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ulations using PELE to identify
a protein–protein inhibitor binding site and pose
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Laura Perez-Benito, b Suwipa Saen-Oon, a Victor Guallar cd

and Robert Soliva *a

In silico binding site location and pose prediction for a molecule targeted at a large protein surface is

a challenging task. We report a blind test with two peptidomimetic molecules that bind the flu virus

hemagglutinin (HA) surface antigen, JNJ7918 and JNJ4796 (recently disclosed in van Dongen et al.,

Science, 2019, 363). Tests with a series of conventional approaches such as rigid (receptor) docking

against available X-ray crystal structures or against an ensemble of structures generated by quick

methodologies (NMA, homology modeling) gave mixed results, due to the shallowness and flexibility of

the binding site and the sheer size of the target. However, tests with our Monte Carlo platform PELE in

two protocols involving either exploration of the whole protein surface (global exploration), or the latter

followed by refinement of best solutions (local exploration) yielded remarkably good results by locating

the actual binding site and generating binding modes that recovered all native contacts found in the X-

ray structures. Thus, the Monte Carlo scheme of PELE seems promising as a quick methodology to

overcome the challenge of identifying entirely unknown binding sites and modes for protein–protein

disruptors.
Introduction

Extracellular protein–protein interaction (PPI) disruption is
currently one of the most successful therapeutic approaches;
many top selling drugs are recombinant proteins and anti-
bodies that block extracellular protein contacts.1 With a success
rate from rst human trials to regulatory approval of around
15%, and an extensive pipeline of antibodies in clinical devel-
opment many new biologic drugs are expected to launch over
the coming years.2Despite this, therapeutic proteins suffer from
limitations (parenteral route of administration, production
costs) and the requirements of some clinical indications or
treatment regimes mean the discovery of small molecules as
alternatives to therapeutic proteins remains a high priority.
However, protein–protein interfaces are characterized by
extended, at or shallow surfaces, oen dominated by polar
contacts, typically not straight forward for targeting by small
organic drug molecules compatible with oral route
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administration. Indeed, the challenges of inhibiting or modu-
lating protein–protein interactions are well known3,4 and
computational methods that can help with the identication of
ligands, or even their likely binding sites would be of great value
and potential impact.

The complexity of protein–protein interactions can be
understood by considering that many proteins have evolved
elongated structures whose domains are usually composed of a-
helices and b-sheets placed parallel to the longest protein axis,
stretching out a series of extended, narrow and shallow grooves,
which are engaged by their protein partners via insertion of
a series of side chains in a “ladder-shaped” pattern. Small
molecules targeted at the surface interaction sites on such
proteins must be fairly rigid and capable of inserting them-
selves in these grooves if they are to have good potency.
However, this is not easily achieved, as the long grooves display
a dynamic adaptation at different levels of the “ladder”, some-
thing that cannot be inferred from the static X-ray crystal
structures. Examples of this phenomenon have been described
both for extracellular proteins such as IL-2/IL-2R disruptors5,6

and intracellular proteins such as the androgen receptor.7

Drug discovery of inhibitors disrupting PPIs poses many
challenges and traditional computational methods oen
struggle to overcome these. A recent systematic analysis
revealed that PPI cavities show almost no overlap in property
space with those of druggable protein ligand complexes,8 thus
identifying chemical hit matter can be tough, and optimizing it
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 (Left) 2D structure of compound 1, JNJ7918 micromolar HTS-
derived HA binder; (right) 2D structure of compound 2 JNJ4796, an
optimized nanomolar HA binder (rings are tagged with letters for
discussion purposes).
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to adhere to drug-like physicochemical properties is a further
challenge.9 Still, classical docking approaches have been
applied to nd hits for PPI targets but the challenge for docking
can be understood given that most scoring functions have
evolved and been evaluated using available protein-ligand
structure datasets which only contain a small proportion of
ligands bound at PPI binding sites. Some successes have been
reported but similar limitations of the available chemical
molecules also apply; and obviously thesemethods are of no use
when the binding sites maybe unknown. Alternatively, despite
a few reports of success, hit/lead generation strategies such as
modern fragment-based drug design also struggles for targeting
large protein–protein interfaces.3

