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Abstract

Background—Obesity is rapidly becoming a global epidemic. Unlike many complex human 

diseases, obesity is defined not just by a single trait or phenotype, but jointly by measures of 

anthropometry and metabolic status.

Methods—We applied maximum likelihood factor analysis to identify common latent factors 

underlying observed covariance in multiple obesity-related measures. Both the genetic 

components and the mode of inheritance of the common factors were evaluated. A total of 1775 

participants from 590 families for whom measures on obesity-related traits were available were 

included in this study.

Results—The average age of participants was 37 years, 39% of the participants were obese 

(body mass index ≥ 30.0 kg/m2) and 26% were overweight (body mass index 25.0 - 29.9 kg/m2). 

Two latent common factors jointly accounting for over 99% of the correlations among obesity-

related traits were identified. Complex segregation analysis of the age and sex-adjusted latent 

factors provide evidence for a Mendelian mode of inheritance of major genetic effect with 

heritability estimates of 40.4% and 47.5% for the first and second factors, respectively.

Conclusions—These findings provide a support for multivariate-based approach for 

investigating pleiotropic effects on obesity-related traits which can be applied in both genetic 

linkage and association mapping.
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Introduction

Obesity is becoming a health concern for countries across the range of economic 

development.1-10 An intensive research effort has been launched to define the social and 

biologic etiology of this public health problem; however, the practical implications for 

disease control have not yet been apparent. Modest progress is currently being made in the 

search for the genetic components of obesity. Highly consistent findings have been reported 

for the FTO gene, at least in European populations,11,12 and some analyses have supported 

a role for INSIG2.13,14 Non-replication of many other reported associations demonstrates 

that much remains to be known about the possible catalogue of the genetic factors 

contributing to obesity in humans.

Unlike many other complex human diseases, obesity is defined not just by one trait or 

phenotype, but both separately and jointly by anthropometric and metabolic variables. In 

addition to research aimed at determining the genetic determinants of each obesity-related 

measure such as height, weight, body mass index (BMI), fat mass (FM), percent body fat 

mass (PBFM), adiponectin level, resting metabolic rate (RMR), etc.,15-22 there have also 

been efforts at identifying possible genetic factors acting on more than one of these 

measures at the same time.23-27 Beyond the bi-variate approach that has commonly been 

employed in the search for pleiotropic loci, multivariate techniques such as factor analysis 

can be applied. Multivariate statistical approach provides the advantage of investigating 

common effects on an unrestricted number of traits as opposed to a bi- or tri-variate 

approach. The aim of this study was to apply maximum likelihood factor analysis technique 

to identify latent (unobserved) common factors underlying observed covariance in multiple 

obesity-related measures and then evaluate the genetic components and the mode of 

inheritance of such common factors using data on African-American families.

Methods

Study participants

Participants in this study were self-identified African-American family members recruited 

from a working class suburb of Chicago, IL. The sampling frame for this study was provided 

by the International Collaborative Study on Hypertension in Blacks (ICSHIB) and is 

described in detail elsewhere.28-31 Nuclear families were identified through middle-aged 

probands and thereafter all available first-degree relatives were enrolled into the study. 

Study protocols were reviewed and approved by the institutional review board at the Loyola 

University Chicago Stritch School of Medicine prior to all recruitment activities. Written 

informed consent was obtained from each participant. This study included 1775 adult 

participants from 590 families for whom measurements on selected obesity-related traits 

were available.

Measurements

All measurements were taken during a screening exam in a clinic setting by trained research 

staff using standardized protocols designed for the study.28 For each participant, 

information on relationship to the proband was obtained and this was used to established 
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pedigree relationships. Body weight was measured to the nearest 0.2 kg on calibrated 

electronic scales, while height was obtained using a stadiometer consisting of a steel tape 

attached to a straight wall and a wooden headboard. The headboard was positioned with the 

participant shoeless, feet and back against the wall, and head held in the Frankfort horizontal 

plane and measurement taken to the nearest 0.1 cm. Both waist circumference (WC) and hip 

circumference (HC) were measured to the nearest 0.1 cm by using inelastic tape. Body mass 

index (BMI) was calculated as the ratio of weight in kilograms to the square of height in 

meters.

