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Abstract

Congruence is a broadly applied notion in evolutionary biology used to justify multigene phylogeny or phylogenomics, as

well as in studies of coevolution, lateral gene transfer, and as evidence for common descent. Existing methods for identifying

incongruence or heterogeneity using character data were designed for data sets that are both small and expected to be

rarely incongruent. At the same time, methods that assess incongruence using comparison of trees test a null hypothesis of

uncorrelated tree structures, which may be inappropriate for phylogenomic studies. As such, they are ill-suited for the

growing number of available genome sequences, most of which are from prokaryotes and viruses, either for phylogenomic
analysis or for studies of the evolutionary forces and events that have shaped these genomes. Specifically, many existing

methods scale poorly with large numbers of genes, cannot accommodate high levels of incongruence, and do not

adequately model patterns of missing taxa for different markers. We propose the development of novel incongruence

assessment methods suitable for the analysis of the molecular evolution of the vast majority of life and support the

investigation of homogeneity of evolutionary process in cases where markers do not share identical tree structures.

Key words: incongruence, lateral gene transfer, microbial evolution, phylogenetic networks, phylogenomics.

A Brief History of Congruence in
Evolutionary Biology

Congruence is a central yet polysemic notion in a fundamen-

tally comparative science, such as evolutionary biology. In

phylogenetics, analysis of the incongruence of evolutionary

histories inferred from different data sets helps to address

multiple essential questions. Historically, for a given taxo-

nomic sample, congruence between the organismal phylog-

eny based on morphological characters and phylogenies of

orthologous (single copy) genes was expected to provide no

less than ‘‘the best evidence for evolution’’ (Zuckerkandl and

Pauling 1965; Penny et al. 1982; Pisani et al. 2007). This

application is limited to studies of macroorganisms harbor-

ing a sufficient number of morphological and ultrastructural

features, but then serves to back up claims in favor of a ge-

nealogical relationship, and to erect a meaningful taxonomy

(Gilbert and Rossie 2007; Jablonski and Finarelli 2009;

Virgilio et al. 2009). For prokaryotes and many microbial

eukaryotes, however, this sort of comparison cannot be

achieved, as no organismal tree based on morphological

characters can be proposed. Hence, Woese (1987) thought-

fully proposed that congruence between independent gene

phylogenies should be used to unravel the real evolutionary

history of these organisms. Just as morphological and

genetic features provided a cross-validation of phylogenetic
inferences, the topological agreement between ortholo-

gous gene trees is considered strong independent evidence

in favor of shared relationships.

Historically, congruence has also played a decisive role in

critical phylogenetic analyses based on multiple markers. As

independent data sets for phylogenetic analysis became

increasingly available, two camps advocating different strat-

egies for dealing with these data emerged (see de Queiroz
et al. 1995; Huelsenbeck et al. 1996; Cunningham 1997;

Levasseur and Lapointe 2001). On one side of the argument,

supporters of ‘‘taxonomic congruence’’ (sensu Mickevich

1978), or separate analysis, argued that a particularly strong

argument could be made for phylogenetic relationships re-

covered with independent data. Thus, independent data sets
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should be subjected to separate phylogenetic analysis, and
the resulting tree topologies should be compared (Swofford

1991; Bull et al. 1993; Huelsenbeck et al. 1994; Miyamoto

and Fitch 1995). The results of an analysis based on taxo-

nomic congruence can then be summarized by combining

the trees by consensus (de Queiroz 1993; Miyamoto and Fitch

1995). Taxonomic congruence is also at the heart of super-

tree-based phylogenomic analyses (Sanderson et al. 1998; Bi-

ninda-Emonds 2004; Creevey et al. 2004; Pisani et al. 2007).
In the other phylogenetic analysis camp, scientists advo-

cating ‘‘character congruence,’’ simultaneous or combined

analysis, proposed that the principle of total evidence (sensu

Kluge 1989, 1998; Barrett et al. 1991; Kluge and Wolf

1993; Rieppel 2005) should be applied to phylogenetic

inference. Total evidence dictates that all available informa-

tion should be concatenated in a supermatrix (de Queiroz

and Gatesy 2007) to reconstruct their common phylogeny
(Levasseur and Lapointe 2001). The extent to which charac-

ters in a data set are incongruent (i.e., disagree with one

another), given the inferred phylogeny, can be assessed

via a number of statistics, such as the consistency and reten-

tion indices (Kluge and Farris 1969; Farris 1989), as well as

a number of statistics that have been developed specifically

for partitioned data (Farris et al. 1994; Huelsenbeck and Bull

1996; Waddell et al. 2000).
A third camp of scientists argued that neither the taxo-

nomic congruence nor character congruence method was

always the best approach. Instead, they suggested ‘‘condi-

tional data combination’’ (Huelsenbeck and Bull 1996).

This strategy involves first testing the data to determine

whether they are significantly heterogeneous (i.e.,

whether they reject the hypothesis that they evolved along

the same tree). If the different data appear to be hetero-
geneous, they are then subjected to separate phylogenetic

analysis using a taxonomic congruence approach. As with

any taxonomic congruence analysis, the resulting trees are

often then either inspected to identify discordant relation-

ships implied by the different trees or tested statistically to

evaluate whether they are more similar than expected by

chance. If there is no evidence that the data evolved along

different trees, they are instead combined using a character
congruence approach.

Patterns of incongruence (or conversely, agreement be-

tween independent data) have also been extensively used

to ‘‘expand our knowledge of evolutionary processes.’’ For in-

stance, comparisons between the tree of hosts on the one

hand and the tree of parasites (Hafner and Nadler 1988;

Refregier et al. 2008; Wu et al. 2008; Garamszegi 2009) or

symbionts (Nelsen and Gargas 2008) on the other hand pro-
vide insight about mechanisms of coevolution and about the

mode of transmission—vertical or lateral—of symbionts and

parasites. Likewise, the agreement between a gene tree and

an accepted reference phylogeny—be it a concatenated gene

tree (Lerat et al. 2003; Shi and Falkowski 2008), a ribosomal

tree (Shi and Falkowski 2008), or a consensus/supertree phy-
logeny (MacLeod et al. 2005)—is frequently used to argue

that the gene followed the mainstream (accepted or average)

evolutionary path (de Andrade Zanotto and Krakauer 2008).

By contrast, the disagreement between a gene tree (in the

absence of methodological artifact) and a reference phylog-

eny is frequently used to suggest cases of gene duplication

events (Page and Charleston 1997) or lateral gene transfer

(LGT; Beiko et al. 2005; Biedler et al. 2007). During this major
evolutionary process, a host acquires DNA from a donor,

although these two genetic partners are not in an ances-

tor-descendent relationship. Consequently, LGT can produce

branching patterns in the gene tree, incongruent with the ref-

erence tree, when donors and hosts are not closest relatives in

the reference tree.