Qualitative computational methods have emerged as useful
to identify possible binding site and interaction “hot-spots”.10,11

Site nding methods such as FTMap12 and SiteMap13 can
provide guidance for regions where small molecules may
interact, but their power to discriminate true from false sites
breaks down for less druggable sites.14 Given the dynamic
nature of protein–protein interactions,15 it is perhaps not
surprising that methodologies based on molecular simulation
are proving useful. So-called “mixed solvent MD” methods use
molecular dynamics (MD) simulations performed with small co-
solvent organic fragments to reveal protein surface binding
sites.16,17 Meanwhile, sophisticated large-scale MD studies
coupled with statistical modelling have been able to identify
binding sites in a de novo fashion but at signicant computa-
tional cost.18 It remains to be seen if these approaches can
impact prospective drug discovery with the throughput and
robustness to identify unknown binding sites and importantly,
binding poses. In general, there are few reliable computational
approaches that can be applied to PPI drug discovery. Here we
demonstrate how Monte Carlo (MC) simulations performed
with PELE19 are capable of identifying both the binding site and
mode, with relative ease and via a simple and reproducible
application protocol.

Hemagglutinin (HA) is one of the two proteins found on the
surface of the inuenza viruses. It is an antigenic glycoprotein
assembled as a homo-trimer of identical subunits that are
formed of two disulphide-linked polypeptides: membrane-
distal HA1 and the smaller, membrane-proximal, HA2. HA is
responsible for host cell binding and subsequent fusion in the
endosome aer the virus has been taken up by endocytosis.
Therefore, its interaction with host-cell receptors is a critical
step in the infectious cycle of the virus. Janssen researchers rst
developed potent, broadly neutralizing antibodies (bnABS) that
bind the highly conserved HA stem region at the interface of
HA1 and HA2.20 Subsequently, the study of the complementarity
determining regions (CDRs) of those bnABS inspired the
development of potent cyclic peptidic inhibitors21 whose X-ray
complexes show they closely mimic the “ladder-type” interac-
tion revealed for bnABS at the HA1/HA2 groove. Lastly, this rich
structural information led to the development of small mole-
cules targeted at the same site. Through an HTS campaign
Janssen discovered micromolar compound JNJ7918 (1 in Fig. 1),
which nally evolved to lead compound JNJ4796 (2, in Fig. 1).22

This peptidomimetic remarkably mimics bnABS and cyclic
This journal is © The Royal Society of Chemistry 2020
peptides and owes its potency to a series of slight, dynamic
rearrangements in the “ladder-type” groove at HA1/HA2.

The goal of the present study was to test the performance of
a series of relatively efficient approaches that can be employed
to determine the binding site and binding mode for precursor
JNJ7918 and its derived lead JNJ4796 on the whole surface of
HA. The work was designed considering limited time and
resources typical of some drug discovery projects and therefore
slower, compute intensive techniques such as molecular
dynamics were not considered. We found that the most
simplistic approaches such as docking or ensemble docking
with several techniques did not, for the most part, yield useful
models. However, a variety of protocols based on the Monte
Carlo program PELE consistently delivered good results in
simulations whilst taking only a few hours on a modest
compute cluster. Of note, at the time of the test, the work was
performed in a blind fashion as the HA-JNJ4796 complexes
(entries 6CF7, 6CFG) were not available in the protein data bank
and not provided to scientists at Nostrum Biodiscovery.

Methodologies
Protein system preparation

All HA structures were rst pre-processed and rened with
Protein Preparation Wizard of Maestro.23 This pipeline is
designed to correct most deciencies found in protein data
bank structures such as missing side chains and loops, double
occupancies, missing hydrogen atoms, titration of ionizable
residues, ipping of wrongly assigned Asn and Gln side chains,
etc. The resulting structures were minimized using default
parameters and visually inspected for a nal quality control.