Body composition was determined using bioelectrical impedance analysis (BIA), as 

described in detail elsewhere.32,33 Briefly, a tetrapolar placement of electrodes was used 

with current electrodes placed on dorsal surfaces of the right hand and foot at the distal 

metacarpals and metatarsals, respectively, and the detector electrodes placed on the pisiform 

prominence of the wrist and between the medial and lateral malleoli of the right ankle34. 

BIA measurements were then taken using a single-frequency (50 kHz) battery-powered 

analyzer (model BIA 101Q; RJL Systems, Clinton Township, MI). Total body water was 

estimated from BIA resistance measurements, weight and height by using an equation 

derived from this population.33 To obtain an estimate of fat-free mass (FFM), total body 

water was divided by a hydration standard (0.73),35 and fat mass (FM) was calculated as the 

difference between weight and FFM. Percent body fat mass (PBFM) was calculated as the 

product of FM and the inverse of weight in kilograms multiplied by 100. Body surface area 

(BSA) and resting metabolic rate (RMR) were calculated according to the formulas listed 

below. The standardized Du Bois and Du Bois36,37 formula which has been evaluated in 

similar populations24 was used for the BSA. For the RMR calculation, we used the 

predictive equation of Mifflin et al,38 viz,

BSA = 0.20247*[(height in m)0.725]*[(weight in kg)0.425]

RMR (males) = (9.99*weight in kg)+(6.25*height in cm)−(4.92*age in years)+5

RMR (females) = (9.99*weight in kg)+(6.25*height in cm)−4.92*age in years)−161

Statistical analysis

Descriptive characteristics of the study participants were calculated using the statistical 

software package SAS/STAT®, version 9.1 (SAS Institute Inc., Cary, NC). Pair-wise 

correlations of the obesity-related traits (BMI, FM, PBFM, RMR, BSA, WC, & HC) were 

estimated. To capture unobservable factors contributing to the observed correlations among 

the obesity-related traits, we performed maximum likelihood factor analysis. Factor analysis 

(FA) assumes that the observed relationships between variables as measured by their 

correlations or covariances are due to the relationships of the variables to some latent 

common variables or factors. Factor analysis enables the identification and separation of 

latent common factors and the unique factors which account for observed covariation and 

variation, respectively, among the traits. A unique factor, which is made up of a specific 

factor and errors of measurement, contributes to the variance of only one variable, whereas 

latent common factor contributes to the variance of at least two variables. Let us assume a 

set of m, variables, Y′ = [y1, y2,…, ym], linked to a finite number of unobserved latent 
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common factor, f1, f2,…, fk where k < m, then the factor analysis model to find the k latent 

common factors can be represented as

where

yij is the value of the ith observation on the jth variable

λik is the value of the ith observation on the kth latent common factor

fkj is the regression coefficient or loading of the kth latent factor for predicting the jth 

variable

eij is the jth variable's unique factor, which is similar to a residual

Although principal common factor analysis is perhaps the most popular method of common 

factor analysis, we chose to use the maximum likelihood FA because this method has the 

desirable asymptotic properties39,40 and the possibility to test hypotheses about the number 

of common factors. The inclusion of traits in the FA model was based on Kaiser's Measure 

of Sampling Adequacy41 value being greater than 0.5. The extracted factors were age- and 

sex-adjusted prior to their use in segregation analysis.

Segregation analysis

To estimate the heritability of each latent common factor as well as determine the mode of 

inheritance for each factor in our sample of African-American families, we fitted different 

hypothesis-based mathematical models and estimated all model parameters by method of 

maximum likelihood as implemented in the computer software program Pedigree Analysis 

Package for Java (jPAP).42 Depending on the hypothesis being tested, each model assumed 

an autosomal segregating locus with allele frequencies qAand 1-qA for allele A and allele B, 

respectively, at the locus. The three possible genotypes at the locus are AA, AB and BB with 

their trait means designated as μAA, μAB and μBB, and the corresponding standard deviations 

as σAA, σAB, and σBB, respectively. The transmission probability (τ) is defined as the 

probability of a parent transmitting an allele A, the putative disease allele, to an offspring 

and this is represented as τAA, τAB, and τBB for parent with genotype AA, AB or BB, 

respectively. The polygenic heritability, here defined as the residual polygenic heritability 

after accounting for the contribution of the major locus,43 was modelled and designated as 

h2.

