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Abstract

Individual behaviors, such as drinking, smoking, screen time, and physical activity, can be strongly 

influenced by the behavior of friends. At the same time, the choice of friends can be influenced by 

shared behavioral preferences. The actor-based stochastic models (ABSM) are developed to study 

the interdependence of social networks and behavior. These methods are efficient and useful for 

analysis of discrete behaviors, such as drinking and smoking; however, since the behavior 

evolution function is in an exponential format, the ABSM can generate inconsistent and unrealistic 

results when the behavior variable is continuous or has a large range, such as hours of television 

watched or body mass index. To more realistically model continuous behavior variables, we 

propose a co-evolution process based on a linear model which is consistent over time and has an 

intuitive interpretation. In the simulation study, we applied the expectation maximization (EM) and 

Markov chain Monte Carlo (MCMC) algorithms to find the maximum likelihood estimate (MLE) 

of parameter values. Additionally, we show that our assumptions are reasonable using data from 

the National Longitudinal Study of Adolescent Health (Add Health).
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1. Introduction

Numerous studies have examined the role friends play in influencing behavior. Researchers 

have made extensive use of data from the Framingham Heart Study-Network Study (FHS-

Net) [1]-[3], the National Longitudinal Study of Adolescent Health (Add Health) [4] [5], and 

other datasets [6]-[9] to examine whether health behaviors such as smoking and becoming 

obese can spread between friends. However, the validity of analyses based on observational 

studies has been called into question by several authors [10] [11]. The main concern is the 

impossibility of identification of peer influence from peer selection using regression-based 

approaches [11].

In response to these concerns, the actor-based stochastic model (ABSM) was proposed by 

[12] [13]. This model employs Markov chain simulation and method-of-moments (MOM) to 
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adjust estimates of peer influence and peer selection parameters using longitudinal data. The 

underlying model is a random utility function, where the utilities are not observed. This type 

of model is the most appropriate for scenarios where an actor must make a single choice 

from a given set of choices [14], although several researchers have applied the ABSM model 

to continuous behaviors [7] [8].

In ABSM, a continuous time finite-state-space Markov process was used to model the 

dynamic relationship between social network and behaviors. Three steps describe this 

process. The first step determines when the chance for the next change will occur. Let λi
n be 

the rate of change for actor i’s network and λi
b be the rate of change for actor i’s behavior. 

Then the waiting time for the next chance of change is exponentially distributed with 

parameter λ = ∑i λi
n + λi

b . Note that the chance of change does not necessarily results in 

successful change. The second step defines which actor has the opportunity to make a 

change (either a network change or a behavior change). The probability of a network change 

taken by a particular actor i is given by λi
n/λ and the probability that this is a behavior 

change taken by actor i is λi
b/λ. At the third step there is an opportunity to make a change in 

network or behavior. If actor i is making a network change, there are n possible outcomes, 

where n is the number of actors in the network. This condition holds because for network 

changes, at most one tie difference from the current network is allowed; no network change 

is also allowed. Say, y is the current network. The next network y′ must be either equal to y 
or deviate from y exactly one element in row i. To simplify notation, for adjacent matrix y 
and indicators i = 1, 2, ···, n and j = 1, 2, ···, n, we define a mapping function c(y, i, j) that 

maps y to a new matrix y′ whose (s, t)th element yst′  equals the (s, t)th element of y, which is 

yst, when s ≠ i or t ≠ j. If s = i and t = j, there are two situations. If j = i, then yij′ = yij. If j ≠ i, 

then yij′ = 1 − yij. For actor i, let uik be the k th effect for network evolution, which is a 

function of network variable y or behavior variable z, or both. Therefore, we can write uik = 

uik(y, z) to emphasize this relationship. Then the network objective function of actor i is 

fi
n(y, z) = ∑k ∈ Kβk

nuik(y, z) where βk
n are parameters that are either given (in a simulation) or 

estimated from data (in a analysis), and  is a set of the effects of interest. The probability 

that actor i will make a network change and have a new network value y′ = c(y, i, j) is

P Y t = y′ ∣ Y t − 1 = y, Zt − 1 = z = exp fi
n y′, z

∑t = 1
n exp fi

n c y, i, t , z
. (1)

