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Abstract: Intestinal enteroendocrine cells (EECs) respond to fatty acids from dietary and microbial
origin by releasing neurotransmitters and hormones with various paracrine and endocrine functions.
Much has become known about the underlying signaling mechanisms, including the involvement of
G-protein coupled receptors (GPCRs), like free fatty acids receptors (FFARs). This review focusses on
two more recently emerging research lines: the roles of odorant receptors (ORs), and those of fatty
acid conjugates in gut. Odorant receptors belong to a large family of GPCRs with functional roles
that only lately have shown to reach beyond the nasal-oral cavity. In the intestinal tract, ORs are
expressed on serotonin (5-HT) and glucagon-like-peptide-1 (GLP-1) producing enterochromaffin and
enteroendocrine L cells, respectively. There, they appear to function as chemosensors of microbiolog-
ically produced short-, and branched-chain fatty acids. Another mechanism of fatty acid signaling in
the intestine occurs via their conjugates. Among them, conjugates of unsaturated long chain fatty
acids and acetate with 5-HT, N-acyl serotonins have recently emerged as mediators with immune-
modulatory effects. In this review, novel findings in mechanisms and molecular players involved in
intestinal fatty acid biology are highlighted and their potential relevance for EEC-mediated signaling
to the pancreas, immune system, and brain is discussed.

Keywords: olfactory receptor; 5-HT; GLP-1; enteroendocrine; enterochromaffin; gut; N-acyl sero-
tonines; short chain fatty acids; microbiota

1. Introduction

Fatty acids from our diet and those produced by the intestinal microbiota are not only
pivotal as an energy source and molecular building blocks, but also serve as signaling
molecules in many biological processes, either directly or via their metabolites. Throughout
the gastrointestinal (GI) epithelium, fatty acids and their derivatives are recognized by
specialized enteroendocrine cells (EECs) mainly via G-protein coupled receptors (GPCRs).
Activation of these receptors triggers the release of peptide hormones and neurotransmit-
ters that exert many key functions to control gut metabolism and beyond [1]. In recent
years, much has been learned about the diverse signaling cascades and mechanisms that
convey information resulting from chemosensing of fatty acids and other nutrients to the
brain, pancreas, immune system, and other tissues.

This review describes evolving research pointing at the significance of odorant recep-
tors (ORs) as fatty acid sensors and at the potential role of fatty acid conjugates, both as
part of the intestinal enteroendocrine signaling cascade. The GPCR subfamily of odorant
receptors was originally considered of interest only for oral-nasal perception of volatile
compounds. Meanwhile, it has become clear that functional ORs are expressed in many
non-olfactory tissues including testis, prostate, kidney, adipose tissue, muscle, skin, hair,
immune cells, heart, pancreas [2–8], and the GI tract [9–15]. Here, they play a role in diverse
physiological processes varying from sperm chemotaxis, modulation of cancer cell prolif-
eration, blood pressure regulation and immune cell migration to adiposity, gut hormone
release, and modulation of energy- and insulin metabolism [3,5,9,14,16–22]. Throughout
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the body they act as chemosensors for endogenous molecules that have only partly been
identified thus far. Emerging evidence suggests that within the intestine, ORs can recog-
nize nutrients and microbial metabolites, such as short chain fatty acids (SCFAs), medium
chain fatty acids (MCFAs), as well as branched chain fatty acids (BCFAs), and modulate
glucagon-like-peptide-1 (GLP-1) and serotonin (5-HT; 5-hydroxytryptamine) signaling by
EECs. Interestingly, the OR subfamily of GPCRs is amongst the largest in our genome [23]
and most ORs are still classified as orphan receptors [24]. This holds particularly true for
the GI tract, where only a limited number has been characterized.

Next to fatty acids themselves and their oxygenated derivatives, several of their esters
and conjugates with amines have been discovered as an important group of signaling
molecules throughout the body [25–30]. These include the well-known group of the N-
acyl-ethanolamides [31–36] and 2-acyl glycerols [37], of which several are classified as
endocannabinoids. More recently, fatty acid conjugates with serotonin (5-HT) emerged as a
class of molecules with immune-modulatory and anti-oxidant effects [38,39]. Of these, the
5-HT acyl-conjugates with long chain fatty acids (LCFAs) are present in the GI tract and the
available evidence points towards a role in modulating immune responses and relevance
for inflammatory pathologies of gut [40,41]. In relation to these lines of research, specific
attention is paid to the central role of serotonin. Despite its versality, it is remarkable that
so many knowledge gaps remain regarding the physiology of serotonin in the gut.

2. Intestinal Enteroendocrine Cells and Their Main Products

The gastrointestinal tract consists of an epithelial lineage of different cell types that can
be distinguished based on their functionality. The EECs comprise only 1% of the intestinal
lineage, but together they form one of the largest endocrine tissues of the body [42,43].
Enteroendocrine cells produce over 20 different gut hormones bearing diverse roles, which
are still far from fully understood [44,45]. Among these, probably the best studied are
GLP-1 and glucose-dependent insulin tropic polypeptide (GIP), both incretin hormones
involved in the induction of glucose-dependent insulin secretion from pancreatic cells
in response to nutrients [1,46–48]. Two other key hormones that play important roles in
GI physiology are cholecystokinin (CCK) and plasma peptide YY (PYY; peptide tyrosine
tyrosine). CCK exerts diverse physiological functions; it stimulates the release of bile acids
and pancreatic enzymes, enhances gut motility, reduces food intake, and is involved in
lipid transport [49–51]. PYY plays a role in appetite regulation but emerging evidence also
points to a prominent role in pancreatic functioning [52]. EEC subtypes are distinguished
and traditionally classified based on their location and main secretory hormones [44].
The composition of hormones released varies along the proximal to distal GI tract, being
high for CCK and GIP in the proximal parts, whereas GLP-1 and PYY are predominantly
produced in the distal ileal and colonic GI tract [44,53]. Accumulating evidence based on
both transcriptome profiling as well as protein studies in mice shows overlapping patterns
of hormone secretion and expression by the different subtypes, suggesting that the current
classification is not fully accurate and likely far more complicated [54–61].