Ultimately, although assessment and testing of incongru-

ence is relevant to our understanding of evolutionary pro-
cesses, most of the tests of incongruence used to date

were elaborated on the basis of biological assumptions that

are likely no longer valid for most evolving entities (prokary-

otic cells or mobile genetic elements) and thus for most

genes. The two main reservoirs of genetic diversity, the pro-

karyotic genomes and the genomes of mobile elements,

evolve under much more complex evolutionary processes

than was previously assumed. In addition to vertical inher-
itance (in combination with duplication/loss and variable

evolutionary rates), most gene histories are also impacted

by rampant LGT and recombination events (Dagan and

Martin 2006; Hanage et al. 2006; Fraser et al. 2007; Brilli

et al. 2008; Dagan et al. 2008; Boucher and Bapteste

2009; Norman et al. 2009). Gene distribution in these

genomes results from multiple (often conflicting) selective

pressures, so we should not expect 1) that all the genes
for a given set of genomes share an identical taxonomic dis-

tribution or 2) that they evolved along identical evolutionary

histories (tree topologies) (fig. 1). For instance, drug resis-

tance genes are not present in all the same taxa as genes

encoding the photosynthetic system because independent

and distinct rates of LGT have affected the organismal

distribution of the genes coding for these features. Accord-

ingly, as the sequences from genome projects accumulate,
molecular data sets become massive and messy, with the

majority of gene alignments presenting odd (patchy) taxo-

nomic distributions and conflicting evolutionary histories.

Yet tests used in conditional data combination to address

the validity of a character congruence approach, which eval-

uate incongruence of character data, often perform poorly

when data are highly heterogeneous. On the other hand,

null models used in tests that compare tree topologies in
a topological congruence analysis were elaborated on the

basis of graph theory and standard statistics that do not re-

flect actual biological processes valid for most evolving en-

tities (e.g., genes of prokaryotic cells or mobile genetic

elements are constrained by some events of vertical
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inheritance and, therefore, do not evolve randomly accord-

ing to independent statistical distributions).

In this review, we clarify the problems met by incongru-

ence analyses in the face of such increasingly numerous data

from genomes of prokaryotes and mobile elements. For these

data sets, the expected proportion of genes with genuinely
discordant evolutionary histories has increased from limited

to substantial. Although our intent is not to comprehensively

review existing congruence methods, we recall the anatomy

of some currently widely used incongruence tests (summa-

rized in table 1) to show how the complex evolution of pro-

karyotes and mobile elements should affect our methods to

detect incongruence. We argue that these tests are only well

suited to study the evolution of a minority of taxa and genes,
as they lack some important requirements to critically analyze

the majority of available phylogenomic data. Using a moder-

ately large prokaryotic multigene data set, we also demon-

strate the limited performance of some of the available

tests, in terms of long computation time or hard-to-interpret

results. Consequently, considering what incongruence anal-

yses ought to do for evolutionary biology in the context of

the complexity of molecular data, we propose an alternati-
ve—biologically and statistically grounded—theoretical ap-

proach for assessing gene incongruence, adapted to

massive and messy molecular data sets, and a notion of con-

gruence based on homogeneity of process, which may be

present even when markers have evolved along different true

trees.

Anatomy of Current Incongruence
Tests

Statistical approaches to assess incongruence have been

devised by both the character and taxonomic congruence

communities. For the purpose of character congruence

analyses, incongruence is assessed using tests that pose

homogeneity as their null hypothesis; that is, that there

exists a unique underlying tree and that the differences
observed among gene trees are only due to sampling error.

Thus, the null hypothesis of homogeneity is evaluated with

respect to different randomization of the data using a rele-

vant null model—that is, permutations (Farris et al. 1994),

resampling methods (Shimodaira and Hasegawa 1999), or

Monte Carlo simulations (Goldman et al. 2000).

Among proponents of the taxonomic congruence

approach, another suite of statistical tests for assessing
incongruence has been developed. These tests compare dif-

ferences in tree topologies inferred from independent data

FIG. 1.—Scheme of the expected gene tree distributions for eukaryotic versus prokaryotic data sets. Each tree corresponds to an individual gene

tree. The color of the tree indicates the phylogenetic history of the gene. Monochromatic gene trees have undergone a given phylogenetic history.

Bichromatic trees have evidence of multiple distinct evolutionary histories. Trees, and branches, with similar colors have closer evolutionary histories.

Solid trees are strongly resolved; trees with dashed branches are poorly resolved for those branches. Boxes around some trees indicate: 1) gene trees

that were frequently transferred horizontally (green-filled boxes) or 2) gene trees that were very rarely transferred horizontally (uncolored boxes). The

expected forest of gene trees from eukaryotes is very different—less variable and patchy—from that expected from prokaryotes and mobile elements.
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sets, posing heterogeneity or incongruence as the null

hypothesis. That is, tests address whether the trees being

compared are uncorrelated, and a statistic is used to assess

whether these trees are more similar than expected by

chance alone (e.g., Lapointe and Legendre 1990, 1992a;

Rodrigo et al. 1993; Miyamoto and Fitch 1995). Historically,

tables of statistical significance for different tree distance
metrics or consensus indices were generated for pairs of ran-

dom trees (Day 1983; Shao and Rohlf 1983; Shao and Sokal

1986; Steel 1988; Lapointe and Legendre 1992b; Steel and

Penny 1993), but recent tests are now based on Monte Car-

lo simulations, resampling, or permutational approaches.

The computation of character-based tests evaluates

whether some of the genes reject a common or global tree.

When a statistical test of this class is applied to a set of
genes, the rejection of the null hypothesis indicates that

these genes are incongruent as a set but does not indicate

which (if any) of these genes are not incongruent and which

are. The same problem applies to topology-based tests, in

which rejection of the null hypothesis indicates that the trees

are not altogether incongruent as a set. When many genes

are compared, rejecting either one of the null hypotheses

thus amounts to saying that at least some of the genes sup-
port different topologies (or in the case of tests used in tax-

onomic congruence, some genes share some patterns of

inheritance). As a result, some authors have adapted these

tests for this purpose by computing all pairwise comparisons

(Planet and Sarkar 2005; Leigh et al. 2008), as described in

Box 1. Another approach is to assess the contribution of

each gene a posteriori (Campbell et al. 2009).

Within both the taxonomic and character congruence
schools, different approaches to measuring incongruence

have been developed. The statistical outcome of a given test

Table 1

Characteristics of Popular Congruence Tests

Test H0 Algorithmic Complexitya
Identification of

Multiple Subsets?