If actor i is going to make a behavior change, there are 3 possible outcomes: increase 1 unit, 

stay the same, or decrease 1 unit. Similarly, for i = 1, 2, ···, n and j = 1, 2, 3, define a 

mapping function d(z, i, j) that maps vector z to a new vector z′ whose sth element zs′ equals 

to the s th element of z, which is zs, when s ≠ i. If s = i, then zi′ = zi + j − 2 for j = 1, 2, 3. For 

actor i, let vik(y, z) be the k th effect for behavior evolution. Then the behavior objective 

function of actor i is fi
b(y, z) = ∑k ∈ Kβk

bvik y, z . The probability that actor i will make a 

behavior change and have a new behavior value z′ = d(z, i, j) is
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P Zt = z′ ∣ Y t − 1 = y, Zt − 1 = z =
exp fi

b y, z′
∑t = 1

3 exp fi
b y, d z, i, t

. (2)

In summary, the probability to change to a new set of value (y′, z′) in the next step is

P Y t − y′, Zt = z′ ∣ Y t − 1 = y, Zt − 1 = z

=

λi
n

λ × exp fi
n y′, z

∑t = 1
n exp fi

b c y, i, t , z
if z′ = z and y′ = c(y, i, j), 1 ≤ i ≤ n and 1 ≤ j ≤ n,

λi
b

λ ×
exp fi

b y′, z
∑t = 1

3 exp fi
b y, d z, i, t

if y′ = y and z′ = d(z, i, j), 1 ≤ i ≤ n and 1 ≤ j ≤ 3,

0 otherwise.

(3)

To use ABSM, the behavior variable must be bounded and discretized. For continuous 

behavior variables, such as body mass index (BMI), time spent watching television, etc., the 

process of discretizing can be arbitrary and tricky. In Section 3 (Results), we show that the 

effect of average BMI similarity can be very different for integer and categorical BMI.

Based on the above considerations, we were motivated to develop a linear-based behavior 

evolution model. In our model, the network evolution is similar to ABSM. However, the 

behavior evolution is defined by a continuous Markov process, which is completely different 

from [12] [13]. To simplify computation, we consider only a real network change as an 

“event” (instead of the opportunity of change). In addition, for behavior evolution, we 

assume normal residuals for values of change.

2. Methods

2.1. Complete and Observed Data

For illustration purpose, consider two waves of data that are collected at time 0 and T. The 

complete data during time period (0, T) include number of events k, time of events t0 = 0, t1, 

···, tk, y0, y1, ···, yk, yT = yk (or write as y0, (i(1), j(1)), ···, (i(k), j(k)), where (i(s), j(s)), 1 ≤ i(s) ≠ 

j(s) ≤ n, is the network edge changing at time ts, s = 1, ···, k), and behavior variable z0, z1, ···, 

zk, zT = zk+1. The observed data include network variables y0, yT and behavior variables z0, 

zT. All the other variables occur between observations, and thus are considered missing in 

the complete data set. The joint evolution of network and behavior is shown in the following 

flow chart:
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Here the observed data are represented in black ovals, missing behavior data in blue ovals, 

and missing network data in red ovals. The network evolution process is represented by red 

arrows and behavior variable by blue arrows.

2.2. Occurrence of Events

The number of events k during time period (0, T) follows a Poisson distribution with rate 

λT. Conditional on k, the event times t1, ···, tk has the joint probability density function

f t1, ⋯, tk ∣ k = k!/T k if 0 ≤ t1 ≤ ⋯ ≤ tk ≤ T ,
0 otherwise.

(4)

For now, we assume the chance of making a network change is the same for each actor. This 

assumption can be extended to be actor-specific if the data are informative enough.

2.3. Network Evolution

Let u(y, z) be an arbitrary vector of statistics of the graph and behavior, θ be the vector of 

coefficients, and ψ(θ) be the normalizing factor. Define δij y, z = u yij
+, z − u yij−, z , where 

yij
+ is the same as y except that the edge (i, j), yij

+
ij = 1. Likewise, yij− ij = 0. If the current 

network is y and the behavior immediately before the next event is z, the probability to 

change edge (i, j) at next event is

P change(i, j) = 1
n ·

exp 2yij − 1 θTδij y, z
∑j′ ≠ i exp 2yij′ − 1 θTδij′ y, z

. (5)

2.4. Behavior Evolution

Define ΔZ(t1, t2)=Zt2 − Zt1, the vector of behavior variable changes from time t1 to t2. For 

any time t ∈ (tu, tu+1), we propose the following co-evolution model for behavior variables