Genetic and transmission models evaluated include sporadic, environmental, no polygene, 

general and Mendelian - codominant, additive, dominant and recessive. Details of each 

model are presented below.

Sporadic model—This model assumed no major gene, no intergeneration transmission, 

and no within-genotype variance due to polygenes (h2=0). Genotype-specific trait means 
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and, similarly, genotype-specific trait standard deviations were correspondingly estimated as 

equal to one another (i.e., μAA=μAB=μBB and σAA=σAB=σBB).

Environmental model without generation effects (τ = qA)—This model assumes 

independence of offspring genotypes from parental genotypes without major gene, and 

transmission probabilities are all equal to the frequency of the disease allele irrespective of 

the genotypes (τAA = τAB = τBB = qA). In this model, population heterogeneity is assumed 

by allowing the genotype-specific effects to differ from one another.

No polygenic model—In this model a major gene segregating without other polygene 

effects is assumed (i.e., h2=0). The putative disease allele frequency, transmission 

probabilities, genotype-specific trait means and standard deviations are all estimated without 

any constraint.

Mendelian models—The models assume Mendelian transmission under the assumption 

of Hardy-Weinberg equilibrium. Under this assumption, the probability distributions for the 

three putative genotypes are then p2, 2pq and q2. The transmission probabilities for AA, AB, 

and BB genotypes are therefore fixed at 1.0, 0.5, and 0.0, respectively. Contribution from 

polygenes is assumed and hence heritability is estimated along with allele frequency, 

genotypic means and standard deviations. The effects of the three genotypes are assumed to 

be independent under a codominant model. In an additive model, the effect of the disease 

allele is assumed to be additive such that the effects of all three genotypes are different and 

can be ordered as AA > AB > BB (genotypic effect increases with increasing number of the 

disease allele A). The effect of genotype AB is also assumed to be centered mid-way 

between genotypes AA and BB. The transforming growth factor type beta-1 (TGFB1)44 is 

an example of autosomal additive Mendelian gene. The dominant model assumes the effects 

of the two disease-allele carrying genotypes AA and AB are the same (AA = AB) and 

different from that of the BB genotype. An example is the coloboma-obesity-

hypogenitalism-mental retardation syndrome.45 In the recessive model, the genotypic 

effects of BB and AB are assumed to be the same and different from that of the AA 

genotype.

General model—This model makes no assumption about the disease allele frequency at 

the putative locus or the genotypes and their corresponding effects or transmission. All 

parameters are set to be free and allowed to adjust to the empirical data thereby providing 

the best fit to the data. The general model serves as baseline for other models with one or 

more constrained parameters in the likelihood ratio tests.

Results

Descriptive statistics

A total of 1775 adult participants from 590 families for whom measurements on obesity-

related traits were available were included in this study. Table 1 presents the characteristics 

of the study participants. Women were significantly older than the men (38.0 and 35.4 years 

for women and men, respectively). The women were also significantly heavier (BMI: 30.4 

vs. 27.0 kg/m2), had higher fat mass and percentage body fat mass (FM: 35.0 vs. 23.1 kg; 
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PBFM: 41.0 vs. 25.6 %), and larger hip circumference (HC: 111.6 vs. 104.5 cm) than the 

men. However, the men on average had significantly higher resting metabolic rate and body 

surface area (RMR: 1772 vs. 1486 Kcal/d; BSA: 2.0 vs. 1.9 m2). There was no significant 

difference in waist circumference between men and women. Furthermore, the distribution of 

BMI in the entire study sample of women and men showed that 39% and 26% of the 

participants were obese (BMI ≥ 30.0 kg/m2) and overweight (BMI 25.0 - 29.9 kg/m2), 

respectively.