Interpretation of

Missing Taxa

MAST (Lapointe and Rissler 2005; de Vienne et al. 2007) Incongruence O(n) Yesb Pruned and ignoredb

CADM (Campbell et al. 2009) Incongruence O(n2) Yes N/A

ILD (Farris et al. 1994) Congruence O(n)c No N/A

Multiple ILD (Planet and Sarkar 2005) Congruence O(n2) Yes Pruned and ignored

LRT (Huelsenbeck and Bull 1996) Congruence O(n)c No N/A

Concaterpillar hierarchical LRT (Leigh et al. 2008) Congruence O(n2) Yes Pruned and ignored

LRT (Waddell et al. 2000) Congruence O(nm) No N/A

Likelihood-based topology tests Congruence O(nm) No Pruned and ignored

Principal component analysis Congruence O(nm) No Pruned and ignored

Heatmaps Congruence O(nm) Yes Pruned and ignored

Likelihood-based topology tests Congruenced O(nm) No N/A

a
Algorithmic complexity refers to the main phylogenetic analysis and likelihood estimation steps of the tests; n, number of genes; m, number of topologies evaluated.

b
MAST implementations differ. The implementation described by Lapointe and Rissler (2005) can be used to identify congruent subsets of markers and is able to accommodate

differences in taxonomic composition among markers; the implementation of de Vienne et al. (2007) does not identify congruent marker subsets and requires that all taxa be

represented in all markers.
c

The Huelsenbeck and Bull (1996) likelihood ratio and ILD (Farris et al. 1994) were described as pairwise tests. Their algorithmic complexity is O(n) if used as a one-versus-all test,

either iteratively or to test a single pair of genes.
d

Although likelihood-based topology tests are not strictly congruence tests, they have been adapted to this purpose by several authors (e.g., Lerat et al. 2003; Bapteste et al.

2005). The null hypothesis of congruence is normally assessed on a per-gene basis by testing whether the median or global tree is within the confidence set of each gene.

Box 1:

Popular character-based congruence
methods

Methods for assessing incongruence are sometimes

classified as either topological or character-based (for

a good review of both classes, see Planet 2006). Topolog-

ical methods, in which trees are compared directly

through statistics such as MAST, are generally used in
the fields of phylogeography (e.g., Lapointe and Rissler

2005) and the study of coevolution between parasites

and hosts (de Vienne et al. 2007), whereas CADM (Camp-

bell et al. 2011) has also been proposed to test whether

multiple trees are more similar than by chance alone.

These methods are less relevant to phylogenomics and

prokaryote genome evolution than are character-based

methods, of which we will summarize some of the most
popular. A summary of the more important features of

these tests (as they apply to large, whole-genome pro-

karyotic data) is presented in table 1.

The ILD Test

Farris’ ILD test (Farris et al. 1994), implemented in the

popular phylogeny package PAUP* (Swofford 2003), is

undoubtedly the most highly cited of the incongruence

tests. In the ILD, a parsimony tree is estimated for each
marker, as well as for the entire concatenated data set.

The number of additional steps required for the data un-

der the concatenated tree (compared with marker-
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specific trees) is calculated (eq. 1).

ILD5 LAB
T̂AB

� ðLA
T̂A

þ LB
T̂B
Þ: ð1Þ

Here, LX
T̂Y

indicates the length of the tree estimated from

data set Y, imposed on data set X. This ILD test statistic is
compared with a null distribution produced by repeatedly

randomly partitioning sites of the data set to produce re-

shuffledmarkersof thesamesizesas the realmarkers;each

time, the ILD is calculated. If the ILD for the true partition of

thedata set isgreater thanmostof thenull distribution, the

markers are considered to be significantly incongruent.

Likelihood Ratio Tests

LRTs for incongruence have been developed by two

groups. Huelsenbeck and Bull (1996) proposed a LRT

for phylogenetic heterogeneity (incongruence) between
markers that is intuitively similar to the ILD. Rather than

measuring the number of additional steps when topolo-

gies are separately inferred for each marker, they pro-

posed calculating the increase in log-likelihood of the

data when each marker is allowed its own topology (com-

pared with the summed log-likelihood over all markers

when all are forced to share a single topology; eq. 2).

LRAB 5KA
T̂A;ĥA

þ KB
T̂B;ĥB

� ðKA
T̂AB;ĥA

þ KB
T̂AB;ĥB

Þ; ð2Þ

Here, KX
T̂Y ;ĥZ

indicates the log-likelihood of data set X un-

der the topology estimated from data set Y, with param-

eters (edge lengths, rates across sites shape parameter, and

other aspects of the substitution model) estimated from

data set Z. Huelsenbeck and Bull (1996) proposed assessing

the significance of this statistic by generating a null distribu-

tion of likelihood ratios from a series of parametric boot-

straps. If the likelihood ratio from the real data set is
larger than most of the bootstrap replicates, homogeneity

is rejected. Their test statistic has been implemented as

a pairwise hierarchical test, using instead a nonparametric

bootstrap procedure to generate the null distribution, in

which sites are sampled from only one of two markers or

homogeneous subsets for each replicate (Leigh et al. 2008).

Another LRT was proposed by Waddell et al. (2000).

The test statistic proposed by these authors is calculated
for each tree, T̂m, in a large collection of trees (including at

least the ML trees for all markers), and is the sum of likeli-

hood ratios for each marker between the likelihood cal-

culated under the ML tree and the tree in question (eq. 3).

LRm 5
X

i

ðKi
T̂i ;ĥi

� Ki
T̂m;ĥi

Þ: ð3Þ

The significance of the test statistics is validated

through a nonparametric bootstrapping approach or

more quickly using RELL-based bootstrapping of site-

wise log-likelihoods calculated under the different trees

(Kishino et al. 1990). The bootstrapping involves a cen-

tering step, which causes the resampled log-likelihoods

for the different trees to conform to a distribution that

might be expected if all markers were homogeneous. If

likelihood ratios for all trees are significantly larger than

the corresponding bootstrap distribution, the
null hypothesis is rejected: markers are heterogeneous

(incongruent).

Adapted Likelihood-Based Topology
Tests and Data Exploration Methods

One of the most popular likelihood-based methods for

assessing incongruence is an adaptation of the Shimo-

daira-Hasegawa (SH; Shimodaira and Hasegawa 1999)

or AU (Shimodaira 2002) topology tests. These tests

were designed to assess whether any given tree is a sig-

nificantly better hypothesis than other trees. When
these tests are used to assess incongruence, a pool of

trees, normally including at least the ML tree for the en-

tire concatenated data set and the ML gene trees, is

evaluated with each marker. Any single marker able

to reject the global tree is assumed to be incongruent

with the global (vertical) history of the organisms

(e.g., Lerat et al. 2003).

