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Autoimmune pancreatitis, a derivative of chronic pancreatitis, frequently

causes acute episodes with clinical symptoms parallel to those of acute pan-

creatitis. Corticosteroids are effective in the treatment of 90% of autoim-

mune pancreatitis cases, but for the remaining 10%, options are limited.

Due to their significant immunomodulatory capabilities, mesenchymal stro-

mal cells (MSCs) have been proposed as a novel treatment strategy for var-

ious immune and inflammatory pathologies including those with

autoimmune origins. Here, we not only highlight the most recent MSC

live-cell experiments to address acute pancreatitis, but also discuss the

opportunities afforded by the emergence of the newly identified field of

MSC necrobiology. We conclude that the putative employment of MSC

derivatives provides a newer and simpler therapeutic approach that could

have significant advantages over the use of cells themselves.

Autoimmune pancreatitis is a form of chronic pancre-

atitis that frequently causes acute episodes with clinical

symptoms parallel to those of acute pancreatitis. If

these acute inflammatory episodes are not properly

managed, they can cause pancreatic fibrosis which can

lead to the development of pancreatic cancer as well as

the loss of exocrine and endocrine functions [1]. The

disease is currently most commonly dealt with through

the use of corticosteroids [2]. In around 90% of cases,

corticosteroids are effective in the treatment of autoim-

mune pancreatitis [2]. However, for the other 10% of

patients whose conditions do not respond favorably to

corticosteroids, there is a lack of options. Of impor-

tance to note is that corticosteroids have, in some

cases, been shown to provoke side effects including

osteoporosis, hypertension, diabetes, weight gain,

increased vulnerability to infection, cataracts, and

glaucoma, thinning of the skin, and muscle weakness

[3]. In terms of alternatives, the immunomodulator,

thiopurine, and an anti-CD20 monoclonal antibody,

rituximab, are occasionally used to treat autoimmune

pancreatitis; however, their success rates are variable

[2]. For these reasons, there is considerable demand

for a novel and superior strategy to manage the symp-

toms of autoimmune pancreatitis.

We recently (2019) summarized the available scien-

tific literature pertaining to the putative use of mes-

enchymal stromal cells (MSCs) as a treatment strategy

for acute pancreatitis [4]. In brief, we highlighted how

MSCs, through various studies, have been proven to

abrogate the effects of acute pancreatitis in rodent

models. We also discussed the lack of clarity in current

experimental designs that fail to take the original cause

of acute pancreatitis into account. This is problematic
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because MSCs clearly would not be an ideal therapeu-

tic strategy for gallstones or alcohol-induced pancreati-

tis which already possesses successful treatment

regimens. Here, we provide updates on new

approaches reported in the field, and also discuss the

use of MSC derivatives in the treatment of autoim-

mune pancreatitis.

Mesenchymal stromal cells were once thought to

mitigate various pathologies solely through anti-in-

flammatory and tissue regenerative pathways. Autolo-

gous MSC therapy gained its first regulatory approval,

for the treatment of acute myocardial infarction, in

2011 [5] although not without creating some continu-

ing controversy [6]. In fact, MSCs have been shown to

exhibit an immunomodulatory phenotype through four

distinct mechanisms [7] (Fig. 1). The latter include

modulating the proliferation and differentiation of

dendritic, B, and T cells and mediating the polariza-

tion of monocytes from an inflammatory M1 pheno-

type to an anti-inflammatory M2 phenotype. In

addition, MSCs can reduce the production of reactive

oxygen species such as superoxide anions, which inhi-

bit the apoptosis of neutrophils. Finally, MSCs can

diminish endothelial cell responses to pro-inflamma-

tory cytokines such as TNF-a, IL-1, and IFN-c [7].