ΔZ tu, t = αW uΔZ tu, t + t − tu Xγ + εu (6)

where Wu = ()n×n is a matrix of functions of ytu, X = ()n×p is the matrix of p covariates, γ = 

(γ1, ···, γp)T is the vector of coefficients for general trend for BMI, εu = ε1
u, ⋯, εnu

T
 are all 

independent from each other or any other random variable, and εu follows a multi-

dimensional normal distribution with mean zero and variance matrix (t − tu)σ2In. Note that 

Wu represents individuals’ friendship network variables. This is saying that the change of 

individuals’ behavior is a function of friends’ behavior change. The parameter α measures 
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how strong this relationship is. In the next subsection we give an example choice of W and 

explain this function more intuitively.

Note that when t = tu, the variance of εu is zero and therefore there is no change at all; when 

t increases, the variance of εu increases, as one would expect. Equation (6) can also be 

written as

I − ΔαW u Z tu, t = t − tu Xγ + εu . (7)

Since behavior variables are accumulated over time, we would expect that when modeling 

behaviors, the distribution of change from time tu to tu+1 is consistent with a two-step 

process: first from tu to t, then from t to tu+1. In our model, this condition is naturally 

satisfied because

I − αW u ΔZ tu, tu + 1 = I − αW u Ztu + 1 − Zt + Zt − Ztu = tu + 1 − tu Xγ + εu + εt

where εu and εt are independent and both follow multi-dimensional normal distributions 

with mean zero and variances (t − tu)σ2In and (tu+1 − t)σ2In respectively, which indicates 

that εu + εt follows a normal distribution with mean zero and variance (tu + 1 − tu)σ2In. This 

is exactly what we expect. Note that in ABSM [7] [8], this condition is usually not satisfied 

for continuous behavior variables.

2.5. An Example Choice of W

As an example, assume that the i th individual’s BMI change during time (t1, t2), where 0 ≤ 

t1 < t2 ≤ T, is a linear function of the average change of BMI of his/her friends. That is,

ΔZi = α∑
j

yi, jΔZj ∑
j

yij + εi

where εi is independent of any other random variable and follows a normal distribution with 

mean zero and variance (t2 − t1)σ2. When written in matrix format:

ΔZ = αW ΔZ + ε

where W = (diag(y1+, ···, yn+))−1 y. That is, (In − αW) ΔZ = ε. We can then assume that the 

corrected behavior variables (In − αW) ΔZ follow a multi-dimensional normal distribution 

with mean 0 and variance matrix (t2 − t1)σ2In. A network effect exists if α ≠ 0.

2.6. Complete Data Log-Likelihood Function

Exponential random graph models (ERGMs) are commonly employed to test whether the 

presence of network ties (edges) differs from what would be expected in a random graph, 

given some set of network statistics [15]. In the ERGM, the parameters are η = (λ, θ, γ, α, 
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σ) with dimension = 3 + p +q, where p is the number of covariates and q is the number of 

network statistics in the ERGM. The complete data log-likelihood function is

l(η) = − λT + klog(λ) + ∑
u = 1

k
2yi(u), j(u)

u − 1 − 1 θTδi(u), j(u) yu − 1, zu − ∑
u = 1

k
log ∑

j′ ≠ i(u)
exp 2yi(u), j′

u − 1 − 1 θTδi(u), j′ yu − 1, zu

− n
2 ∑

u = 1

k + 1
log σ2 − n

2 ∑
u = 1

k + 1
log tu − tu − 1 + ∑

u = 1

k + 1
log I − αW u − 1 − ∑

u = 1

k + 1 I − αW u − 1 zu − μu
T I − αW u − 1 zu − μu

2 tu − tu − 1 σ2

(8)

where μu = (I−αWu−1)zu−1 + (tu−tu−1)Xγ.

2.7. EM Algorithm to Find MLE of Parameters

Parameter λ can be estimated directly: λ̂MLE = E (k|y0, z0, yT, zT)/T. The EM algorithm to 

estimate the other parameters can be described as follows: 1) Start from initial values η0; 2) 

E-step: calculate h(η) = Eη0 (l (η)(y0, z0, yT, zT)); 3) M-step: maximize h(η) over the 

parameter space to update η; 4) With the new value of η, repeat the E- and M-steps. Since 

the E-step cannot be calculated directly, we use Markov Chain Monte Carlo to simulate 

hidden variables R times. We evaluate the complete data log-likelihood function using 

simulated samples and obtain l1(η),⋯,lR (η). Then ℎ(η) ≈ 1
R ∑u = 1

R lu(η) For the M-step, the 

MLE of parameters (λ, γ, σ) can be written as functions of the MLE of parameters (θ, α). 