Docking calculations

All docking calculations on the HA structures were carried out
with Schrodinger's Glide 2019-2 using its Standard Precision
(SP) scoring function.24 In cases where SP failed to give
a productive pose, the Extra Precision (XP)25 scoring function
was used, although in general results were found to be similar
to SP. The peptidomimetic molecules were rst processed with
Schrodinger's Ligprep (protonation state at pH 7.4 � 0.5), to
RSC Adv., 2020, 10, 7058–7064 | 7059



Fig. 2 The 40 initial ligand positions placed randomly around the
entire protein surface.
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generate 3D energy-minimized molecular structures with
correct tautomeric and ionization states. ESP charges were ob-
tained with Jaguar single-point calculation at M06/6-31G** level
of theory.26 Of note, the B and C-rings (pyridine and piperidine)
were predicted to be neutral. The grid was customized to
include the entire protein in docking attempts to locate binding
sites. Results were assessed by examining the best 10 energy
poses in terms of the docking glide-score.

Ensemble generation via normal mode analysis (NMA)

A conformational ensemble of 10 models of the HA receptor was
generated via PELE by means of carbon alpha normal mode
analysis (NMA) with a subsequent all atom minimization.27 To
decide the direction of the movement a contribution of 75%
came from the main mode and 25% from the rest. The main
mode was randomly selected from the rst six modes at each
PELE step with amplitude of the movement of 1.25 �A.

Ensemble generation via MODELLER

Version 9.22 of MODELLER28 was used to obtain an ensemble
of 10 structural models of the HA receptor. The crystal struc-
ture of hemagglutinin in complex to a cyclic peptide (protein
data bank (PDB)29 id: 5W6T)21 was used as a template for the
generation of the conformational ensemble using the stan-
dard protocol implemented in MODELLER. The quality of the
models was assessed by means of MODELLER's internal
scoring function, the Discrete Optimized Protein Energy
(DOPE).30 All the models were subjected to the same protocol
described in the protein system preparation section prior to
the docking calculations.

PELE algorithm

PELE19 is a two-stage MC algorithm comprising: a rst pertur-
bation stage, where the ligand is randomly translated and/or
rotated and the protein is perturbed using a normal mode
method based on an anisotropic network model (ANM) or on
a principal component analysis (PCA) of a set of diverse struc-
tures.31 A second stage follows, where the structure is rebuilt
with a side chain rotamer prediction followed by a minimiza-
tion with varying degrees of constraints on alpha carbons and
the ligand centre of mass. The resulting proposal is accepted or
rejected based on a Metropolis criterion, aer which the whole
cycle is carried out iteratively. This basic algorithm has been
applied to the study of multiple drug discovery31–33 and protein
engineering problems.34,35

For the present work, the adaptive version of the algorithm
was applied. Adaptive PELE is composed of three main steps:
sampling, clustering, and spawning, which are run iteratively.36

In the sampling phase a series of independent trajectories are
run (typically from a few dozen up to thousands). These
trajectories are generated with the classical PELE approach
described above. We use rounds (epochs) of N simulations
(trajectories) of length M, each one running on a computing
core (using an MPI implementation). The clustering phase then
cluster all conformations generated in all previous epochs. A
number of approaches can be implemented. Typically, we use
7060 | RSC Adv., 2020, 10, 7058–7064
ligand RMSD as a metric for clustering. Each cluster has
a central conformation and a similarity RMSD threshold, so that
a structure belongs to that cluster if its RMSD with the central
conformation is smaller than the threshold. When a structure
does not belong to any cluster, a new one is created, dening
a new cluster centre. In the clustering process, the maximum
number of comparisons is k � n, where k is the number of
clusters, and n is the number of explored conformations in the
current epoch. The ruggedness of the energy landscape sets the
most suitable RMSD value. The more complex the energy
landscape is, the lower the RMSD thresholds should be to
ensure a proper discretization in regions that are difficult to
sample. Finally, the spawning phase chooses the seeds to be
used for the next iteration (next epoch). By stopping simulations
and adaptively spawning them with new initial structures for
the next iteration, we bypass the problem of getting trapped in
local minima. This effectively improves the search in poorly
sampled regions. The selection strategy can also be used for
biasing the sampling to interesting areas based on user
knowledge of the system. A series of reward functions can be
implemented, ne-tuning the degree of bias (the default
protocol rewards poorly sampled regions).