MSCs for the treatment of immune
pathologies

Due to their significant immunomodulatory capabili-

ties, MSCs have been proposed as a novel treatment

strategy for various pathologies wherein the immune

system is either compromised or dysfunctional, includ-

ing those with autoimmune origins (Fig. 2). Indeed,

MSCs have shown success in the treatment of systemic

lupus erythematosus [8], rheumatoid arthritis [9], type

1 diabetes mellitus [10], multiple sclerosis [11], liver

failure associated with hepatitis B virus [12], ulcerative

colitis [13], dacryoadenitis [14], Sj€ogren’s syndrome

[15], and systemic scleroderma [15]. A very recent

example is the co-administration of MSCs with pan-

creatic islets in immunocompetent type 1 diabetic wild-

type mice. Glycemic control was restored, using

human mesenchymal cells, and a clear demonstration

provided evidence of the suppression of T-cell activa-

tion without the need for prior ex vivo licensing (stim-

ulation) with the inflammatory cytokines interferon-Υ
(IFN-Υ), interleukin-1b (IL-1b), and tumor necrosis

factor-a (TNF-a) [16]. The first approval, with govern-

ment reimbursement, for the treatment of an immune

condition with MSCs was that in Japan in 2016, for

the treatment of both pediatric disease and adult acute

graft-versus-host disease (aGVHD) [17]. Thus, the

acute inflammatory episodes of autoimmune pancreati-

tis may represent an appropriate therapeutic target for

MSCs in cases refractory to the use of corticosteroids.

Recent cellular approaches

One recent approach has pretreated (licensed) umbili-

cal-derived mesenchymal stromal cells with angiotensin

II before employing them in the treatment of severe

acute pancreatitis in Sprague-Dawley rats [18]. The

rationale was to maximize the constitutive angiogenic

properties of UCMSCs. The pretreated cells demon-

strated an enhanced ability to abrogate pancreatitis

compared with cells that had not been licensed. This

conclusion was established through the histological

assessment of pancreatic sections using measures of

necrosis, edema, vacuolization, and inflammation as

well as through the observation of myeloperoxidase

and serum amylase levels. The treated cells were also

shown to increase the paracrine release of vascular

endothelial growth factor (VEGF) which has been pro-

ven to be an important factor in pancreatic tissue heal-

ing [18].

In another study, human adipose tissue-derived mes-

enchymal stromal cells were transfected with siRNA

targeting tumor necrosis factor-a-induced gene/protein

6 (TSG-6) and compared with their untransduced, con-

trol counterparts in the treatment of caerulein and

lipopolysaccharide-induced severe acute pancreatitis in

C57BL/6 mice. Pancreas-to-body weight ratio, tissue

edema, necrosis of acinar cells, and inflammatory cell

infiltration were all improved in the control group,

demonstrating the role played by TSG-6 in ameliorat-

ing the disease. Specifically, the pro-inflammatory

cytokines, TNF-a, IL 1b, and IL-6 levels, and markers

of endoplasmic reticulum stress, Grp78, CHOP, and

caspase-12, were decreased, while anti-inflammatory

cytokine, IL-10, was increased in the control group

[19].

Ongoing challenges

While the above studies demonstrate convincing evi-

dence that mesenchymal stromal cells could, in the

future, be used as a novel treatment strategy for the

acute episodes of autoimmune pancreatitis, it is impor-

tant to acknowledge some limitations in the current

scientific literature. Firstly, as we have previously dis-

cussed, to be clinically relevant, an animal model needs

to be designed to specifically reflect the cause of the

pancreatitis, such as autoimmune pancreatitis. Also,

studies need to be conducted on the use of MSCs in

large animal models whose gastroenterological
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anatomies are more similar to that of humans. Finally,

as the cells are being proposed as a novel clinical ther-

apy it is important to recognize barriers that could

prove to be problematic as discussed below.

Mesenchymal stromal cells can be isolated from a

plethora of human sources including adipose, brain,

endometrial, placental, and umbilical cord tissue as

well as bone marrow, cord blood, amniotic fluid, vari-

ous regions of Wharton’s jelly, and dental pulp [20,21].