Then h(η) becomes a smoothed function of (θ, α), which can be maximized using 

computational methods. Specifically,

γMLE = R T − t0 XTX −1 ∑
v = 1

R
∑

u = 1

k + 1
XT I − αW u − 1 Δz tu − 1, tu ,

σMLE
2 = 1

n k + 1 R ∑
v = 1

R
∑

u = 1

k + 1 Au − tu − tu − 1 XγMLE
T Au − tu − tu − 1 XγMLE

tu − tu − 1
,

where Au = (I−αWu−1)Δz(tu−1,tu),

ℎ(η) = constant + ∑
v = 1

R
∑

u = 1

k
2yi(u), j(u)

u − 1 − 1 θTδi(u), j(u) yu − 1, zu

− ∑
v = 1

R
∑

u = 1

k
log ∑

j′ ≠ i(u)
exp 2yi(u)j′

u − 1 − 1 θTδi(u)j′ yu − 1, zu + Rn(k + 1)
2 log σMLE

2

+ ∑
v = 1

R
∑

u = 1

k + 1
log I − αW u − 1 .

2.8. Normal Distribution to Simulate Behavior Variable Zu

In the general multi-dimensional situation, assume that X1 ~ N (0,Σ1), X2 ~ N(0,Σ2), X1 and 

X2 are independent. Then X1 + X2 ~ N (0,Σ1 + Σ2). The distribution of X1 conditional on X 

= X1 + X2 is normal with mean In + ∑2∑1
−1 −1x and variance ∑1

−1 + ∑2
−1 −1

. In our 

situation, for u = 1,⋯, k−1, we have
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∑1 = tu − tu − 1 σ2 I − αW u − 1 I − αW u − 1 T −1

and

∑2 = ∑
ℎ = u + 1

k
tℎ − tℎ − 1 σ2 I − αW ℎ − 1 I − αW ℎ − 1 T −1

.

Here Σ2 is unknown since yh−1, h = u + 1,⋯,k are not available at time tu. To solve this 

problem, we simply ignore the variations in Wu−1, ⋯,Wk−1 and use Wu−1 to replace all the 

other W s to generate an approximate distribution. Then we use Metropolis-Hastings 

algorithm to find the acceptance ratio and adjust samples to the right distribution. Let all W s 

equal to Wu−1, Σ2 can be simplified as (T − tu)σ2((I−αWu−1)(I−αWu−1)T)−1, which is (T
−tu)/(tu−tu−1)·Σ1. Therefore, we propose to sample zu according to the normal distribution 

with mean (tu−tu−1)/(T−tu−1)·X and variance (T−tu)/(T−tu−1)·Σ1.

2.9. Sample Hidden Variables Conditional on Observed Data

Remember that the observed data are y0, z0, yT, zT and the hidden variables are k, t1,⋯tk, 

y1,⋯, yk−1, z1,⋯, zk. With known y0, the network variables y1,⋯, yk−1 can also be written as 

(i(1), j(1)), ⋯, (i(k−1), j(k−1)). With known z0, the behavior variables z1,⋯, zk can also be 

written as Δz(t0, t1),⋯, Δz (tk−1,tk). The following sampling steps will sample the above 

hidden variables conditional on y0, z0, yT, zT.

• Sample k: let d be the number of edges (i, j) such that yi, j0 ≠ yi, jT . Then it must 

follow that k = d + 2a for some a = 0,1, ⋯.

– If d is even,

P{k = d + 2a} = exp −λT λT k

k! 1 + exp −2λT
2 − ∑u = 0

d/2 − 1 exp −λT λT 2u + 2a
(2u + 2a)!

.

– If d is odd,

P{k = d + 2a} = exp −λT λT k

k! 1 − exp −2λT
2 − ∑u = 0

(d − 1)/2 exp −λT λT 2u + 2a − 1
(2u + 2a − 1)!

.

• Sample t1,⋯, tk conditional on k: ordered uniform (0,T).

• Sample (i(1), j(1)), z1,⋯,(i(k−1), j(k−1)), zk−1 conditional on others using the 

following procedure.