P values from AU or SH tests, as well as raw tree like-
lihoods, have also been used in data set exploration meth-

ods. Rather than assessing incongruence via a statistical

test that evaluates a probability for the data under a null

hypothesis, these methods allow a visualization of various

aspects of the data. Brochier et al. (2002) developed

a method to assess incongruence by estimating the like-

lihoods for a pool of tree topologies with a large number

of genes. They then used principal component analysis to
visualize the genes as a 2D scatter plot, in which they ar-

gued that the genes that shared the dominant (vertical)

phylogeny formed a cluster, whereas points representing

incongruent genes were further away. Bapteste et al.

(2005) and Susko et al. (2006) adapted this method, us-

ing AU or SH test P values in the place of raw likelihood

values. These authors also proposed an alternative

method for visualizing the variation in topological support
in the same data. They presented the P value matrix as

a heatmap, in which rows and columns are sorted accord-

ing to clustering of genes according to their ‘‘responses’’

to trees and clustering of trees according to genes’ re-

sponses to them. The whole matrix is presented as

a color-coded image in which both the phylogenetic

strength of individual markers and conflicting patterns

of support for different topologies can easily be distin-
guished.
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is likely to be affected by different aspects of the testing
procedure, including 1) the test statistics, 2) the number of

distinguishable representations of the null hypothesis, and

3) the null model itself (Lapointe 1998). For example, for to-

pology-based tests used in taxonomic congruence, the com-

parison of trees or their corresponding path-length matrices

(distance matrices derived from inferred trees; Campbell et al.

2009, 2011) can be assessed with various consensus indices

(Shao and Rohlf 1983; Shao and Sokal 1986), and with a wide
selection of tree distance metrics, such as the partition metric

(Robinson and Foulds 1981; Penny and Hendy 1985), the

nearest-neighbor interchange metric (Waterman and Smith

1978; Křivánek 1986), the subtree pruning and regrafting dis-

tance (Bordewich and Semple 2004; Wu 2009), the quartet

distance (Estabrook et al. 1985), and maximum agreement

subtrees (MAST; Bryant et al. 2003) among others (Steel

and Penny 1993). This wealth of measures makes it critical
to use different metrics to analyze data sets with different

levels of incongruence, as the sensitivity varies among met-

rics. For example, it is well known that where partition met-

rics such as the Robinson–Foulds distance suggest that two

trees are maximally distant, quartet-based distances may still

find similarity (e.g., Adams 1986).

In addition to carefully selecting an appropriate tree dis-

tance metric, the population of trees from which random
samples are drawn also needs to be defined. For example,

the number of rooted trees is larger than the number of un-

rooted trees (Phipps 1975). Moreover, for the same popu-

lation of trees, there exist different sampling distributions

(e.g., each tree is equally likely [Simberloff et al. 1981] or

each branching point is equally likely when growing the tree

[Harding 1971; Lapointe and Legendre 1995]). In character-

based tests, used to justify a character congruence ap-
proach, the phylogenetic inference method (e.g., parsimony

[Farris et al. 1994] vs. distances [Zelwer and Daubin 2004])

and randomization method (e.g., nonparametric bootstrap-

ping [Leigh et al. 2008] vs. parametric bootstrapping [Huel-

senbeck and Bull 1996]) also influences the statistical

outcome of the test (see Planet 2006).

At the end of such analyses, the current statistical frame-

work can only determine that some genes are homoge-
neous or that some trees are incongruent. Such a result

(however interesting) does not suffice for researchers inter-

ested in the evolutionary mechanisms of prokaryotes and

mobile element genomes, for reasons we will discuss below.

Limits of Current Incongruence Tests
for Most Phylogenomic Studies

The growing interest in phylogenomic studies based on the

large number of whole prokaryotic genome sequences

requires a shift in the way we look at incongruence meth-

ods. With the expected high level of incongruence resulting

from LGT and the increased number of genes available for

phylogenomic analysis, many existing tests have reached their
limits for analysis of these data (fig. 2). We examine available

tests and evaluate how they handle high levels of in-

congruence, patchy taxonomic distribution, and whether

they perform in computation time that scales well with

the size of the data set. Our goal is to stress the need to better

take biology into account when designing incongruence

analyses (but see Planet [2006] and Box 1 for a more detailed

review of existing tests).

Biological Reality Versus Null
Hypothesis

As described above, tests for incongruence involve the pos-

tulation of a null hypothesis of either total lack of correlation

of divergence patterns between markers (i.e., complete

incongruence or heterogeneity) or identical underlying tree
topologies among markers (i.e., agreement or homogene-

ity). The former hypothesis could obviously never reflect

biological reality in the case of markers that evolved within

the same set of genomes (but see, e.g., Puigbò et al. 2009).

Even in the case of extreme LGT, we might expect some pro-

portion of the genome (however small) to have followed

a strictly vertical pattern of inheritance in some lineages over

some portion of the time since the divergence of some
operational taxonomic units in the data set, or at the very

least, some markers might have followed the same LGT pat-

tern. That is, some evolution is always homogeneous, and

the evolution of genes that ‘‘coevolved’’ in the same ge-

nome is therefore correlated, at least in localized regions

of the tree. The second null hypothesis, complete topolog-

ical agreement among markers, likewise does not represent

biological reality in most genome data (i.e., in prokaryotes,
viruses, and mobile elements). This fact in itself is not nec-

essarily a problem; identification of where and when the hy-

pothesis is false is what makes a statistical test useful.

Another issue in incongruence analyses, exacerbated in

presence of many heterogeneous (incongruent) markers, is

caused by adaptation of pairwise tests (e.g., Planet and Sarkar

2005; Leigh et al. 2008; see Box 1) to larger data sets. When

such statistical tests are repeated iteratively, or significance is
assessed only for selectively chosen outliers, significance

thresholds should be adjusted (Abdi 2007). If multiple testing

corrections become an important aspect of the test, this can

lead to either an overly liberal or overly conservative test, de-

pending on the nature of the correction (Leigh et al. 2008).

Typically, as the level of correction for multiple comparisons

increases, the line between apparent heterogeneity and ho-

mogeneity is increasingly blurred. To control against this bias,
an option that has not yet been explored for incongruence

testing but is widely used in other cases with severe multiple

testing problems (such as analysis of microarray data) is the

false discovery rate (Benjamini and Hochberg 1995; Storey

2002), where the proportion of expected false positives is

Leigh et al. GBE
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used to assess significance. However, in their current form,

these tests are probably not appropriate for massive prokary-

otic phylogenomic data sets, given the high level of resolution

desired (i.e., accurate identification of incongruence at the

individual gene level), and the large number of tests needed.

Yet another problem when phylogenetic homogeneity is

used as the null hypothesis is that genes often genuinely lack

strong phylogenetic signals (fig. 1). Consequently, many
incongruence tests (see Box 1) will often fail to reject homo-

geneity between genes with weak phylogenetic signal and

virtually any other gene (fig. 2, lower left; adapted likeli-

hood-based topology tests are particularly sensitive to this

problem). This is not to say that incongruence should be

assumed even in the absence of evidence: conclusions about

the tree-like nature of prokaryotic evolution based on meth-

ods that require strong phylogenetic signal should simply be
approached with caution.