A somewhat distinct enteroendocrine cell is the serotonin producing enterochromaffin
cell (EC), which in the small intestine co-expresses, although to a lesser extent, GLP-1
and CCK, in addition to 5-HT [58]. Its expression profile is dominated by Tph1, coding
for tryptophan hydroxylase 1 (TPH1), the enzyme responsible for 5-HT production in
ECs [62]. Enterochromaffin cells make up a large part of the total EEC population in the
GI tract (SI) and are the most abundant EEC sub cell type in the colon [61,63]. Serotonin,
of which more than 95% of the total body production originates from the intestinal tract,
is involved in diverse physiological functions like intestinal motility, platelet function,
energy metabolism, and immune modulatory processes [64]. Additionally, ECs have been
suggested to act as sensors for irritants conveying information on pain via the gut brain
axis by serotonergic (calcium) signaling [12].

EECs release peptide hormones by activation of nutrient sensing GPCRs expressed
on their surface. EECs express GPCR taste receptors for sweet (TAS1R2-TAS1R3), umami
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(TAS1R1-TAS1R3), bitter (TAS2R family), and fat (FFAR1 (GPR40), FFAR2 (GPR43), FFAR3
(GPR41), FFAR4 (GPR120)) and GPR119 [65–68]. Besides, more recently the functional
relevance of EEC-expressed chemosensors belonging to the G-protein coupled olfactory
receptor gene family (with individual receptors named OR for human and Olfr for mice)
has been evidenced [8,69].

3. Diet-Derived Bioactive Fatty Acids in the Gut
3.1. Digestion and Microbial Production of Diet-Derived Bioactive Lipids in the Gut

Dietary fat consists predominantly of triacylglycerols (TAGs) and accounts for 90%
to 95% of the total energy derived from fat in the diet. Digestion of TAGs takes place
in the upper part of the jejunum by activity of pancreatic lipase, resulting in the release
of 2-monoacylglycerols (2-MAG) and free fatty acids (FFAs) [70]. Long chain fatty acids
(LCFAs), which carry a C-atom tail of 12 or more, are taken up by protein facilitated
transfer by the membrane-bound glycoprotein CD36 and fatty acid binding protein 5
(FABP5), or by passive diffusion [70]. Once inside the enterocytes, they are re-esterified
and packaged into chylomicrons and further transported via the lymphatic system to the
blood circulation [70,71]. The mono-unsaturated LCFA, oleic acid, a main constituent of
olive oil, is also converted by enterocytes into the lipid messenger oleoyl ethanolamine
(OEA) (see Section 3.3). The main dietary polyunsaturated LCFAs, linoleic acid (18:2n-6),
α-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3), and docosahexaenoic
acid (DHA; 22:6n-3) are essential fatty acids and should be obtained from the diet. They
cannot be formed in mammals as they lack enzymes to insert a double bond in the n − 6
or n − 3 position [32,72,73]. ALA is present in substantial quantities in vegetables, nuts,
flaxseed (linseed), and some vegetable oils, while DHA and EPA can be mostly found in
fatty fish [32,71,74]. Although EPA and DHA can be formed out of ALA, their formation
is, particularly in adults, very limited [75]. Medium chain fatty acids (MCFAs), which by
definition consist of 6 C to 12 C atoms, are present at low concentrations in butter, milk,
yogurt, and cheese, but can be found more abundantly in coconut oil and palm kernel
oil [71]. Medium chain fatty acids and short chain fatty acids (SCFAs) seem to directly pass
the mucosal membrane and enter the blood stream via intestinal capillaries [68,76].

The intestinal microbiota mainly resides within the distal part of the GI tract where it
interacts with the intestinal epithelial layer. Short chain fatty acids, which are saturated
aliphatic acids with fewer than six carbon atom tails [68], are primarily formed by the
microbiota of the colon after fermentation of undigestible carbohydrates and dietary fibers,
although ileal flora also accounts for a small percentage of SCFA production in the gut.
Particularly butyrate, but also propionate and acetate exert diverse pivotal physiological
roles. Butyrate serves as primary fuel for intestinal colonocytes, and has anti-inflammatory
and anti-carcinogenic properties [77]. It is present at micromolar concentrations in the
intestinal lumen and utilized locally, in contrast to propionate and acetate, which drain
into the portal vein [77]. Propionate is metabolized by the liver and thought to be in-
volved in keeping blood pressure balance [5], while acetate circulates in blood and is
able to cross the blood brain barrier [77]. Branched chain fatty acids (BCFAs), such as
isobutyrate, 2-methylbutyrate, and isovalerate can be formed as a result of protein fermen-
tation, in particular in situations where there is a shortage of dietary fibers, e.g., with low
vegetable intake.

3.2. Fatty Acid Sensing Receptors Expressed on EECs and ECs

Free fatty acids (FFA) interact with FFA-sensing GPCRs expressed on EECs scattered
throughout the epithelial lining [66]. The different free fatty acid receptors (FFARs), FFAR1-
4, show ligand specificity dictated by the aliphatic chain length of the FFA-carbon tail, albeit
some partial overlap exists particularly for fatty acids with long carbon atom tails [68,71].
FFAR1 and FFAR4 respond mainly to LCFAs, while FFAR2 and FFAR3 sense SCFAs. To
be more detailed, FFAR1 (GPR40) responds to MCFA and particularly to LCFAs, thereby
displaying IC50 values in the low micromolar range. In humans, FFAR1 exerts the highest



Molecules 2021, 26, 1416 4 of 22

sensitivity for omega-3- and omega-6 unsaturated LCFAs (particularly DHA and EPA),
oleic acid, and the saturated fats lauric acid, myristic acid, and palmitic acid [68]. FFAR4
(GPPR120) seems more specific for unsaturated LCFAs, displaying the lowest IC50 values
for linoleic acid (18:2n-6), α-linolenic acid (ALA, 18:3n-3), γ-linolenic acid (C18-3n:6), and
palmitoleic acid (C16:1n-7) [68].

The SCFA butyrate is a ligand for the niacin/butyrate receptor GPR109A, while acetate
and propionate particularly activate FFAR2 (GPR43). Butyrate also activates FFAR2, but
in humans its potency is less compared to that of acetate and propionate [68]. Out of the
SCFAs, valerate is the most potent ligand for FFAR3 (GPR41).