1. Sample Δz (t0,t1) from the following multinormal distribution, 

conditional on y0, z0, yT, zT, k, t1,⋯, tk:
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N
t1 − t0
T − t0

zT − z0 ,
T − t1 t1 − t0 σ2

T − t0
I − αW u − 1 I − αW u − 1 T −1

and evaluate the density function of the above normal distribution at the 

realized value Δz(t0,t1)′, which is denoted by q1(z′).

2. Sample (i(1), j(1)) = (i, j) conditional on k = d + 2a, y0, z1 = z0 + Δ(t0,t1):

a. Define the important list to be L = {(i1, j1),⋯, (id, jd)}, where 

yiuju
0 ≠ yiuju

T  for u = 1,⋯,d.

b. If a > 0, sample and select an edge (i, j), from all n (n−1) 

candidates with probability exp((2yij−1)θTδij(y0, z1))/Σi′≠j

′exp((2yi′j′−1)θTδi′j′ (y0, z1)). Then

– If (i, j) ∈ , delete (i, j) from , and change d to d−1.

– If (i, j) ∉ , add (i, j) to , change d to d + 1, and 

change a to a−1.

c. If a = 0, sample and select (i, j) from  with probability 

exp((2yij−1)θTδij(y0, z1))/ exp((2yi′j′−1)θTδi′j′(y0, z1)). 

Then delete (i, j) from , and change d to d−1.

d. Denote the probability from the situlation of a > 0 or a = 0 by 

r1(y′).

3. Likewise, sequentially sample Δz (t1,t2), (i(2), j(2)), ⋯, Δz (tk−2,tk−1), (i(k
−1), j(k−1)), and finally Δz (tk−1, tk), and evaluate the quantities q2(z
′),⋯,qk (z′) and r2 (y′),⋯, rk−1(y′).

4. Use the Metropolis Hastings algorithm to decide whether to accept the 

generated sample (y′, z′) or not.

The acceptance ratio is

min 1,
L(y′)q1(z)⋯qk(z)r1(y)⋯rk − 1(y)

L(y)q1(z′)⋯qk(z′)r1(y′)⋯rk − 1(y′)

where L( ) is the complete data likelihood function.

3. Results

We used the Add Health “saturation sample” data to check the reasonableness of our 

assumptions and to perform simulation studies. First, we show results based on the ABSM 

model; next we compare these results with our co-evolution model.

The Add Health saturation sample data are based on adolescents in 16 high schools where 

all students in a given school were asked to participate. There are two waves (1 year apart) 

of friendship network data, including environmental variables and self-reported height/
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weight. We focus on one school called “Jefferson High” as in [16] [17], where over 99% 

students are white. In this data set, the sample size with complete data over two waves is 

624, among which 52.7% are males. The grade levels range from 9 to 11, the average BMI is 

23.1 with SD being 4.4 and the average outdegree (number of friends named) of the network 

is 4.0 with SD being 2.1.

3.1. Results for ABSM Models

The results based on ABSM are in Table 1. The parameter of waiting time for the 

opportunity of change is λtotal = 624 × 12.29+4.17 ) = 10,271. That is, the average waiting 

time between two adjacent opportunities of change is 1/10271×36524 = 0.85 (hour). The 

overall mean of BMI is 23.10 and the average similarity score is 0.8619. The average sex 

similarity score is 0.5005 and grade similarity is 0.6598.

The estimated network objective function is

fi(y, z) = − 3.4228∑
j

yij + 2.3341∑
j

yijyji + 0.4957∑
j

yij∑
ℎ

yiℎyℎj + 0.058∑
j

yijI si = sj

+ 0.5417∑
j

yijI gi = gj + 0.3901∑
j

yij 1 − zi − zj 32 − 0.8619 .

where s represents sex, g grade, and z BMI. The estimated behavior objective function is

gi y, z = 0.1571 zi − 23.098 + 0.0144 zi − 23.098 2 13.9074∑
j

yij 1 − zi − zj 32 − 0.8619 ∑
j

yij .

For example, consider the behavior evolution for individuals who have no friends. The 

estimated behavior objective function becomes

gi y, z = 0.1571 zi − 23 + 0.0144 zi − 23 2 = 0.0144 zi − 17.5 2 + constant .