Although a small number of genes with weak phyloge-

netic signals may not have substantial adverse effects on

a phylogeny inferred from a large number of markers, tests

that can only identify incongruence with a reference topol-

ogy for markers with strong phylogenetic signal (e.g., Lerat

et al. 2003) can severely underestimate the level of LGT in

prokaryotic data. In the case of adapted likelihood-based
topology tests (see Box 1), which are particularly sensitive

to this issue, the goal is to identify the ‘‘noisy’’ markers that

do not agree with the reference topology (assumed to be

the vertical or species phylogeny). If phylogenomic analysis

is the objective, these discordant markers are usually

removed from the data set in order to improve resolution

of the tree. However, in prokaryotic data, the evolution

of genomes is frequently not tree like; in all likelihood, many

(if not most) markers have undergone horizontal evolution

at some point in their history (Dagan et al. 2008). In addi-
tion, some sets of markers may share the same pattern of

horizontal acquisition along ‘‘gene-sharing highways’’

(Beiko et al. 2005; Pisani et al. 2007). As such, there may

be a series of competing dominant tree topologies underly-

ing the evolution of the data set and identifying which sets

of markers share the same tree may be a more interesting

(and reasonable) goal than pruning out the suspected few

transferred genes.

Patchy Taxonomic Distribution

In many data sets, the absence of a particular taxon indicates

that the data for this taxon were simply not collected. With

expressed sequence tag data, for example, the failure to

sequence a marker is not necessarily indicative that the

marker is not present in the genome of the taxon in ques-
tion, just that it was not found. In these cases, the absence

of a marker is not informative of the evolutionary process,

FIG. 2.—Pitfalls and possible improvements in incongruence analyses of prokaryotic forests of gene trees. The main steps—and their respective

limitations, in red—of most incongruence tests available currently, as described in main text. The color code for gene trees is the same than in figure 1.

In the bottom right corner, we suggest some groups of concordant gene trees worth identifying to better analyze forests of prokaryotic gene trees and

of mobile elements, which will however require refined incongruence analyses.
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only of the choices or technical proficiency of scientists or
effectiveness of available protocols.

However, the current post-genomic era offers a large

number of complete genomes, which introduces another

level of complication. When considering the evolutionary

process of complete genomes, the absence of a marker

for a taxon is actually informative with respect to the evo-

lutionary process (Mira et al. 2010). That is, the absence of

a marker indicates that the marker was either lost or gained
in one of the two lineages (either as an unrecognizably

diverged duplicated gene or through LGT). The presence/

absence patterns of genes have indeed been used to study

LGT by a number of authors (Lake and Rivera 2004; Rivera

and Lake 2004; McInerney and Wilkinson 2005; Dagan et al.

2008), demonstrating the informative nature of missing

data in truly phylogenomic data sets. Thus, existing tests

for incongruence, which consider only the taxa that are
shared between markers, fail to account for important

evidence of heterogeneity between gene trees in prokary-

otic data sets.

Consider, for example, the trees in figure 3. The marker

whose tree appears in figure 3a is present in all taxa in the

data set. The tree in figure 3b, however, has a taxonomic

distribution that clearly indicates LGT: although the Eubac-

teria in the tree all fall within a single clan (i.e., there is a split
that separates Eubacteria from Archaebacteria), the pres-

ence of this marker in the genomes of only three members

of Archaebacteria strongly suggests that this tree represents

a marker that was acquired by these taxa through LGT from

a eubacterium. In figure 3c, though, where only Eubacteria

are represented, it might be more plausible that the marker

simply appeared in the ancestor of Eubacteria included in

the analysis. It is not altogether clear whether the markers
in figure 3a and c should be considered to disagree. We

would say that they agree over a portion of their history

or are ‘‘locally homogeneous.’’ In any case, the interpreta-
tion of patchy distributions of taxa between markers should

affect an assessment of incongruence in data sets based on

complete genome sequences.

Data set Size and Efficient Scaling

The quantity of data also highlights an unfortunate shortcom-

ing of current incongruence analysis methods. The ever-

growing sequence databases have made possible the move

away from single-gene phylogeny in favor of phylogenomics,

as well as leading to the recognition of the importance of hor-

izontal evolution in shaping genomes. However, with more

data comes a need for more efficient algorithms, and the last

decade has seen the publication of a number of more effi-
cient sophisticated phylogenetic analysis methods (e.g.,

Guindon and Gascuel 2003; Stamatakis 2006; Zwickl

2006; Lartillot et al. 2009; de Koning et al. 2010).

Still, increased data set size can pose a problem for con-

gruence tests that involve pairwise comparison (Planet and

Sarkar 2005; Leigh et al. 2008). If an exhaustive pairwise

approach is used, the time to test all pairs increases with

the square of the number of markers in the analysis. When
phylogenetic analysis is involved in the pairwise analysis, the

computation time can quickly become intractable (e.g.,

Leigh et al. 2008; see also below) as data sets grow to hun-

dreds or even thousands of markers (table 2).

There are a number of ‘‘workarounds’’ to extend the work-

able data set size. Parallelization can be used effectively, par-

ticularly for independent phylogenetic analysis steps.

Sometimes heuristics or short cuts, such as employing a faster
phylogenetic analysis method to infer gene histories used for

comparison, can be employed to decrease computation time,

although this can decrease the performance of the test.

Although the power of computational resources is constantly

FIG. 3.—Patchy taxonomic distributions and incongruence. In some cases, markers may appear homogeneous when only taxa appearing in both

markers are considered when their true histories are clearly incongruent. In (a), all taxa in the analysis are present; (b) only a few members of one clan

are present; (c) members of one clan are completely absent. It is highly unlikely that the patchy presence of marker (b) among Archaebacteria can be

explained by differential loss; it is more plausible that this marker was transferred from Eubacteria, then subsequently among archaebacterial lineages.

Thus, although there is a split separating archaebacterial and Eubacterial lineages, the history of marker (b) is incongruent with that of marker (a). In the

case of marker (c), its complete absence from Archaebacteria suggests its emergence in Eubacteria following their divergence from Archaebacteria.
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increasing, the development of tests that scale roughly linearly
with data set size (i.e., tests that require only a single phylo-

genetic analysis step for each marker) is going to be increas-

ingly important as data sets continue to grow (table 1).