However, it is becoming increasingly clear that the

functional phenotype of a particular population of

MSCs varies with both the tissue source employed and

the conditions under which the cells are culture-ex-

panded [22]. Despite these disparate origins, the over-

all abundance of MSCs in the human body is still

relatively low, for example, only 0.001–0.01% of cells

in the bone marrow are MSCs [20]. MSC therapy

usually requires hundreds of millions of MSCs; in the

aforementioned studies, 1 million cells were used in

the study conducted on mice and 10 million cells were

used on the rats [18–19]. In an ongoing Phase III,

human clinical trial being conducted for chronic graft-

versus-host disease, a dose of 2 million cells per kilo-

gram was injected six times intravenously [23]. Clearly,

due to the scarce number of MSCs in the human body

and the large number needed for putative therapy, a

barrier might exist wherein the demand for cells

needed for therapy cannot be met. In vitro cell expan-

sion is the only way to yield such a high volume of

cells, but this can take up to 10 weeks [24]. In addi-

tion, as described in the aforementioned studies, trans-

fected or pretreated (licensed) cells have been

proposed, which are more complicated and costly to

produce.

Fig. 1. The immunomodulatory effects of MSCs all have demonstrated proven efficacy in models of chronic inflammatory and autoimmune

diseases. Included with permission from Munir and McGettrick [7].
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Live cells, dead cells, and derivatives

Therapy with live MSCs has a singular advantage over

the use of their derivatives: The cells can differentiate

to provide the connective tissue stroma of the recipient

organ [25]. However, although MSCs have been pro-

posed to assist with the significant stromal tissue dam-

age that occurs in pancreatitis, the cell implantation

time is too short for differentiation to occur. The two

most common methods of MSC delivery for acute

pancreatitis are intravenous and intraperitoneal. Less

than 1% of MSCs survive for over a week after intra-

venous administration [26,27], while when injected

intraperitoneally, after 20 min MSCs fail to be

detected in peritoneal lavage fluid and begin to form

large aggregates [28]. This evidence suggests that the

main therapeutic benefit of mesenchymal stromal cells

is in their immunomodulatory capacity. Thus, the ther-

apeutic advantage of live MSCs over derivatives does

not extend to the cells’ immunoregulatory properties.

Recent literature describes the new and exciting field

of ‘MSC necrobiology’, which proposes a novel solu-

tion to some of the aforementioned barriers. Necrobi-

ology provides four mechanisms by which derivatives

of mesenchymal stromal cells can maintain significant

clinical efficacy: apoptosis, autophagy, mitochondrial

transfer, and extracellular vesicles [29]. MSC products

derived from these pathways have been proven to ame-

liorate a plethora of pathologies (Table 1). Indeed,

MSC derivatives (Fig. 2) have, in some cases, been

shown to be as therapeutically beneficial as living

MSCs [30–33], but have the advantage of being able to

pass easily through the circulatory system.

Mesenchymal stromal cells that have undergone

apoptosis have been shown to reduce inflammatory

endpoints in mouse models of allergic airway inflam-

mation induced by ovalbumin (OVA) causing noncyto-

toxic T helper-type cell inflammation [34]. Apoptotic

rat adipose-derived MSCs have also been proven supe-

rior in ameliorating the condition of cecal ligation and

puncture-induced sepsis in rat models in comparison

with living MSCs [35–37]. Autophagic mesenchymal

stromal cells have also been proven to have therapeu-

tic benefits. MSCs derived from human bone marrow

that have undergone autophagy have been proven to

regulate CD4+ T helper cells via TGF-b1 signaling

[38]. Similarly, when MSCs underwent autophagy as a

result of the administration of rapamycin, their ability

to suppress CD4+ T helper cell proliferation was

improved [38]. MSCs subjected to mitochondrial trans-

fer also seem to be effective in mitigating the symp-

toms of asthma [39], chronic obstructive pulmonary

disorder [40], cardiomyopathy [41], acute respiratory

distress syndrome, and sepsis [42]. There is also evi-

dence that extracellular vesicles derived from MSCs

hold clinical efficacy in pathologies of the kidney [43],

heart [44], lung [45], and skin [46].