The probabilities for BMI evolution are shown in Table 2. The results indicate that for 

individuals whose BMI is greater than 17.5 there is a higher probability of an increase in 

BMI, which is consistent with the observed propensity for BMI to “track” over time [18] 

[19]. However, for individuals whose BMI is less than 17.5, the results indicate a higher 

probability of decrease in BMI; this may not be reasonable.

3.2. Validation of Assumptions in the Joint Evolution Model

Using the Add Health data for the school of Jefferson High, we can draw the histogram of 

BMI change and screen time change between these two waves (Figure 1). From Figure 1, we 

see that the normality assumption is not perfectly satisfied due to larger amount of 

observations around zero. However, the distributions are approximately symmetric, which is 

usually sufficient in a linear model if sample size is moderately large (for example, greater 

than 30).
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We also draw the scatter plot of individual’s BMI change versus average friends’ BMI 

change to check linearity assumption. The plot in Figure 2 suggest weak linear relationship 

between these two variables. Note that to draw this plot, we consider only friends who were 

nominated at both waves so that the BMI change comparison is valid. Therefore, the 

relationship shown reflect only part of the data, which contributes to the weakened linear 

relationship. These findings suggest that our assumptions are approximately satisfied.

3.3. Simulation Study

To simulate a realistic network with reasonable BMI values assigned to each individual, we 

randomly sampled 30 individuals (from the same school) in the Add Health data. The 

average BMI of selected individuals is 22.9 kg/m2. We then create an initial network using 

Bernulli graph with density = 0.3.

We specified that network and BMI would evolve for 60 days using the following 

parameters values: λ = 1, γ = 0.001, α = 0.1, σ = 0.1, and θ = (−3.42,2.33,0.50,0.39) with 

corresponding statistics of outdegree, reciprocity, transitive triplets and BMI total similarity. 

In the simulated data set, the number of network change events = 65, within which 21 edges 

change from 1 to 0 and 44 change from 0 to 1. The average BMI after 60 days is 23.6 and 

network density 0.33.

Apply the EM procedure described in Methods section, we obtained the following parameter 

estimations (Table 3). From the table, we see that some of the parameter estimates, such as 

event rate λ, network effect α, and coefficient of out degree θ1 are relatively accurate. The 

variance σ2 is underestimated. The other parameters are not significant comparing to zero. 

This suggest that our algorithm can find reliable parameter estimates for those that are 

significantly different from zero.

The explanation of the above parameters are mostly straight forward. For example, the rate 

of events λ = 1.08 indicates that on average, there is 1.08 edge change during one unit time 

(one day in this example). The coefficient of trends γ is not distinguishable from zero, 

which means that there is no significant trend of BMI increase or decrease during these 60 

days. The parameter that is of most interest is the network effect α, which is 0.12 in this 

example. This means that whenever an individual’s friends’ average BMI increases/

decreases by one unit, this individual’s BMI is expected to increase/decrease by 0.12.

3.4. Application to Real Data

Since our model cannot deal with a network as large as 624 individuals, we include only 

students in grade 11 in this application. The sample size here is 110. We first run the ABSM 

model using RSiena (Table 4). Then we fit in our joint co-evolution model (Table 5).

Compare results from Table 4 and Table 5. We found out that the results for network 

evolution are similar from both models. This is because we are using the same network 

evolution models. The different behavior models have only limited effect on the network 

evolution process. Both model suggest that there is no effect of selection or influence. That 

is, similarity in BMI does not affect the process of making friends; an individual’s friends’ 

BMI change does not affect his/her own BMI. Note that when we use the complete data of 
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624 individuals, we got significant effect of selection (p = 0.0309) and influence (p = 

0.0002). The insignificant results here are due to reduced sample size and lost information in 

missing values.

4. Discussion

We have developed a joint social network and behavior evolution model. In our model, 

behavior changes are consistent over time. That is, ΔZ and ΔZ 1 + ΔZ2 have the same 

distributions. Our model is robust to scaling of behavior variables, and parameter values are 

easy to interpret. In addition, this framework may be readily expanded to study valued 

networks.

The field of social network analysis is a relatively young field. However, useful contributions 

are being made today. The range of applications is vast, from the contagion of health 

behaviors described in this paper [20], to the study of group formations in human societies 

[21]. Further advances will require improved statistical methods (to deal with different types 

of behaviors departing from the discrete choice model), as well as more extensive empirical 

data sets incorporating social networks. Many future studies will use continuous outcome 

measures; we hope the method presented here will be valuable in extending the ABSM to 

such outcomes.