In the present work, two different PELE protocols were
applied, depending on the result to be achieved, namely:
PELE global exploration

This protocol performs a dynamic exploration of the whole
surface with N (initial) copies placed around the entire protein.
In the case of hemagglutinin, 40 initial PDB les where the
ligand was placed at random positions around the entire
protein surface were rst generated (Fig. 2). These les were
uniformly distributed among 249 processors and used as input
to launch a multiprocessor PELE simulation. Since the binding
site was assumed to be unknown, large rotations and trans-
lations were applied to the ligand. The simulation was run for
a total of 400 MC steps for both compound 1 and 2 (totalling 9
This journal is © The Royal Society of Chemistry 2020



Fig. 3 Interaction energy plot (left) against distance to Thr318 (one of
the key residues anchoring compound 1). The superimposition of the
lowest energy pose 1 (in salmon) with the crystal structure of related
compound 2 6CF7 (in grey) is pictured on the right hand side image.
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and 12 hours of simulation each per ligand); results were ana-
lysed by inspecting the lowest interaction energy poses.

PELE local renement

In the case of compound 2, the lowest interaction energy poses
found in the global exploration were used as input for a local
renement. Low and medium range rotations and translations
were applied to the ligand in this case. In addition, the ligand
was only allowed to explore the area around each of the binding
sites found in the previous global exploration. The simulation
was run for 1 hour on 175 processors.

In all calculations, PELE used the all atom OPLS2005 force
eld37 with an OBC implicit solvent model. Parameters for the
ligand were obtained by the following protocol. The charges
were derived from RESP methodology, calculated at M06/6-
31G** level of theory using Jaguar. The force eld parameters
were transferred from OPLS2005. PELE energy proles pre-
sented in the results section are the interaction energy plot
against distance to the centre of mass (COM) of Thr318 (one of
the key residues anchoring compound 1). Interaction energies
are dened by E(AB) � E(A) � E(B), where AB stands for the
complex, A for the receptor and B the ligand.

Results and discussion

The study was performed blind, before the public release of the
crystal structures, and aimed at testing whether the different
techniques could nd the binding site/mode of compounds 1
and 2 assuming they could bind anywhere on the surface of
hemagglutinin.

Global docking on available X-ray structures, NMA-generated
and HM-generated ensembles

Docking of both compounds was attempted rst on PDB entries
5W6I, 5W6T and 5W6U (hemagglutinin–cyclic peptide
complexes), making sure the grid engulfed the whole protein
structure. Results were disappointing as not a single generated
pose for either could reproduce a native-like pose. Inspection of
the X-ray structures reveals the grooves along the longest
protein axis are fairly rigid, but undergo slight rearrangements
precluding binding of neither of the peptidomimetics. Clearly,
receptor plasticity must be taken into account even in protein–
protein contact surfaces not involved in major rearrangements.

The rigid (receptor) docking results prompted us to investi-
gate whether a productive pose could be found by rst gener-
ating conformational ensembles for hemagglutinin, followed by
docking both molecules on every ensemble conformer. Two
short methodologies were chosen: normal mode analysis (NMA)
and homology modelling (HM).

An NMA-generated ensemble with 10 conformers was built
based on PDB entry 5W6T (HA bound to a cyclic peptide). All
docking grids engulfed the whole protein structure. No binding
mode close to the known binding site (Thr318) was found for
compound 1. Additionally, only two out of all generated poses
for compound 2 were close to the X-ray pose (as in 6CF7); the
best in terms of RMSD being scored as the 5th best pose out of
This journal is © The Royal Society of Chemistry 2020
100, reproducing the key hydrogen bond between the carbonyl
oxygen of JNJ4796 and the hydrogen bond donor of Thr318 and
yielding a native like conformation with 2.63 �A heavy atom
RMSD with respect to the X-ray.