Recently, members of the olfactory GPCR subfamily, namely Olfr78/OR51E2 and
Olfr558/OR51E1 have been identified as sensors for SCFAs and/or BCFAs in the gut.
Olfr78 (mouse) and OR51E2 (human) were found to be responsive to propionate and
acetate [5,78] and Olfr78 was shown to detect physiological concentrations of lactate [79].
Although Olfr78 seems far less sensitive to propionate and acetate compared to FFAR2, it
has been indicated to be of physiological significance [5]; see Section 5.1). Interestingly,
identification of biologically relevant ligands for OR51E2, which was also found to be a
key marker for prostate cancer, revealed that out of the 2500 virtually screened and sub-
sequently 55 experimentally validated compounds [16], several endogenous compounds
could activate OR51E2. Out of these, palmitic acid and N-acetyl glutamic acid seem of
particular interest for EEC signaling.

Olfr558 (mouse) responds to the branched chain fatty acid bacterial metabolites iso-
valeric acid, and to a much lesser extent to isobutyrate and butyrate [12]. Out of a screen-
ing of 5000 compounds, the human orthologue of Olfr558, namely OR51E1 (also called
Dresden(D)-GPCR), displayed the highest sensitivity for 3- and 4- methyl-valeric acids
and lower sensitivity to valeric acid, isovaleric acid, and 2-methyl-valeric acid [80]. Addi-
tionally, nonanoic acid has also been found to be a ligand for OR51E1, exhibiting similar
potency as isovaleric acid [81]. Interestingly, Adipietro et al. [82] compared a number of
human ORs with their orthologues in primates and mouse and revealed that although
the ligand profile can be similar, the potency and efficacy frequently differs dramatically
between the different orthologues [82]. Table 1 summarizes the known ligand profiles of
GPCRs expressed on EECs and ECs that interact with free fatty acids.

The canonical signal transduction cascade in the olfactory system comprises the Gαolf
protein that is activated upon specific ligand stimulation of ORs. Further downstream
signaling involves the subsequent stimulation of adenylyl cyclase III (ACIII; also known as
ADCY3), which is followed by a rise in cytoplasmic cAMP levels and a successive influx
of sodium (Na+) and calcium (Ca2+) by opening of nonspecific cation- selective cyclic
nucleotidegated (CNG) channels [8]. Studies in ECs in intestinal organoids and pancreatic
α-cells report the involvement of the Gαolf/s-adenylyl cyclase signaling cascade for fatty
acid-induced 5-HT secretion and azelaic acid (nonanedioic acid)-mediated glucagon secre-
tion, respectively [12,22]. However, alternative signaling cascades have been indicated for
olfactory chemosensing in non-oral nasal tissues as well [8,20,21].

3.3. Oleoyl Ethanolamine, a Bioactive Lipid Conjugate with a Key Physiological Role in the Gut

Fatty acid conjugates are known to act as signaling molecules in a plethora of physi-
ological processes. Amongst them, the class of fatty acid conjugates with ethanol amine,
the fatty acid ethanolamides (FAEs), is now widely recognized for its diverse biological
functions. In the GI tract, the oleic acid-derived constituent, oleoyl ethanolamine (OEA), is
particularly documented for its pronounced effects, including those acting via the gut-brain
axis [33]. OEA has been shown to enhance satiety by prolonging meal intervals. This effect
is dependent on luminal levels of its fatty acid precursor oleic acid in the proximal GI
tract [31]. Cellular uptake of oleic acid by small-intestinal enterocytes is facilitated by the
membrane bound glycoprotein CD36, whereafter oleic acid is firstly converted to N-oleoyl-
phosphatidylethanolamine (NOPE), a member of the N-acylphosphatidylethanolamine
(NAPE) family of membrane phospholipids, and finally to OEA [31,83]. Numerous inves-
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tigations in both animals and man have gained substantial evidence that OEA exerts its
anorectic effects via the nuclear receptor peroxisome proliferator-activated receptor alpha
(PPARα) [31,84], through which it additionally enhances energy expenditure and reduces
fat mass [85]. OEA signaling via the gut-brain axis mainly takes place via afferent vagal
fibres. It seems that in the central nervous system (CNS), histamine and neuropeptide oxy-
tocin are involved in further conveying of OEA-induced satiating effects [84]. Interestingly,
OEA modulates also dopaminergic neuronal reward circuits; CNS dopamine release was
found to be disturbed in obese animals and could be restored by adding OEA [86]. OEA is
also a low micromolar ligand for the G-protein coupled receptor, GPR119, which seems
to be expressed both on the luminal and basolateral side of EECs [1,86]. GPR119 is also
activated by the ester of oleic acid with glycerol, 2-oleoyl-sn-glycerol (2-OG) by 2-MAG and
many other lipid conjugates (see Table 1) [87]. Although still far from understood, it is now
thought that GPR119 acts as a luminal sensor of ingested fat only, as in GPR119 knockout
(KO) animals, OEA-induced satiety was not altered [88]. GPR119 is also expressed in
pancreas and in hepatocytes and seems to reduce obesity-induced NASH in the liver.

4. The Fatty Acid-GLP-1-Pancreas Triangle
4.1. Fatty Acid Signaling by Enteroendocrine L Cells

The distally located classical enteroendocrine L-subtype predominantly expresses
GLP-1 aside to PYY and oxyntomodulin (OXM) [1]. GLP-1 and PYY are secreted by
enteroendocrine L-cells upon stimulation of dietary nutrients or microbial metabolites.
Intestinal produced GLP-1 exerts its function both in an endocrine and paracrine way.
GLP-1 that reaches the blood circulation induces insulin release from the pancreas but
only in the presence of orally induced glucose, which is generally referred to as incretin
effect [46]. In addition, GLP-1 is known to regulate gastric emptying and influence food
intake, effects likely mediated via afferent nerve fibers.

Knockout studies in mice that specifically abrogated distally produced GLP-1 demon-
strated that circulating GLP-1 originates for 90% from the distal GI tract and functions in
the regulation of pancreatic insulin release and gastric emptying [47]. Although animal
data cannot be fully translated to humans and the precise role of GLP-1 in humans is still
not fully elucidated, the relevance of intestinal produced GLP-1 for insulin regulation
in humans is underscored by the success of GLP-1 based drugs in clinical settings with
diabetic patients [1].