Our model does require intensive computation. However, we are confident that more 

efficient algorithms can be developed. Though our model requires specific assumptions, we 

have demonstrated that these assumptions are reasonably easy to satisfy using real data. 

Sensitivity analysis will ultimately be required to determine if our model works well when 

some of the assumptions are violated.
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Figure 1. 
The histogram of BMI change for the school of Jefferson High in Add Health data.
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Figure 2. 
The scatter plot of individuals’ BMI change versus average friends’ BMI change for the 

school of Jefferson High in Add Health data.

Tong et al. Page 14

Open J Stat. Author manuscript; available in PMC 2021 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tong et al. Page 15

Table 1

Estimated ABSM for the school of Jefferson High.

Function Estimate S.E. P value

Network dynamics

1. Rate: rate friendship 12.2900 (0.4620) <1e–4

2. Eval: outdegree (density) Σjyij −3.4228 (0.0370) <1e–4

3. Eval: reciprocity Σjyijyji 2.3341 (0.0664) <1e–4

4. Eval: transitive triplets ΣjyijΣhyihyhj 0.4957 (0.0268) <1e–4

5. Eval: same sex ΣjyijI{si = sj} 0.0580 (0.0451) 0.1984

6. Eval: same grade ΣjyijI{gi = gj} 0.5417 (0.0501) <1e–4

7. Eval: BMI similarity Σjyij(0.1381−|zi − zj|32) 0.3901 (0.1807) 0.0309

Behavior dynamics

8. Rate: rate BMI period 1 4.1708 (0.3577) <1e–4

9. Eval: BMI linear shape (zi − 23.098) 0.1571 (0.0275) <1e–4

10. Eval: BMI quadratic shape (zi − 23.098)2 0.0144 (0.0066) 0.0291

11. Eval: BMI similarity Σjyij(0.1381−|zi − zj|32) 13.9074 (3.7561) 0.0002
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Table 2

BMI evolution probabilities for individuals with no friends.

BMI −1 Same +1

14 0.000 0.522 0.478

15 0.359 0.330 0.311

17 0.340 0.330 0.330

18 0.330 0.330 0.340

30 0.224 0.316 0.460

45 0.124 0.270 0.605

46 0.309 0.691 0.000
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Table 3

MLE parameter estimations using simulated data.

Description Parameter True value MLE (S.E.)

Rate of events λ 1 1.08 (0.17)

Coeff. of trend γ 0.001 0.002 (0.004)

Network effect α 0.1 0.12 (0.03)

Standard deviation of noise σ 0.1 0.07 (0.02)

Coeff. of outdegree θ 1 −3.43 −3.72 (0.35)

Coeff. of reciprocity θ 2 2.33 1.63 (1.22)

Coeff. of transitive triplets θ 3 0.50 0.39 (0.79)

Coeff. of BMI similarity θ 4 0.39 0.71 (1.26)
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Table 4

Estimated ABSM using Jefferson High grade 11 data.

Estimate S.E. P value

Network dynamics

1. Rate: rate friendship 4.7385 (0.4698) <1e–4

2. Eval: outdegree (density) −3.0952 (0.1425) <1e–4

3. Eval: reciprocity 2.3959 (0.2244) <1e–4

4. Eval: transitive triplets 0.5471 (0.0800) <1e–4

5. Eval: same sex 0.2099 (0.1517) 0.083

6. Eval: BMI similarity 0.5425 (0.6607) 0.206

Behavior dynamics

7. Rate: rate BMI period 1 2.8444 (0.5431) <1e–4

8. Eval: BMI linear shape 0.1737 (0.0853) 0.021

9. Eval: BMI quadratic shape −0.0504 (0.0225) 0.013

10. Eval: BMI similarity 1.6567 (1.8186) 0.181
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Table 5

MLE parameter estimations using Jefferson High grade 11 data.

Description Parameter MLE (S.E.)

Rate of events λ 2.59 (1.22)

Coeff. of trend γ 0.00 (0.00)

Network effect α 0.02 (0.05)

Standard deviation of noise σ 1.20 (0.39)

Coeff. of outdegree θ 1 3.25 (0.15)

Coeff. of reciprocity θ 2 2.19 (0.38)

Coeff. of transitive triplets θ 3 0.59 (0.07)

Coeff. of BMI similarity θ 4 0.36 (0.41)
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