Identification and extraction of latent common factors

The maximum likelihood factor analysis procedure was used to identify latent factors 

common to the obesity-related quantitative measures. Since factor analysis is a multivariate 

statistical technique used to identify latent (unobserved) factors underlying observed 

correlations among measured variables, the correlations among the seven obesity-related 

traits in this study were first estimated and are presented in the lower triangle of Table 2. 

The high correlations between these traits provided justification for their inclusion in the 

factor analysis. Kaiser's Measure of Sampling Adequacy (MSA) for individual trait (Table 3, 

second column) showed that none was at an unacceptable level for retention in the analysis.

Likelihood ratio tests of hypotheses about the number of common factors indicated that two 

factors sufficiently explained the observed co-variation among the traits. A model of two 

factors was subsequently fitted to the data and the first factor (Factor1) explained 86% of the 

observed covariance of the traits, while the second factor (Factor2) explained the remaining 

14%. The proportion of variance in each trait accounted for by Factor1 and Factor2 are 

presented in the last three columns of Table 3. The two factors jointly accounted for more 

than 78% of any trait-specific variance.

The partial correlations controlling for the effects of Factor1 and Factor2 are presented in 

the upper triangle of Table 2. The correlations showed that the two factors together captured 

mostly the positive co-variances in the selected obesity-related traits. The individual trait 

loadings or regression coefficients on the two factors indicated that Factor1 represented a 

latent common factor contributing to the observed covariance in BMI, FM, PBFM, WC and 

HC; while Factor2 represented a latent common factor underlying the observed covariance 

in RMR and BSA (Figure 1). Prior to the segregation analyses, the effects of age and sex on 

the extracted Factor1 and Factor2 were adjusted for in fitted polygenic models. The 

residualized Factor1 and Factor2 were then used in segregation analysis.

Segregation analysis results

The segregation analysis results for Factor1 and Factor2 are shown in Tables 4 and 5, 

respectively. No proband adjustment was carried out since study families were not 

ascertained through a proband defined on a trait related to obesity. The tables present the 

maximum likelihood estimates of the model parameters, −2lnL values, Akaike Information 

Criterion (AIC) values, χ2 values, degrees of freedom, and the respective p-values for the 

different hypotheses examined for each trait (latent factor). For each trait, eight genetic 

models were fitted, namely, sporadic, Mendelian, dominant, recessive, additive, no polygene 
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(major gene only), environmental, and general. The first seven models on the list are nested 

in the general and thus each of them was compared to the general model.

First we tested the hypothesis of no major effect by comparing the sporadic model with the 

general model. The null hypothesis of “no major effect” was rejected for both Factor1 

(χ2=245.51, 8 df, p <0.001) and Factor2 (χ2=215.78, 8 df, p <0.001). The hypothesis of “no 

transmission of major effect” was next assessed by comparing the environmental model, i.e., 

a model that assumes independence of offspring genotypes from parental genotypes, with 

the general model in which all transmission probabilities were estimated. This hypothesis 

was rejected for both traits (χ2=11.94, 3 df, p=0.008 for Factor1; χ2=30.43, 3 df, p <0.001 

for Factor2). Having rejected the null hypotheses of “no major effect” and “no transmission 

of major effect”, the hypothesis of “no polygene effects” was consequently tested by 

comparing the model in which heritability was not estimated with the general model. Again, 

the null hypothesis of no polygene effects for the two factors could not be supported (p 

<0.001). Finally, the hypothesis of “Mendelian transmission” was assessed for both traits by 

comparing a set of Mendelian models (codominant, dominant, recessive, and additive) in 

which the transmission probabilities were fixed (τAA=1.0, τAB=0.5, τBB=0.0) with the 

general model in which transmission probabilities were estimated along with other 

parameters.