Numerous studies have contributed to the view that SCFAs of gut microbial origin can
induce GLP-1 release from enteroendocrine L cells. Particularly, KO studies in mice have
provided evidence that FFAR2 and to a lesser extent FFAR3 is involved in this signaling [89].
Next to FFAR2 and FFAR3, FFAR1 and FFAR4 have also been shown to be involved in
GLP-1 signaling [90,91]. FFAR1 and FFAR4 sense MCFAs and poly unsaturated long
chain fatty acids. Besides, many other GPCRs, like GPR119, have been shown to induce
GLP-1 release from EECs. It is thought that in the proximal GI tract, some GPCRs (FFAR1,
GPR119) are located at the basolateral side of the membrane of EECs, and not luminally as
traditionally assumed, where they are stimulated by FFAs that have been first absorbed
by enterocytes and subsequently released by chylomicrons [92,93]. In this way they might
inform the body about the presence of high energy nutrients. As FFA signaling via GPCRs
including FFARs is the topic of several excellent recent reviews, including but not limited
to [1,68], in this context, particularly new developments in the field of OR signaling will be
further highlighted.

4.2. Microbial-Metabolite OR Sensing in GLP-1/PYY Signaling

In light of the EEC/GLP-1 pancreatic signaling axis, emerging evidence points to
the potential relevance of chemosensing via receptors belonging to the GPCR subfamily
of odorant receptors. Amongst OR genes in colon, OR51E2 was found to be the highest
expressed OR gene, as determined by high-throughput mRNA sequencing (RNA-Seq) [4].
Although OR51E2 is expressed in many other tissues as well, the colon was found to
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exhibit the second highest expression out of 16 other non-gut derived human tissues
examined [4]. OR51E2 has been reported to sense the microbial-derived metabolites acetate
and propionate. In colon, cells staining positive for Olfr78 (the mouse orthologue of
OR51E2), showed co-localization with PYY-stained cells and to a lower extent with GLP-1
stained cells [94]. However, no co-localization was found with 5-HT stained cells. The
latter seems contradictory to the findings by Lund et al. [95], who reported that Olfr78 is
the highest enriched receptor in 5-HT-excreting EC cells (see Section 5.1).

In young pigs, OR51E1, the human and porcine orthologue of mouse Olfr558, has been
shown to be expressed along the full length of the GI tract. Remarkably, an approximately
4 to 5 times higher expression of OR51E1 was found in the duodenum and in the stomach,
respectively, when compared to other parts of the small and large intestine [96]. Using
immunostainings, it was shown that OR51E1 was almost completely co-localized with
chromogranin A (ChgA), suggesting it relevance for entero-endocrine signaling. Interest-
ingly, a high percentage of PYY- and 5-HT stained cells did co-localize with OR51E1 [96].
Co-localization of OR51E1 was also found with GLP-1 and olfactory marker protein (OMP)
in the enteroendocrine L-cell line NCI-H716, which is originally derived from cecum. GLP-1
and PYY induced excretion by nonanoic acid was shown to be mediated via OR51E1, as
siRNA of OR51E1 attenuated secretory effects [97]. In human ileum, GLP-1 expression
co-localized with that of OMP [97]. OR51E1 responds to several ligands, including butyric
acid and nonanoic acid [81], but seems most sensitive to the branched chain fatty acids,
3- and 4- methyl-valeric acids [80]. All together, these studies point to a potential role for
OR51E2 and OR51E1 in intestinal EEC signaling. Table 1 summarizes GPCRs responsive to
free fatty acid ligands with a potential role in GLP-1/PYY signaling in intestinal EECs.

4.3. Fatty Acid OR Signaling in the Pancreas

A few reports have pointed to a potential role of fatty acid mediated OR signaling in
pancreas (see Table 2). The pancreas, being essential for glucose metabolism, harbors β

cells and α cells that secrete insulin and glucagon, respectively, to regulate and maintain
blood glucose homeostasis. Octanoic acid (also called caprylic acid), a medium-chain
fatty acid, could potentiate glucose-stimulated insulin secretion via Olfr15 in pancreatic β

cells [20,21]. Interestingly, these effects were impaired in islets from diabetic leptin receptor
deficient mice (db/db) and mice kept on a high fat diet (HFD). In addition, expression
levels of Olfr15 were largely reduced in both db/db and HFD mice [20]. Olfr15 expression
was found to be specific for pancreatic islets and to uniformly co-express Olfr821 [21].
Notably, octanoic acid-induced effects via Olfr15 were not mediated via the Gαolf-cAMP-
PKA pathway, but rather by increasing intracellular Ca2+ through the phospholipase C
(PLC)-inositol triphosphate (IP3)-dependent pathway [20,21].

Furthermore, several Olfrs, namely Olfr544, Olfr543, Olfr545, and Olfr1349 have been
identified in glucagon secreting pancreatic αTC1-9 cells. Next to this, olfactory marker
protein (OMP), adenylyl cyclase III (ACIII), and olfactory G-protein (Gαolf), components
of the canonical olfactory signaling cascade were found to be expressed in pancreatic
mouse tissue [22]. OMP co-localized with the glucagon-producing α-cells, but not with
insulin or somatostatin positive cells, which seems in accordance with the non-canonical
signaling cascade as uncovered for Olfr15 in pancreatic β cells. Azelaic acid, a known
ligand for Olfr544, induced glucagon release in αTC1-9 cells, which could be blocked by
Olfr544-specific siRNAs [22].

Out of the FFARs (1–4), a role of particularly FFAR1 has been demonstrated in pancre-
atic signaling. In addition, GPR119 is involved in pancreatic signaling of insulin secretion
by pancreatic β cells [98].
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Table 1. Fatty acid ligands with their GPCR receptors, tissue and cell (EC and/or L cell) expression, and potential function in 5-HT and GLP-1/PYY signaling in gut.