Application of Existing Incongruence
TeststoaProkaryoticMultigeneDataset

We evaluated the performance of a number of methods to
assess incongruence in the ‘‘nearly universal trees’’ (NUTs)

data set of Puigbò et al. (2009) to illustrate the various limits

of analyses of incongruence for real data. The NUTs are a set

of 102 amino acid markers for which at least 93 of the 100

taxa in their data set are represented in each marker,

composed of 59 Eubacteria and 41 Archaebacteria. We ap-

plied the incongruence length difference (ILD) test (Farris

et al. 1994), two different likelihood ratio tests (LRTs;

Huelsenbeck and Bull 1996; Waddell et al. 2000), the con-

gruence among distance matrices (CADM) test (Campbell

et al. 2011), Concaterpillar (Leigh et al. 2008), and the

Approximately Unbiased (AU) (Shimodaira 2002) and SH

(Shimodaira and Hasegawa 1999) likelihood-based topology

tests. Because some of these tests require that all markers

contain the same taxa, taxa missing for any marker were re-

moved from the data set for all tests, leaving a total of 41

taxa. A second analysis of the data set with no taxa removed

was performed using Concaterpillar, which can accommodate

missing taxa by pruning them from markers as necessary

during pairwise comparisons; when the algorithm fails to

reject homogeneity of a pair of markers, the alignments

are combined as a supermatrix in which taxa present in

either marker are included.

The ILD test was performed using PAUP* (Swofford 2003)

with default parameters, except that only 100 repartitioning

replicates were used to construct the null distribution. For

LRTs, the AU test, and Concaterpillar, likelihoods and trees

were calculated using RAxML (Stamatakis 2006) with the
WAG (Whelan and Goldman 2001) þ C model. Single-gene

topologies, as well as the global tree inferred from the con-

catenated data set, were used in both the Waddell LRT and

the AU test. The null distribution used to assess significance

of Waddell’s LRT statistics was produced using 1,000 RELL

bootstrap replicates (Kishino et al. 1990). For the Huelsen-
beck and Bull LRT, significance was assessed from null dis-

tributions produced using two different methods: first,

parametric bootstrapping was used, as recommended by

the authors; second, the repartitioning method used by

the ILD test was used. In both cases, null distributions were

produced from 100 replicates. The CADM global test and

a posteriori tests were performed in R, using the APE pack-

age (Paradis et al. 2004), with 999 permutations. Table 2
summarizes P values and computation times for all methods

used.

Most of the incongruence tests agreed that genes within

the NUTs had significantly different histories—a result that

conflicts with the conclusion of Puigbò et al. (2009) that

inheritance was generally vertical but is coherent with

some of their results, as well as with Puigbò et al. (2010).

For example, figure 4a shows the heatmap produced
from the AU test P values. This plot associates colors with

P values: dark green shows that a topology was rejected

at P , 0.01. The large number of cells colored dark green

indicates that most topologies were rejected by most

markers. Even the global tree was rejected at P , 0.05

by all but a single alignment; at P , 0.01, 15 markers

did not reject this topology. These results suggest that

the individual alignments in this data set are reasonably
strong phylogenetic markers. Because the topologies tested

were maximum likelihood (ML) trees for the individual

markers, the rejection of most topologies by most other

markers likely indicates a high level of pairwise incongru-

ence. For comparison, we also produced a heatmap from

the SH test P values (fig. 4b). The SH test is more conserva-

tive than the AU test, and predictably, many data sets re-

jected fewer tree topologies than with the AU test.
However, even with the SH test, there were a number of

markers that rejected nearly all topologies; these markers

correspond to the nearly all-dark green columns toward

the middle of this plot. The tree topologies that were not

rejected by these markers, corresponding to white cells,

are the gene trees for each of these markers, and were nearly

always rejected by all other markers. This result suggests that

these markers in particular are both highly incongruent to
others and are strong phylogenetic markers.

Table 2

Summary of Results and Computation Time for Popular Congruence Tests with the NUTs Data set

Test P Value Computation Time Number of Cores Total CPU Timea

CADM (Campbell et al. 2009)b ,0.001 1.3 hc 1 1.3 h

ILD (Farris et al. 1994) �0.01 14 days 1 14 days

LRT (Huelsenbeck and Bull 1996) ,0.01 5.5 days 16 88 days

Concaterpillar (Leigh et al. 2008)d 1 � 10�6 6.5 days 16 104 days

LRT (Waddell et al. 2000) ,0.001 12.5 h 16 9 days

a
Calculated as total computation time � number of cores used in parallel.

b
CADM’s null hypothesis is incongruence.

c
Computation time for CADM includes time for distance matrix estimation (1 h 12 min). The time for CADM alone was less than 10 min.

d
Values given for Concaterpillar are for the point at which congruence was rejected and for the pruned (41-taxon) data set. This was the same data set used for other methods.
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Likewise, all methods except CADM rejected homogene-

ity of the NUTs data set (table 2). The CADM global test
rejected incongruence, indicating that at least one pair of

markers is not completely incongruent (i.e., shared at least

some local pattern of evolutionary relationships). A posteri-

ori test were thus computed to detect which markers were

not completely heterogeneous.

The subsequent search for the gene sets that may have

a common history within the NUTs produced highly incom-

patible results. The ILD and LRTs were both able to detect
incongruence but not to indicate whether any subsets of

markers were homogeneous. Both CADM and Concaterpil-

lar were able to infer homogeneous subsets; for CADM, the
P values of pairwise Mantel (1967) tests among all markers

were clustered hierarchically with a complete linkage algo-

rithm and those subsets that appear in clusters below the P
5 0.05 threshold were not considered incongruent or het-

erogeneous (fig. 5).

In figure 6a, the limited extent to which congruent sub-

sets identified by CADM and Concaterpillar with the

41-taxon data set were in agreement is shown in a Venn
diagram; figure 6b shows the Venn diagram produced from

FIG. 4.—Heatmap showing AU and SH test results with NUTs and their gene trees. The AU and SH tests were used to assess the support of each

marker in the 100-gene NUTs data set for the ML gene trees in the data set, as well as the global tree inferred by ML from the concatenated data set. (a)

AU test P values and (b) SH test P values. Each row represents an individual tree topology, whereas each column represents an individual marker. Names

of markers and trees corresponding to each row and column are indicated; the row corresponding to the global tree is indicated by the blue-highlighted

name ‘‘global’’ and by a box around the row of cells. Rows and columns are sorted according to dendrograms above and to the left of the heatmap,

which indicate similarity in patterns of P values. The cells of the heatmaps are themselves colored according to the P values from the AU or SH test, such

that very small P values (indicating rejection of a particular tree topology with a particular gene) are shown in darker green shades, whereas larger P

values are shown in yellow, orange, or white.