In recent years, exosome therapy for certain inflam-

matory conditions has garnered significant interest.

Almost all cells in the human body can produce exo-

somes: Extracellular vesicles produced by an

Fig. 2. Pictorial representation of the

distinct categories of pathologies for

which MSC therapy is being investigated

through clinical trials. Data from 954 trials

were obtained by searching registered

clinical trials on https://clinicaltrials.gov/,

using keywords ‘mesenchymal stem cell,

mesenchymal stromal cells, MSC,

mesenchymal progenitor cells, multi stem

cells, Pluristem PLXPAD, PDA002/001,

adipose derived mesenchymal stem cell,

adipose derived mesenchymal stromal

cell, adipose derived MSC, ADMSC,

adipose derived regenerative cell, CX610

and CX611’. Of importance to note is that

this data set includes clinical trials that are

recruiting, completed, or abandoned.
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endosomal pathway are approximately 30–150 nm in

size [47]. Exosomes were previously thought of as hav-

ing the sole responsibility of clearing cellular debris;

however, recent scientific literature points to their abil-

ity to modulate intracellular environmental conditions.

It is believed that only certain exosomes are

immunoregulatory. Thus, a subclass of exosomes has

been described as ‘signalosomes’, which, when released

from MSCs, have an exceptional capacity for

immunoregulation [47].

Exosome therapy using ‘signalosomes’ has been

investigated for a plethora of pathologies including

diseases of the heart [48], lung [49], kidney [50], brain

[51], liver [52], intestines [53], skin [54], and nervous

system [55] as well as for sepsis [56] and various

cancers [57,58]. In 2014, a clinical trial was conducted

using exosome therapy for steroid-refractory graft-vs-

host disease and showed positive results [59]. Another

study that investigated the use of exosomes as a novel

therapeutic strategy for neonatal chronic lung disease

compared their efficacy to that of a whole MSC popu-

lation [60]. The study indicated that exosomes them-

selves hold an equivalent and sometimes even superior

ability to modulate the inflammatory response. The

use of MSC derivatives for treatment holds several

advantages over the use of a live MSC population.

They can be less costly to produce and can last up to

6 months when stored at �20 °C [61]. Derivatives are

also a safer treatment option compared with whole

MSCs as there are no risks associated with mutagens

Table 1. Details of published studies investigating the therapeutic efficacy of MSC derivatives originating from four distinct necrobiology

pathways.

Authors

Mechanism/

Pathway Condition(s) of interest Results

Galleu

et al. [34]

Apoptosis Allergic airway inflammation and Graft-versus-host disease ↓ Eosinophil infiltrate in

bronchoalveolar lavage (BAL)

and

↓ Inflammatory endpoints

↑ Immunomodulation

Chang

et al. [35]

Apoptosis Sepsis syndrome induced by cecal puncture and ligation ↓ Cecal and kidney injury

↓ TNF-a

Chen et al.

[36]

Apoptosis Kidney injury induced by sepsis ↓ Kidney injury

Sung et al.

[37]

Apoptosis Lung and kidney injury induced by sepsis syndrome ↓ Lung and kidney injury

↓ TNF-a

↓ NF-jB

Gao et al.

[38]

Autophagy This study investigated generally if the activation of autophagy in MSCs

ameliorates their immunosuppressive capacity

↑ TGF-b1 secretion

↑ Immunomodulation

Yao et al.

[39]

Mitochondrial

transfer

Asthma ↓ Asthma inflammation

↓ IL-4, IL-5, IL-13

Li et al.