Ligand GPCR Expression in Gut
Function in Gut

Ref.
Physiological Effects of Intervention

Acetate, propionate
lactate mOlfr78

PYY & GLP-1 expressing cells;
Colonic ECs;

Entire GI tract

Microbiome [78] L; [5] L,F; [79] L; [94] L,E; [95] E; [99]
E,FImmune

Acetate, propionate; palmitic acid,
N-acetyl glutamic acid hOR51E2 Entire GI tract Unk. [78] L; [4] E;

[5] L; [16] L; [99] E

Isovalerate > butyrate, isobutyrate mOlfr558 Colonic ECs 5-HT signaling discomfort, pain [12] L,E,F;
[95] E

3- and 4-methyl-valeric acid > valeric acid, isovaleric acid,
2-methyl-valeric acid, nonanoic acid;

Cyclobutanecarboxylic acid > 2-methylbutanoic acid
hOR51E1

ChgA, PYY & 5-HT expressing cells P;
GI tract, high in duo and stom P;

/Cecal EECs

Diet,
Infection/GLP-1

[80] L; [81] L;
[96] L,E,F;

[100] L; [97] F

Acetate, propionate >
Butyrate FFAR2 EC/EEC L 5-HT +, Microbiota +/

GLP-1, PYY

[101] F; [102] F

[89] F; [103] E;
[58] E; [66] E,F; [68] L,E,F

Valerate, caproate > acetate, propionate, butyrate FFAR3 EC/EEC L Unk./
GLP-1, PYY [89] F; [58] E; [66] E,F; [68] L,E,F

Butyrate GPR109A/
HCAR2 EC Unk. # [104] L; [105] #; [106] F; [95] E

Kynurenic Acid GPR35 EC Unk. [107] L; [108] E; [109] L

MCFA/LCFA
DHA/EPA s, oleic acid s lauric acid s, myristic acid s,

palmitic acid s
FFAR1 EC/EEC L Unk./GLP-1 [90] F; [58] E; [66] E,F; [68] L,E,F

unsaturated LCFAs,
(α)(γ)( )-linolenic acid s,

palmitoleic acid s
FFAR4 EC/EEC L Unk./GLP-1 [103] E; [66] E,F; [91]; [68] L,E,F

OEA s, PEA s, LEA s, 16:0-LPC s, 18:0-LPC s, 18:1-LPC s,
(S)/(R)-N-oleoyltyrosinol s, 1-OG s, 2-OG s, 5-HEPE s GPR119 EC/EEC L Unk./GLP-1 [98] L;

[110] L; [111] F; [88] F; [112] L,F; [87] L,F

N-acyl glycines (N-Palmitoylglycine s)/oxidized fatty
acids (9-HOPE s) G2A/GPR132 EC Immune modulation [113] L; [95] E; [114] L; [115] F

OR51E2 is a well-known marker for prostate cancer and responds to testosterone metabolites, e.g., 19-hydroxyandrostenedione; # GPR109A is expressed in epithelial cells in the colon and ileum and involved
in intestinal inflammation, but no function has been described in relation to EEC signaling yet; + A specific role for FFAR2 has not been shown for SCFA-induced effects in ECs on 5-HT or TPH1. Abbrev.:
DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; OEA: oleoyl ethanolamine; PEA: palmitoyl ethanolamine; LEA: linoleyl ethanolamine; 16:0-LPC: 1-palmitoyl-lysophosphatidylcholine; 18:0-LPC:
1-stearoyl-lysophosphatidylcholine; 18:1-LPC: 1-oleoyl-lysophosphatidylcholine; 2-OG: 2-oleoyl glycerol; 1-OG: 1-oleoyl glycerol; 5-HEPE: 5-Hydroxy-eicosapentaenoic acid; 9-HOPE: 9-hydroxyoctadecadienoic
acid; p: in pigs; duo: duodenum; stom: stomach;. m: mouse; h: human; s: fatty acid (-conjugate) ligands displaying lowest IC50 values; L: ligand; E: expression; F: function; Unk: Unknown.
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Table 2. Fatty acid ligands with their corresponding ORs, their expression, and potential function in the pancreas.

Ligand GPCR Expression in Gut Function in Pancreas Ref.

Octanoic acid Olfr115 Panc. β cells/MIN6 Insulin signaling [20,21] E,F

Unknown Olfr821 Panc. β cells/MIN6 Unknown

Azelaic acid Olfr544 Pancreatic α-cells
αTC1-9 cells Glucagon secretion [22] E,F

E: expression; F: function.

5. Serotonin Signaling by Enterochromaffin Cells
5.1. The Fatty Acid-5-HT Interplay

As introduced in Section 2, ECs in the gut account for 90% to 95% of the production
of 5-HT in the body [116]. In ECs, 5-HT is formed out of the essential dietary amino acid
tryptophan via the rate-limiting enzyme tryptophan hydroxylase 1 (TPH1) [62,117]. Fur-
ther catalyzation with aromatic amino acid decarboxylase (AADC) leads to the production
of 5-HT [118]. Serotonin from ECs is released predominantly at the baso-lateral side of
the GI tract, where it exerts a multitude of effects by affecting almost every intestinal
cell type expressed. Serotonin influences the frequency of GI contractions, modulates
the intestinal immune response and once drained into the blood, regulates platelet ag-
gregation [116,118,119]. Interestingly, a relationship has emerged between the colonic
microbiome and 5-HT signaling. Indigenous spore-forming bacteria (Sp) present in the
colon of mouse and man and known to be dominated by clostridia species have been shown
to significantly promote colonic EC-serotonin biosynthesis in germ free (GF) mice [102],
an effect consistent with other reports [101,120,121]. Interestingly, Sp microbiota-induced
5-HT production in ECs modulated GI motility and platelet function in these mice [102].
Several microbial-produced metabolites have been linked to this effect [102]. Of those,
butyrate and propionate stimulated 5-HT release and/or enhanced TPH1 expression of
ECs in vitro [101,102], while for the secondary bile acid deoxycholate, an effect on 5-HT
was demonstrated in the colon, after intrarectal injection of deoxycholate in GF mice [102].
Deoxycholate has been shown to modulate colonic contractility thereby acting via TGR5
(GPBAR1), which is expressed on ECs [122].