In addition, an HM-generated ensemble with 10 different
conformers based on PDB entry 5W6T as template was also
built. For compound 1, only one out of the 100 generated poses
was close to the actual binding site (ranked as top 1), repro-
ducing the key hydrogen bond to Thr318. However, for
compound 2, no native poses could be found.

Therefore, rigid (receptor) docking failed at generating
useful models when performed on X-ray crystal structures,
whereas ensemble rigid (receptor) docking only gave mixed
results: near native poses could be found for compound 1 in the
case of HM-generated ensembles, and for compound 2 in the
case of NMA-ensemble. Furthermore, the scoring itself was not
accurate enough, as it is doubtful that the 5th ranking pose for
compound 2 would have been selected in a prospective appli-
cation scenario, assuming the “correct” nal pose was not
known. Probably, the ensembles built were not rich enough to
properly capture the induce t needed to adequately bind both
compounds under study. Thus, in order to efficiently capture
the dynamic rearrangements in the “ladder-type” groove at the
HA1/HA2 interface in the presence of either compound, a series
of PELE simulations were run.
Global PELE exploration for compound 1

A rst dynamic global exploration of the whole HA surface was
designed. As in docking simulations, we used the HA structure
found in PDB entry 5W6T, where HA is bound to a cyclic
peptide. The interaction energy prole vs. distance to Thr318 for
the global exploration of compound 1 is presented in Fig. 3,
revealing four minima at different distances along the X-axis.
Although we present the results for ease of interpretation sorted
by their distance to Thr318 in the nal binding site, it is
important to note that if an alternative surface amino acid had
been chosen it would not change the conclusions. In other
words, four distinct minima exist, and their energies and
identication was not dependent on the Thr318 distance.
Notably, the pose of compound 1 with lowest energy (circled in
RSC Adv., 2020, 10, 7058–7064 | 7061



Fig. 5 (Left) Interaction energy plot against distance to Thr318 for the
PELE simulations starting with the 7 poses generated by the global
exploration (Fig. 4); (right) the lowest interaction energy pose (green
circle on the left plot) out of the second refinement simulation can be
seen superimposed with the actual binding mode as subsequently
published in van Dongen et al.22 and found in PDB entry 6CF7 (grey).
The overlap with the experimental binding mode shows how the
model captures the H-bond to Thr318, as well as the CH–p bonds of
compound 2 with the residues lining the shallow groove.
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salmon) closely overlaps with the binding mode of compound 2
found in the crystal structure (PDB: 6CF7), as can be seen in
Fig. 3. As no crystal structure of compound 1 in complex to HA
has been released to date, we present here a presumed binding
mode obtained by PELE that is in line with the current reported
data for this family of inhibitors.

Global PELE exploration for compound 2

A dynamic PELE global exploration for the lead compound was
also attempted on PDB entry 5W6T. The energy prole for the
exhaustive global exploration is found in Fig. 4. It reveals the
exploration generates 7 minima, one of which (point 1) is in the
vicinity (ca. 2 �A) of Thr318, the key H-bonding anchor of
compound 1. Thus, the initial exploration locates the actual
binding site as one of the probable hotspots on the surface of
HA. However, this initial global calculation does not generate
a right binding mode. This might be due to the higher struc-
tural complexity of the lead compound as compared to its HTS
precursor.