[40]

Mitochondrial

transfer

Airway epithelial cell damage induced by cigarette smoke in chronic

obstructive pulmonary disorder (COPD)

↓ Lung injury

Zhang

et al. [41]

Mitochondrial

transfer

Cardiomyopathy Improved heart function

Morrison

et al. [42]

Mitochondrial

transfer

Acute respiratory distress syndrome (ARDS) ↑ M2 macrophage expression

↓ TNF-a

↓ IL-8

Collino

et al. [43]

Extracellular

vesicle

derivation

Acute kidney injury ↑ Renal tubular cell proliferation

↓ Renal tubular cell apoptosis

Lai et al.

[44]

Extracellular

vesicle

derivation

Myocardial ischemia/reperfusion injury ↑ Cardioprotective effects

Li et al.

[45]

Extracellular

vesicle

derivation

Acute lung injury ↓ Oxidative stress injury

↓ Inflammatory response

Wu et al.

[46]

Extracellular

vesicle

derivation

Cutaneous injury ↑ Wnt4

↑14-3-3f protein

↑ Wound healing
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or oncogenicity. However, it should be pointed out

that there is no documented technique to isolate ‘sig-

nalosomes’ from exosomes derived from other biogenic

pathways, which may not possess the same

immunomodulatory capacity [47].

Exosomes, in general, can be isolated by several

methods. One of the most common methods is ultra-

centrifugation, although this requires costly apparatus

(for industrial scale-up) and the technique can promote

vesicle aggregation which is detrimental to the struc-

tural and metabolic integrity of the exosomes pro-

duced [62]. Milder techniques of isolation have been

described, for example, gradient density isolation and

size-exclusion chromatography. However, these tech-

niques also have issues as density-based separation

may lead to enrichment as opposed to true isolation

which may result in the presence of unwanted particles

[63,64]. Additionally, this technique does not allow for

the large-scale bioprocessing of exosomes, therefore

making it an unrealistic technique in the context of

therapy [63,64].

Fortunately, there are other MSC-derived products

that are disruptive since production technology is far

simpler and less costly than producing exosomes. Stud-

ies have been conducted indicating that cellular lysates

have a similar therapeutic benefit in the treatment of

various pathologies as compared to exosomes and

whole-cell MSCs themselves. Eleven published studies

use cellular lysate derived from mesenchymal stromal

cells from different origins to treat diverse conditions.

The studies investigate the lysate’s effect on aging [65],

erectile dysfunction [66], fulminant hepatic failure [67],

stroke [68], osteosarcoma and mammary carcinoma

[69], epilepsy [70], liver failure [71], wound healing [72],

ischemia [73], lymphoma [74], and obesity [75]. All of

the aforementioned studies except the study investigat-

ing its effects on aging demonstrated that the lysate

was able to ameliorate in vitro and in vivo models.

Recently, MSC derivative therapy has been proven

effective in treating pathologies that are autoimmune

in nature. Apoptotic MSCs have demonstrated

immunosuppressive properties in mouse models of

GVHD [38], and extracellular vesicles have improved

the symptoms associated with uveitis/uveoretinitis and

type I diabetes mellitus [76]. In addition, exosomes

have shown success in ameliorating autoimmune con-

ditions including multiple sclerosis [77], Sj€ogren’s syn-

drome [78], graft versus host disease [59], systemic

lupus erythematosus [79], and rheumatoid arthritis

[80]. These results suggest the potential use of deriva-

tives for other autoimmune conditions that lack

entirely favorable treatment regimens, such as autoim-

mune pancreatitis.

Conclusion

In conclusion, employing MSCs in the treatment of

autoimmune pancreatitis remains a promising putative

cell therapy. However, the recent emergence of a variety

of methods to produce MSC derivatives provides a

newer and simpler approach that could have significant

advantages over the use of cells themselves including

simpler production, lower regulatory barriers, and easier

systemic transport upon intravenous delivery.
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