Studies on ECs revealed expression profiles for GPCRs that sense bioactive fatty acids,
of which, in the colon, most are microbial derived. Surprisingly, the highest enriched SCFA
receptor in mice colonic ECs, purified by 5-HT antibody binding, was found to be Olfr78,
followed by Olfr558, while FFAR2 (GPR43) and GPR35 were highly expressed but not
enriched when compared to neighboring non-EC cells [95]. Interestingly, Olfr78 has also
been reported to play a role in renin secretion and to act together with renal expressed
FFAR3 (GPR41) in physiologically opposite roles to keep blood pressure balance [5,123].
Antibiotic treatment of Olfr78 KO mice suggested that SCFAs produced by intestinal
microbiota and taken up in blood, were able to stimulate Olfr78 and FFAR3 in the afferent
arteriole of the kidney [5,124]. Olfr78 responds to physiological levels of the SCFAs acetate
and propionate, but not to butyrate [5]. As described in Section 3.2, OR51E2, the human
orthologue of Olfr78, shows similar dose-response curves. Both receptors are found to
be expressed along the GI tract, with a predominantly higher expression for Olfr78 in
colon of mice, but this higher colonic expression was not observed in man [99]. In a model
of DSS-induced colitis, Olfr78 KO mice showed higher levels of intestinal inflammation
and altered expression of immune related- and inflammatory genes, including that of the
cytokine IL-1β, known for its key role in colitis [99]. Although it is not yet known which
EEC subtype is involved in the Olfr78-mediated immune modulatory responses (note that
Olfr78 is also reported to be expressed by PYY producing L cells, see Section 4.2), a role for
ECs seems conceivable, given 5-HT’s modulatory effects.

A direct effect of SCFAs for EC-mediated 5-HT release has been shown for Olfr558.
Elegant experiments using a gut organoid model generated from ChgA-GFP mice revealed
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that Olfr558 acts as a branched chain fatty acid receptor for the irritant isovalerate, and
likely senses information of pain and discomfort or/and the presence of pathogens via
serotonergic signaling towards the brain [12]. Out of 30 relevant agonists, only the branched
chain fatty acid isovalerate, and to a much lesser extent butyrate and isobutyrate, induced
a response from individual ECs in organoids. As mentioned above, in young pigs, the
orthologue of Olfr558, OR51E1, has been shown to almost fully co-localize with ChgA
expression, indicating its presence on EECs. In addition, co-localization with 5-HT staining
was observed in most cases [96].

In addition to FFAR2, and to GPR35, which senses kynurenic acid [107], Hcar2;
(hydroxycarboxylic acid receptor 2; Niacr1; GPR109A), detecting butyrate and nicotinic
acid [104], GPBAR1 (TGR5) the sensor for secondary bile acids and GPR132, which detects
N-acylglycines and oxidized fatty acids [114] showed high expression levels in ECs from
colon [95]. Additionally, Martin et al. found that in colonic ECs, FFAR4 showed similar
high expression as FFAR2 and a moderate expression of GPR119 and GPR92 (LPA5), while
FFAR3 was low expressed [103]. EC-studies comparing receptor expression levels from
duodenal and jejunal ECs with those from colon uncovered that expression patterns of
nutrient sensing receptors, including those of fatty acids, are location dependent. Lund
et al. [95] state that ECs from the proximal GI tract do not express any FFARs but are
indirectly activated by SCFAs via L cell released GLP-1. However, others have shown that
ECs in the proximal GI tract in mouse express FFAR1, FFAR2, FFAR3 [58], FFAR4, GPR119,
and GPR92 [103]. Our group has previously shown that nutrient-induced GLP-1 release by
intestinal tissue segments is enhanced by 5-HT via a mechanism involving a 5-HT receptor
expressed on EECs [125]. This also implies a cross-talk between EECs and ECs.

5.2. The 5-HT-Immune Axis

5-HT as released by ECs has a direct interaction with the intestinal immune system,
of which several cell types are abundantly located in the direct vicinity of ECs. Serotonin-
mediated functions seem to be tightly controlled, likely facilitated by the different 5-HT
receptors, which are differentially expressed on 5-HT-responsive cells, and by the enzyme
serotonin reuptake inhibitor (SERT), which inactivates 5-HT. Out of the 5-HT receptor
(5-HTR) families, members of the 5-HTR 1–4 and 7 families are expressed in the gut and
belong to the GPCRs, with an exception for 5-HTR3, and they signal via activation of
different intracellular secondary messenger cascades [118].

Macrophages, dendritic immune cells (DCs), and T regulatory cells reside within
the lamina propria, located immediately beneath the epithelial layer and they play crucial
roles in maintaining intestinal immune homeostasis. Immune cells in the proximity of
ECs are in a quiescent, anti-inflammatory state. Self-maintaining macrophages persist
throughout adulthood and contribute to gut immune homeostasis [126]. Short-lived resi-
dent macrophages are constantly replenished by migratory monocytes from blood. When
intestinal homeostasis is disrupted during pathogenic infections and (or) inflammatory
conditions, entering blood monocytes will differentiate locally into macrophages and DCs
with proinflammatory phenotypes and trigger an inflammatory cascade [118]. In vivo
experimental studies have underlined 5-HT as a key proinflammatory molecule in gut
inflammation [118]. Several studies report that 5-HT acts specifically on different types of
immune cells through its activated 5-HTRs. Serotonin can potently enhance the proinflam-
matory effect of lipopolysaccharide (LPS), the major component of the outer membrane of
gram-negative bacteria, as was shown in LPS-activated human-derived monocytes and
peritoneal mice macrophages. Proinflammatory interleukins such as interleukin-1β (IL-1β)
and IL-6 levels were largely increased by the combination of LPS and 5-HT, while 5-HT
by itself only induced a minor induction [119,127]. In monocytes, this effect was mediated
via activation of 5-HTR3, 5-HTR4, and 5-HTR7 subtypes. Serotonin solely, in the absence
of LPS, has been shown to augment phagocytic activity of peritoneal mice macrophages
thereby acting via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)
and 5-HTR1A [128].