The 7 minima highlighted in Fig. 4, which are far apart from
one another, were then subjected to a second round of PELE
simulations, now in local exploration mode (details on the
simulation parameters can be found in the Methodologies
section). The energy prole for the renement of the 7 poses
highlighted in Fig. 4 can be found in Fig. 5. Remarkably, it
shows the pose that H-bonds to Thr318 as the one with the
lowest interaction energy (�51 kcal mol�1). The lowest energy
minimum circled in green Fig. 5 (le) is also seen in Fig. 5
(right). It overlaps with the binding mode disclosed in PDB
entries 6CF7 and 6CFG (RMSD 1.47 �A). In fact, a detailed
inspection of the predicted binding mode reveals most of the
critical contacts responsible for the nanomolar activity of
compound 2 are recovered in our model. The A ring (benzox-
azole) is placed in the small hydrophobic cavity lined by Val40,
Leu42 and Val52, Asn53 and Ile56, its amide function partly
solvent exposed, with its terminal methyl group contacting
Ser291 and Leu292. The critical CH–p contact with Val52 is also
recovered. The B ring (pyridine) is placed between Thr49 and
Fig. 4 Interaction energy plot (left) against distance to Thr318 (one of
the key residues anchoring compound 1). The lowest energy poses
circled, whose positions on the HA surface are depicted on the right
hand side image, where taken as starting structures for the second
(refinement) simulation step.
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Thr318, the latter H-bonding directly to the carbonyl linker
connecting rings B and C, as is found in the X-ray. The C–E rings
are seen in the experimental structure to engage in CH–p

contacts with His18, His38, Trp21 and Ile45.
Thus, an exhaustive exploration of the surface of HA followed

by a renement simulation yields a model that is at a remarkable
1.47 �A RMSD with respect to the experimentally determined
structure. This test places PELE as an efficient and effective
approach to not only navigate the whole surface of a protein in
search of dynamic hotspots but also to predict the actual binding
mode of a small molecule protein–protein disruptor.

Since the rst disclosure of the PELE soware,19 the plat-
form has undergone signicant methodological improve-
ments. A big upgrade was achieved when the original Fortran
code was ported to C++ and the MPI parallelization was
optimized with Paraver soware to avoid overhead and
maximize job performance.38 Along the years, more features
have been developed to address specic problems that
broadened PELE's applicability domain. For instance, adding
PCA components to PELE to account for non-harmonic
movements,31 a feature to perturb explicit water molecules
in the MC algorithm,39 the adaptive PELE version (explained
above) to enhance sampling and minimize the computa-
tional demand36 and a series of changes to make the code
more exible in term of input/output formats which mini-
mize user storage needs. Early reports involving the study of
cytochrome P450s, myoglobin or fatty acid binding
protein19,40 have now been complemented with multiple
recent studies involving kinases, GPCRs, HIV-1 protease,
epoxide hydrolase and various nuclear hormone recep-
tors.31,32,36,41–46 Thus the application of PELE as a reliable
induced-t binding tool has been amply proven. We show
here for the rst time, the application of PELE in the context
of protein–protein disruptor design, where many in silico
methodologies struggle.
This journal is © The Royal Society of Chemistry 2020
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Conclusions

The correct prediction of binding sites and modes for small
molecule protein–protein inhibitors is still challenging, even in
cases where no major rearrangements in the protein structure
take place, as the grooves involved in binding are highly
dynamic, extensive and mostly featureless. A series of compu-
tationally efficient approaches have been tested for the correct
prediction of two peptidomimetic molecules that bind the
surface of hemagglutinin, a 380 daltonMWHTSmicromolar hit
and its evolved derivative, the 566 dalton nanomolar lead
compound JNJ4796.

Our tests revealed that rigid (receptor) docking could not
locate the binding site nor mode. Rigid (receptor) could yield
near-native poses when performed on ensembles of structures
built with approaches such as NMA or homology modelling, but
results were not amongst the best predicted or consistent and
would have been difficult to identify in a prospective manner.
However, the Monte Carlo platform PELE did nd the experi-
mental binding mode for compound 2 (and probably 1) in
relatively quick simulations performed on a small compute
cluster. Our results suggest PELE is a promising tool for the
study of challenging protein–protein disruptors, one of the next
frontiers in small molecule drug discovery.47–49
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