As shown in Table 4, the hypothesis of Mendelian transmission could not be rejected for 

Factor1. To determine the best fitting Mendelian model for Factor1, all the Mendelian 

models were compared with each other using the AIC values since the models were non-

hierarchical. The Mendelian Additive model had the least AIC value and was judged the 

best fitting among all the Mendelian models fitted to Factor1. This implies that the 

inheritance of Factor1 follows additive mode with heritability of 40%. The estimate of the 

putative allele frequency of the segregating genetic effect indicated a common gene with 

allele frequency equal to 64%. Similarly, when compared with the general model, none of 

the Mendelian models could be rejected at a significance level of 0.01 for Factor2. The 

inspection of the AIC values showed that the Mendelian dominant model with the least AIC 

provided the best fit (Table 5), implying that the inheritance of Factor2 follows a dominant 

mode. Maximum likelihood estimates for the allele frequency was 34% and the heritability 

was 48%.

Discussion

We have performed maximum likelihood factor analysis using seven obesity-related traits 

measured on 1775 participants from 590 African-American families. The purpose of our 

study was to use multivariate statistical technique to identify unobserved common 

underlying factors contributing to the observed correlations among obesity-related traits, and 

to determine the extent to which genetics plays a role in and the mode of inheritance of such 

factors.

The high correlations between the traits and their individual sampling adequacy measures 

underscored the suitability of the multivariate analytical technique used in this study. Using 

factor analysis approach, we were able to separate unobserved common factors that 
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influence these traits collectively from those factors unique to each trait and thus separately 

influenced the individual trait variances. By implication, the genetic component of such 

latent factors can be referred to as pleiotropic, since the latent factors are components of 

multiple traits. To capture the full range of genetic factors underlying correlation among 

traits, a number of multivariate methods have been proposed and eventually applied to 

linkage and association mapping46-49. Multivariate methods are consistently more powerful 

than single-trait methods for gene mapping50-53. In addition to providing the strategy for 

dimension reduction, the multivariate approach used in this study provides the flexibility to 

study correlated traits jointly, and identify and extract latent factors contributing to the traits 

collectively. The latent factors extracted from the correlated traits provide the opportunity to 

map pleiotropic factors influencing the expression of the traits. An advantage that arises 

from using latent factors over a single-trait is the ability to localize pleiotropic loci. With the 

exception where, in addition to being pleoitropic, a locus also influences a trait's unique 

expression, use of single-trait linkage and association mapping may well fail to detect these 

pleiotropic loci.

We recognize that results of latent factor analysis could be difficult to interpret biologically, 

especially when these factors are extracted from many traits. This difficulty often arises 

from both determining how many factors are appropriate and how to interpret the trait's 

loadings-also referred to as the traits' beta coefficients on each factor. The method of 

maximum likelihood factor analysis used in this study provides an easy means of deciding 

the appropriate number of factors because the method makes it possible to test hypotheses 

about how many best fits the data. In essence, hypotheses about different numbers of factors 

can be tested, and from inferences based on likelihood ratio test, the number of factors that 

best fits the data is identified. Some other rules not based on statistical inference also exist 

that can be used in determining the appropriate number of factors. These include the 

“Guttman-Kaiser Criterion” that involves extracting the number of factors with eigenvalues 

greater than unity54, extracting as many factors as required to explain a specific percentage 

of the variance in the traits, and the use of the Scree55 plot to identify the number of factors 

corresponding to the last eigenvalue before they start to level off. Likewise, to overcome the 

difficulty in interpretation, rotated factor loadings are often used instead of the unrotated. 

Rotation involves shifting the factors in the factor space so as to maximize the interpretation 

of the loadings on the factors. Depending on whether the latent factors can be assumed to be 

correlated or uncorrelated, the oblique or orthogonal method can be employed, respectively, 

to accomplish the factor rotation.

For a complex human disorder such as obesity, it is known that environmental and genetic 

factors plus their interactions play a coordinated role. In the absence of molecular genetic 

markers, heritability estimates provide information on the proportion of the total variances 

of a trait that can be attributed to genetic components. In the present study, the heritability 

estimates of 40% and 48% for the first and second latent factors, respectively, were an 

indication of high genetic components in the two factors. Our results also showed that the 

segregation of the genetic component of the first latent factor for these obesity traits is 

consistent with Mendelian additive mode of inheritance while that for the second factor is 

significantly consistent with dominant mode of inheritance.