Molecules 2021, 26, 1416 10 of 22

Animal KO studies have largely contributed to the recognition of 5-HTs immune-
modulatory role. In a TPH1 knock out (TPH1(−/−)) colitis mice model, that lack 5-HT
produced by ECs, it was found that macrophage infiltration, IL-1β, IL-6, and TNFα produc-
tion and colitis-associated colonic tissue damage were significantly reduced compared to
the control (TPH1(+/+)) mice [119]. Using a similar model, it was shown that TPH1(−/−)
DCs produced less proinflammatory IL-12 than control DCs. Interestingly, CD4(+) thymus-
derived lymphocytes (CD4(+) T cells) primed by TPH1(−/−) DCs produce reduced levels
of IL-17 and interferon-γ, an effect that could be counteracted by adding 5-HT [129]. T
helper 17 (Th17) cells are a specific subset of CD4(+) T cells that in gut protect the host from
invading microorganisms. They are characterized by the expression of the transcription
factor retinoic acid receptor-related orphan receptor gamma (RORγt) and once activated
they produce the inflammatory cytokine IL-17 [130]. Intriguingly, secretory products
from CD4(+) T cells interact with ECs to enhance the production of 5-HT in the gut via
T helper 2 (Th2)-based mechanisms [131]. The IL-13 receptor α1, which was found to
be expressed on ECs, seems to play an important role in this effect [131–133]. Such a
positive feedback loop between T cells and ECs might partly explain the plasticity of 5-HT
mediated immune-modulatory effects. Also in macrophages, 5-HT seems to fulfill opposite
immune-modulatory roles, acting on one hand as a proinflammatory accelerator during
pathogen invasion, while on the other hand contributing to a hyporesponsive environment
for commensal microbes [130,134]. In addition, the anti-inflammatory effect of butyrate
on resident intestinal immune cells is thought to contribute to the symbiotic relationship
between beneficial commensals and the host [77].

Concluding, intestinal 5-HT is most well-known for its proinflammatory role in di-
verse pathologies of the gut, where it seems to further accelerate inflammatory conditions
induced by varying immune triggers. Reports originating from animal models on inflam-
matory bowel disease (IBD), SERT KO, TPH1 KO models, and pathogen invasion studies
as well as clinical data from Crohn’s disease patients have collectively contributed to this
view [130,131,133,135–137]. Figure 1 shows the 5-HT signaling pathway, the FFA ligands,
and corresponding receptors that trigger its release and subsequent interactions.

5.3. Fatty Acid-5-HT Conjugates with Immune-Modulatory and Anti-Oxidant Effects

While 5-HT predominantly exerts proinflammatory effects, emerging evidence points
to the anti-inflammatory and anti-oxidant effects of its endogenous fatty acid-conjugates, N-
acyl 5-HTs, present in the gut [38–41,138]. Our laboratory uncovered that docosahexaenoyl-
serotonin (DHA-5-HT), the conjugate of 5-HT with the n-3 poly unsaturated long chain
fatty acid (LC PUFA) DHA, has anti-inflammatory effects both in mouse macrophages
as well as in human peripheral blood mononuclear cells (PBMCs), by attenuating release
of key inflammatory mediators [40,41]. More specifically, in LPS-stimulated RAW264.7
mice macrophages, DHA-5-HT reduced, at concentrations of 100 nM to 500 nM, levels
of prostaglandin PGE2 and of the cytokines IL-1β, IL-23 and IL-6 as well as expression
of their corresponding genes [40]. By acting in an orchestrated way, these inflammatory
mediators activate the IL-23-IL-17 signaling axis, the latter drives the development of
pathogenic Th17 cells, a cell type involved in gut pathogenesis. Additionally, DHA-5-HT
attenuated chemokine expression and migration of RAW264.7 cells [40]. In line with this,
we found that in concanavalin A (ConA)-stimulated (human) PBMCs of healthy subjects,
IL-17 cytokine, a typical Th17 pro-inflammatory mediator and C-C motif chemokine ligand
20 (CCL-20) release were inhibited by DHA-5-HT [41].
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nervous system and its trafficking via the blood stream. Enterochromaffin cells (ECs; in green) situated within the epithe-
lial lining (enterocytes in blue) of the gastrointestinal (GI) tract. Figure illustrates EC surface expression of olfactory recep-
tors (Olfrs) and other GPCRs, showing their presumed orientation on the luminal versus basolateral membrane of ECs 
and their activation by specific fatty acids. The proinflammatory interaction of 5-HT with different immune cells is de-
picted during a proinflammatory response triggered by microbes that passage the epithelial lining during GI damage. The 
potential interaction of anti-inflammatory gut produced N-acyl serotonins (N-acyl 5-HTs) with the intestinal immune sys-
tem is proposed. MQ: macrophage, DC: dendritic cell, Th17: T helper 17 cell, 5-HT: serotonin, 5-HTR: serotonin receptor. 
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Figure 1. Serotonin signaling cascade in distal gut. Figure shows activation of serotonin by the
branched chain fatty acid, isovalerate and microbial-produced short chain fatty acids (SCFAs), its
interplay with the immune system, pathogens, and nervous system and its trafficking via the blood
stream. Enterochromaffin cells (ECs; in green) situated within the epithelial lining (enterocytes in
blue) of the gastrointestinal (GI) tract. Figure illustrates EC surface expression of olfactory receptors
(Olfrs) and other GPCRs, showing their presumed orientation on the luminal versus basolateral
membrane of ECs and their activation by specific fatty acids. The proinflammatory interaction of 5-
HT with different immune cells is depicted during a proinflammatory response triggered by microbes
that passage the epithelial lining during GI damage. The potential interaction of anti-inflammatory
gut produced N-acyl serotonins (N-acyl 5-HTs) with the intestinal immune system is proposed. MQ:
macrophage, DC: dendritic cell, Th17: T helper 17 cell, 5-HT: serotonin, 5-HTR: serotonin receptor.

A series of six long chain fatty acid conjugates with 5-HT, namely palmitoyl-serotonin
(PA-5-HT), stearoyl-serotonin (SA-5-HT), oleoyl-serotonin (OA-5-HT), arachidonoyl-seroto-
nin (AA-5-HT), eicosapentaenoyl-serotonin (EPA-5-HT), and DHA-5-HT has been identi-
fied in intestinal tissue of mice, pigs and human colon [41,139]. Interestingly, in mice it was
shown that levels of N-acyl serotonins formed in vivo could be modulated by the specific
fatty acid composition of the diet. A high fish oil diet resulted in increased levels of DHA-
5-HT and EPA-5-HT in gut, while the levels of other N-acyl serotonins from this series,
like SA-5-HT, OA-5-HT, and AA-5-HT were decreased [139]. In vitro it was shown that the
concentration of 5-HT did influence formation of N-acyl 5-HTs as well [139]. Following its
initial discovery by Bisogno et al., AA-5-HT has been shown to act as a fatty acid amide
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hydrolase (FAAH) and a transient receptor potential cation channel subfamily V member
1 (TRPV1; also called vanilloid receptor 1) inhibitor [140,141]. However, while AA-5-HT,
OA-5-HT, EPA-5-HT, and PA-5-HT possess FAAH inhibitory activity, though with similar
IC50 values as their parental fatty acids, the n-3 DHA-5-HT- and 5-HT-saturated conjugate
with stearic acid, SA-5-HT, lack this property. DHA-5-HT, in turn displayed the highest
potency in inhibiting IL-17, in ConA-stimulated human PBMCs, while 5-HT and DHA
showed no effects at this concentration [41]. Interestingly, N-acyl 5-HTs of long chain fatty
acids were also identified in the human colon [41]. Altogether, this might indicate that the
different N-acyl 5-HTs might act via different signaling pathways and/or receptors.