FIG. 5.—Hierarchically clustered pairwise CADM test P values. The CADM test rejected global incongruence of the data set (P , 0.001), indicating

that at least one pair of markers was not incongruent over at least some part of their histories. We then assessed pairwise incongruence with Mantel

tests and then clustered the P values hierarchically using a complete linkage algorithm. Those markers clustered above the threshold of 0.05 (indicated

by a dashed red horizontal line) were considered homogeneous.
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FIG. 6.—Similarity in homogeneous sets identified by CADM and Concaterpillar. (a) Venn diagram showing overlap in homogeneous sets

identified by Concaterpillar (blue) and CADM (green) with the 41-taxon NUTs data set. (b) Venn diagram showing overlap in homogeneous sets

identified by Concaterpillar with the 41-taxon (blue) and 100-taxon (red) data sets. One cluster was found in the 100-taxon data set but was

incompatible with this Venn diagram; the members of this cluster (COG0081, COG0541, and COG2812) are indicated by an asterisk. Singletons (genes

identified as incongruent to all others) identified by both methods are not shown.
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the homogeneous subsets identified by Concaterpillar with
the NUTs containing all taxa and the pruned NUTs containing

41 taxa. Qualitatively, it appears that there is very little over-

lap between the sets identified in these data sets with Con-

caterpillar. However, because the pattern of incongruence is

likely to change depending on the taxa included in the anal-

ysis, this result is unsurprising. Interestingly, all 44 genes

identified as incongruent to all others (singletons) by Con-

caterpillar with the 41-taxon data set were also identified as
singletons with the 100-taxon data set; an additional 18 sin-

gletons were identified only in the 100-taxon data set. In

addition, CADM and Concaterpillar are likely to identify dif-

ferent homogeneous subsets (see fig. 6a) because their def-

initions of incongruence differ (i.e., CADM will reject

heterogeneity when there is more shared branching pattern

than expected by chance, whereas Concaterpillar will reject

homogeneity when there is sufficient evidence that gene
trees are nonidentical).

Interestingly, analysis of a slightly expanded data set using

a clustering-based method for detecting incongruence indi-

cated that these markers were not homogeneous but pro-

duced only two subsets (Leigh et al. 2011). However, further

analysis revealed that one of these subsets corresponded to

most of the singletons identified in a Concaterpillar-based

analysis of the same data. Additionally, the markers in this
subset appeared to have undergone LGTevents much more

frequently than the others, and this subset was enriched in

operational genes, whereas the other subset was enriched

in informational genes. These results suggested that this

clustering method identified some shared aspect of the evo-

lutionary process other than a shared phylogenetic tree

(e.g., the commonality of being subjected to higher rates

of LGT, in this case).
Even for such a reduced data set, computational limits

started to be observed (table 2). As we are not aware of

a publicly available implementation of either the Huelsen-

beck and Bull or Waddell LRTs, we implemented each of

these tests (available by request) such that phylogenetic

inference and likelihood estimation were calculated in par-

allel as much as possible; Concaterpillar also performs

a number of steps in parallel. For this reason, an additional
column was included in table 2 to indicate the approxi-

mate total CPU time used for each method, although this

value is likely overestimated for methods using multiple

CPU cores in parallel. For a data set of this size, the com-

putation time for the Waddell LRT remained tractable. The

ILD was much slower, although the total CPU time was

comparable; the speed could be improved easily with

a parallel implementation. The Huelsenbeck and Bull
LRT was much slower, but most of the time was spent

on parametric bootstrapping; this time was improved

using a repartitioning method similar to that used in the

ILD, which does not require inference of a global tree at

each iteration (using 16 cores, repartitioning reduced

the computation time from 5.5 days to 38 h). For CADM,
computation time was exceptionally fast: the entire anal-

ysis took less than 1.5 h, most of which was spent

estimating distance matrices; the CADM global test itself

was completed in under 2 min, whereas the a posteriori

tests ran for just over 4 min. Computation time for each

of these four methods (ILD, the two LRTs, and CADM)

increases linearly with the number of markers in the data

set, so even the slowest of these methods could reasonably
be extended to larger data sets.

However, this is not the case with Concaterpillar. Its total

computation time was less than a week, running in parallel

over 16 cores. But because it scales with the square of the

number of markers in the data set, the time for a data set

with twice as many markers (around 200 genes) would be

four times longer than for this data set, a total of 8 days. One

can imagine that truly phylogenomic data sets could contain
many more than 200 markers, and Concaterpillar would

quickly become intractable.

Furthermore, the importance of parallelisation for

these methods cannot be overstated. We intended to

compare these results to those of the multiple ILD test

(Planet and Sarkar 2005) but because the available imple-

mentation does not run any operations in parallel, com-

pletion of the analysis would have taken somewhere
between 6 months and 8 years, depending on the point

at which congruence is rejected. Likewise, had Concater-

pillar been run on a single core, computation might have

taken over 100 days.

Building a Better Mousetrap: The
Future of Congruence Tests

Our criticism of existing incongruence tests is not meant to

deconstruct incongruence analysis in principle. Times have

rarely been so exciting for phylogeneticists: there are now

hundreds of whole-genome sequences, most of which

are from prokaryotes, where phylogenetic disagreement be-

tween markers is of critical importance both to our under-

standing of the nature of genome evolution and to the

meaning of phylogeny. Methodological progress is needed
since existing incongruence methods show some serious

limits in the post-genomic era, where data sets are increas-

ing in size and phylogenetic complexity as sequence data-

bases grow (fig. 2 and table 1). Methods that scale

poorly with the number of markers in the data set (e.g.,

Leigh et al. 2008) or that are poorly suited to data sets where

the level of heterogeneity is expected to be high (e.g.,

Brochier et al. 2002) are ill-suited to the data sets that
are of growing interest.

Research is showing increasingly that, in terms of

genome evolution, most of the ‘‘tree of life’’ is less a tree

than a network (Brilli et al. 2008; Lima-Mendez et al.

2008; McInerney et al. 2008; Dagan and Martin 2009;
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Ragan and Beiko 2009; Halary et al. 2010); that is, there is
no common phylogenetic tree, with a few genes whose evo-

lutionary history conflicts with that tree. Rather, there is

a whole series of different trees, all of which are true trees

for some parts of the genome. Some authors have avoided

assessment of congruence altogether, opting instead to

develop phylogenetic analysis methods that incorporate

models that account for incongruence. Models have been

proposed that explicitly account for incongruence among
markers due to coalescence (Liu and Pearl 2007), LGT

(Suchard 2005; Boussau and Daubin 2010), or generalized

horizontal evolution (Bloomquist and Suchard 2010).