Tayo et al. Page 8

Int J Obes (Lond). Author manuscript; available in PMC 2010 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Given the complex nature of obesity both in terms of phenotype definition and 

measurement, it is less surprising that the two latent factors reported in this study differ in 

their mode of inheritance. However, we anticipate that inclusion of data on molecular 

genetic marker in this type of analysis would provide further insight to the pleitropic effects 

on obesity in this population. We recognize the limitations of this study arising from the lack 

of molecular data, but our findings provide strong support and justification for such a 

desired independent follow-up study with molecular data. Overall, we have applied 

multivariate analytical technique to identify common latent factors with pleitropic effects on 

obesity-related traits, and have also reported the mode of inheritance of these factors to be 

under the influence of major effect in African-American families.
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Figure 1. 
Pattern of Factor1 and Factor2 loadings for the seven obesity traits. Factor1 displayed high 

loadings on BMI, FM, PBFM, WC and HC; while Factor2 is marked by high loadings on 

RMR and BSA.
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Table 1

Descriptive characteristics¶ of participants

Women (n=1122) Men (n=653) All (n=1775)

Age (years) 38.04±15.44 35.44±13.52 37.08±14.81

BMI (kg/m2) 30.36±8.10 27.03±6.46 29.13±7.71

FM(kg) 34.97±15.94 23.07±13.89 30.59±16.26

PBFM (%) 40.99±8.72 25.55±9.00 35.31±11.55

RMR (Kcal/d) 1486.09±231.97 1771.65±231.90 1591.15±269.71

BSA (m2) 1.86±0.23 1.99±0.24 1.91±0.24

WC (cm) 91.54±17.31 90.91±16.29 91.30±16.94

HC (cm) 111.63±15.81 104.48±12.46 109.00±15.06

Abbreviations: BMI, body mass index; FM, fat mass; PBFM, percent body fat mass; RMR, resting metabolic rate; BSA, body surface area; WC, 
waist circumference; HC, hip circumference.

¶
Values are significantly different between women and men except for WC
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Table 2

Adjusted and unadjusted correlations¶ between obesity traits

BMI FM PBFM RMR BSA WC HC

BMI 0.008 −0.366 −0.066 −0.214 0.413 0.379

FM 0.942 0.047 0.028 −0.016 −0.064 −0.044

PBFM 0.768 0.886 −0.035 0.158 −0.103 −0.088

RMR 0.579 0.534 0.158 0.033 −0.146 −0.085

BSA 0.728 0.726 0.416 0.917 0.179 0.032

WC 0.884 0.845 0.640 0.655 0.800 0.277

HC 0.933 0.933 0.775 0.593 0.757 0.864

Abbreviations: BMI, body mass index; FM, fat mass; PBFM, percent body fat mass; RMR, resting metabolic rate; BSA, body surface area; WC, 
waist circumference; HC, hip circumference.

¶
Values in the lower triangle are unadjusted correlations, and those in the upper triangle are correlations adjusted for effects of Factor 1 and 

Factor2.
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Table 3

Traits sampling adequacy and percentage variance of traits explained by both Factor1 and Factor2

Kaiser's Measure of Sampling Adequacy
Percent variance explained by

Factor1 Factor2 Both Factors

BMI 0.832 89.43 0.37 89.81

FM 0.782 99.72 0.13 99.85

PBFM 0.716 76.02 16.75 92.77

RMR 0.712 31.76 65.91 97.67

BSA 0.788 56.12 36.97 93.08

WC 0.921 73.08 5.09 78.17

HC 0.961 87.98 0.72 88.70

Abbreviations: BMI, body mass index; FM, fat mass; PBFM, percent body fat mass; RMR, resting metabolic rate; BSA, body surface area; WC, 
waist circumference; HC, hip circumference.
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