylation Kit (Zymo Research, Irvine, CA, USA) with 500 ng of genomic 
DNA for each sample. Whole genome amplification, labelling, hybridisation, and scanning were performed 
according to the manufacturer’s protocols. Overlapping probes of histone modification changed regions were 
extracted with Bedtools. The Infinium HumanMethylation450 BeadChip (Illumina) contains approximately 
485,000 individual CpG sites, covering 99% of RefSeq genes with an average of 17 CpG sites per gene. In each 
CpG site, the ratio of the fluorescent signal, so-called β value, was measured by a methylated probe relative to the 
sum of both methylated and unmethylated probe. The β values range from 0.00 to 1.00 and reflect the methylation 
level of each CpG site, from low to high.

Cancer Hallmark analysis.  Genes included in the following GO categories were used for cancer hallmark 
analysis. GO:0001525 was for Angiogenesis. GO:0032200, GO:0090398, and GO:0090399 were for Enabling 
Replicative Immortality. GO:0034330, GO:0016477, GO:0010718, and GO:0007155 were for Activating Invasion. 
GO:0006281, GO:0051383, GO:0007065, GO:0000819, GO:0051988, GO:0030997, GO:0046605, GO:0090224, 
GO:0010695, and GO:0031577 were for Genome Instability. GO:0060548, GO:0012501, and GO:0010941 were 
for Resisting Cell Death. GO:0006091 was for Disrupting Cellular Energetics. GO:0007166 and GO:0070848 were 
for Sustaining Proliferative Signalling. GO:0006954 and GO:0045321 were for Tumour-Promoting Inflammation. 
GO:0002507, GO:0001910, GO:0019882, and GO:0002767 were for Avoiding Immune Destruction. GO:0007049 
and GO:0008283 were for Evading Growth Suppressors (Supplementary Table S11).

TSG analysis.  We obtained the list of TSG from TUMOR SUPPRESSOR GENE DATABASE (https://bioinfo.
uth.edu/TSGene/index.html)36, 37.

Statistical analysis.  All statistical analyses were performed using R-2.15.3. The P-values for DNA methyl-
ation and expression analysis were obtained using paired t-test to evaluate differences between two groups, with 
P < 0.05 considered statistically significant. The P-values for cancer hallmark analysis and TSG analysis were 
obtained using Kolmogorov-Smirnov test to evaluate difference in distribution against uniform distribution, with 
P < 0.05 considered statistically significant.

Data availability.  Infinium data were submitted to the GEO DataSets, and the accession number is 
GSE89269. RNA-seq data data were submitted to the GEO DataSets, and the accession number is GSM2253673 
- GSM2253676. H3K4me3, H3K27ac, and H3K27me3 ChIP-seq data data were submitted to the GEO DataSets, 
and the accession number is GSE97837. H3K4me1 and H3K9me3 ChIP-seq data and FAIRE-seq data were sub-
mitted to the GEO DataSets, and the accession number is GSE97838.
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