These methods are still in their infancy, and with the

exception of the promising network-based method of

Bloomquist and Suchard (2010), they effectively reconcile

discordant gene tree evolution with a vertical species tree

and can therefore be misleading in the case of prokaryote
or viral evolution, where the existence of a species tree re-

mains in question (Bapteste et al. 2009). Analyses of incon-

gruence, on the other hand, can identify patterns of genes

with identical, similar, or very different histories without at-

tempting to merge heterogeneous information into a single

tree. Thus, their range of utility is greater than that of any

tree-based method because they make fewer assumptions

to accommodate internal discrepancies in the data. Incon-
gruence testing remains important both for testing whether

combined phylogenetic analysis is appropriate and for

exploring the evolutionary processes that shape genomic

data. However, the fact remains that the vast majority of

phylogenomic data have not evolved according to the same

processes as those that shaped the data for which existing

incongruence tests were conceived. We propose the devel-

opment of methods for assessing incongruence that 1)
accommodate both a high level of localized homogeneity

and global incongruence; 2) appropriately account

for and model patchy taxonomic distribution; and 3)

scale reasonably well with the number of markers in the

data set.

In order to be tractable for analysis of very large data sets,

incongruence methods of the future will need to involve

a phylogenetic analysis stage that scales linearly with the
number of markers at worst. Clustering methods are prom-

ising in this regard (Leigh et al. 2011). Using an analysis

method that produces a distribution of trees for each gene

(e.g., a bootstrap distribution or a Bayesian posterior distri-

bution), phylogenetic distances between distributions for all

pairs of genes could be estimated and these then clustered

(Nye 2008). The distances should somehow take differences

in taxon representation into account rather than simply
ignoring taxa missing from either of the two markers. Jack-

knifing of taxa or genes could potentially be used to assess

the contribution of individuals to the perturbation of the re-

covered clusters of topologically homogeneous genes (e.g.,

if the removal of a particular taxon frequently causes two

clusters to merge, the phylogenetic position of this taxon
is likely important to the incongruence of these sets of

markers). In addition, an advantage of some clustering

methods is that cluster membership need not be exclusive;

fuzzy clustering (Bezdek and Ehrlich 1984) could allow

a marker to belong to multiple clusters in cases where dif-

ferent regions of the gene have distinct evolutionary histo-

ries due to hybridization (gene conversion) events or where

the marker in question shares local homogeneity with dif-
ferent clusters of genes due to independent LGT or gene

recruitment in different lineages.

Process Homogeneity: A
Complementary Perspective on
Incongruent Genes

In order to accommodate data sets in which evolution of
genes along identical tree topologies is the exception, rather

than the rule, it may prove useful to focus on identification

of sets of genes that share more phylogenetic properties

with each others than with other gene trees in the data

set (e.g., congruence or homogeneity of evolutionary pro-

cess), even if they are not themselves identical. More pre-

cisely, a homogeneous subset of gene trees need not

share a single underlying tree, but could nonetheless share
some remarkable evolutionary properties (i.e., a comparable

rate of LGT). Elsewhere (Leigh et al. 2011), we have de-

scribed these genes with significant evolutionary similarity

as ‘‘evolutionary doppelgängers,’’ from the German word

meaning ‘‘living double’’ or ‘‘walking double,’’ which usually

refers to an identical ‘‘twin’’ who shares no literal relation to

oneself. Genes sharing process homogeneity are similar to

one another in significant ways but do not share the same
pattern of inheritance (i.e., they do not share the same ge-

nealogy and, therefore, are incongruent or heterogeneous

in the usual sense but share attributes of the evolutionary

process such as similar rates of LGT, thus are homogeneous

in this sense).

We feel that this type of congruence is relevant for micro-

bial gene evolution, where many genes share process homo-

geneity. Consider for instance suites of genes within operons
or other genetic modules that tend to be coinherited, at least

between some taxa (Walsby 1994; Yellaboina et al. 2004;

Watanabe et al. 2008; Iwasaki and Takagi 2009). Even

though their trees might not be strictly identical, they will

likely present some significant local regions of topological

similarity, capturing real evolutionary processes uniting the

evolution of these genes, and justifying their grouping into

an evolutionarily meaningful set. In this case, the evolutionary
history of prokaryotic genes is more accurately described by

process homogeneity, where the notion of global phyloge-

netic homogeneity (identical trees) is too strict to describe

local phylogenetic similarity between gene trees (fig. 2, lower

right: ‘‘local homogeneity in history’’).

Evaluating Phylogenetic Congruence GBE

Genome Biol. Evol. 3:571–587. doi:10.1093/gbe/evr050 Advance Access publication June 28, 2011 583



Moreover, the term process homogeneity is flexible
enough to include genes that have been subjected to similar

evolutionary pressures, even if they do not share exactly the

same pattern of inheritance. Such a group would typically be

observed when genes fall into distinct classes of genes char-

acterized by distinct rates of LGT. For example, according to

the complexity hypothesis (Jain et al. 1999), genes fall into

two classes: ‘‘informational’’ genes, supposedly less fre-

quently transferred and ‘‘operational’’ genes, more fre-
quently transferred. If the complexity hypothesis is correct,

frequently transferred operational genes and rarely trans-

ferred informational genes have distinct evolutionary proper-

ties. Consistently, incongruence analyses could be designed

to identify these two groups of markers (fig. 2, lower right:

‘‘local process homogeneity’’). That the group of operational

genes comprises multiple underlying histories does not make

this grouping meaningless: the evolutionary resemblance
between operational genes (i.e., their more frequent transfer

relative to other genes), if correct, deserves recognition

(Leigh et al. 2011). Although a method to detect process-

homogeneous markers would be related to the notion of

conditional data combination in that it would be based on

incongruence analysis, it would not necessarily be used to

evaluate combinability of data for the inference of a species

tree; detection of these markers would be at least as useful
for exploration of patterns of LGT frequency or of gene shar-

ing highways (Beiko et al. 2005).

Simply put, we would argue that phylogenetic homoge-

neity should not exclusively mean shared, identical phyloge-

netic story, but should be expanded to include shared

significant similarity in other aspects of evolutionary pro-

cesses (e.g., when a group of genes presents a distinct rate

of LGT relative to others and, consequently, distinct taxo-
nomic/environmental distribution). As the latter resemblan-

ces occur in microbial evolution owing to the importance of

LGT, the notion of process homogeneity could enrich the

incongruence analysis tool kit.

Conclusions

As our understanding of molecular evolution moves away
from the tree metaphor (Bapteste et al. 2009; Dagan and

Martin 2009; Ragan and Beiko 2009), the identification

of incongruence will no doubt continue to prove useful

for many areas of evolutionary biology and foster multiple

novel important questions. How many separate histories do

genomes of different lineages exhibit? Why do some sets of

genes share patterns of not-strictly vertical evolution? Do

genes whose products physically or functionally interact
tend to share the same patterns of inheritance, encoding

‘‘molecular organs,’’ with their own evolutionary fate, as

suggested by Forterre (2010)? Do genes tend to follow

the same pattern of inheritance over the entire course of

their histories or are some groups of genes only coinherited

at a certain evolutionary time? Has the rate of LGT for dis-
tinct functional categories varied over time, marking distinct

adaptive stages of microbial evolution? The development of

new, better tests, more grounded in biological knowledge,

is crucial to address all these issues.
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