Furthermore, N-acyl-5-HTs with varying fatty acid moieties were reported to exert
anti-inflammatory, anti-oxidant, and neuroprotective effects in a number of in vivo animal
disease models [38,39,142–145]. In an inflammatory in vivo gut model, the SCFA conju-
gate of 5-HT, N-acetyl-5-HT (also called NAS), has been shown to prevent gut mucosal
damage and inhibit programmed cell death following intestinal ischemia-reperfusion (IR)
in rats [38]. Intestinal IR is a multifactorial pathophysiological process involving non-
specific damage of the gut, which can occur during trauma, sepsis, or shock. In this rat
model, N-acetyl-5-HT downregulated IR-induced Toll-like receptor 4 (TLR-4), myeloid
differentiation factor 88 (Myd88), tumor necrosis factor α (TNF-α), and receptor-associated
factor 6 (TRAF6) expression in jejunum and ileum tissue [39]. N-acetyl-5-HT (NAS) is an
endogenous precursor of melatonin and formed out of 5-HT. It is present in nanomolar con-
centration in human blood and seems capable to cross the blood-brain barrier [142]. NAS is
approved by the U.S. Food and Drug Administration (FDA) for treatment of neurological
disorders and stroke [142]. For the gut, its anti-oxidant properties have recently been
assessed in a porcine epithelial IPEC cell line. Here, it was shown that activation of nuclear
factor erythroid-2-related factor 2 (Nrf2) signaling was critical for the protective effect of
NAS (at 100 µM) against oxidative stress [146]. Nrf2 signaling is key in cell survival in
response to oxidative damage. Besides, NAS improved levels of tight junction proteins that
were diminished by induced-oxidative damage [146]. Likewise, DHA-5-HT, at far lower
concentrations, triggered Nrf2 pathway expression in LPS-activated macrophages. Using
whole genome wide expression analysis followed by gene set enrichment analysis, the Nrf2
pathway was uncovered as most prominent upregulated pathway following stimulation of
1 µM DHA-5-HT [40]. Figure 2 shows the chemical structures of 5-HT and those of its fatty
acid-conjugates that are of potential relevance for the gut.

Concluding, a specific functional role for endogenous N-acyl 5-HTs in intestinal health
and gut homeostasis is still speculative; however, given their formation and presence in gut
and their potent immune-modulatory and anti-oxidant effects, it seems conceivable that
N-acyl 5-HTs might play physiological roles in resolving inflammation and oxidative stress
(see Figure 1). It remains unclear to what extent the significance of conjugation mainly lies
in the formation of these anti-inflammatory 5-HT derivatives or whether conjugation is to
be considered a functional pathway aimed at modulating the pro-inflammatory activity of
5-HT itself. This warrants further investigation.
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6. Future Perspectives
6.1. Other Bioactive Fatty Acid Conjugates with Potential Relevance for
Entero-Endocrine Signaling

The discovery of fatty acid conjugates with specific bioactivities derived from en-
dogenous amines and alcohols raised the question whether these structures could also
be formed with molecules of exogenous, including dietary, origin. This search resulted
in a number of potentially interesting compounds, with at least some of them showing
interaction with the GLP-1-pancreatic signaling axis or (and) the immune system. For
example, the conjugate of oleic acid with the flavonoid quercetin displayed the ability to
induce insulin secretion via FFAR1 (GPR40) in a pancreatic cell line, and the combination of
oleic acid with quercetin improved diabetic foot ulcers in patients [147,148]. A functional
role for the FFAR1 receptor in pancreatic beta-cells and immune cells has earlier been
evidenced. Another interesting oleic acid conjugate, hydroxytyrosyl oleate (see Figure 3
for its chemical structure), was found to possess immune-modulatory and antioxidant
effects in vitro [149,150]. It was identified as a component of olive oil and its by-products.
Noticeably, in contrast to the low oral bioavailability of the well-known bioactive olive oil
constituent hydroxytyrosol, its more lipophilic oleic conjugate with tyrosol displayed good
oral bioavailability. This raises the question whether enhanced flavonoid bioavailability
might be a feature property of this class of fatty acid conjugates.

In several diabetic animal models, capsaicin, the major pungent component of red
peppers, has been shown to improve glucose tolerance and increase insulin secretion. It is
also reported that capsaicin exhibits anti-inflammatory effects [151]. Interestingly, the EPA
and DHA N-acylamide conjugates of capsaicin, N-eicosapentaenoyl vanillylamine (EPVA)
and N-docosahexaenoyl vanillylamine (DHVA), respectively, were found to be more potent
than their parental molecules in attenuating inflammatory mediators and chemokines in a
macrophage inflammatory cell line model [151]. This is in line with what was described in
Section 5.3 for 5-HT-conjugates [40].

The EPA conjugate, EPVA, also elicited insulin secretion in pancreatic INS-1 832/13 β-
cells, associated with raising intracellular Ca2+ and ATP concentrations [151]. An interesting
observation was also that EPVA and DHVA had lost the pungent property of their parent
molecule capsaicin. In Figure 3, the chemical structures of EPVA and DHVA are depicted.
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Apparently, the ability to form fatty acid conjugates seems rather common in nature.
As a consequence, it is conceivable that humans are exposed to these structures more
than previously assumed through their diet or via synthesis in the GI tract by combining
their molecular building blocks. However, more studies are warranted to gain insight into
the relevance of these processes and their possible nutritional and (or) pharmacological
applications in the context of GI EEC signaling and beyond.

6.2. Olfactory Receptors, Emerging Intestinal Fatty Acid Sensors with Potential for EEC Signaling

The significance of ORs for intestinal physiology has only quite recently emerged, with
the number of receptors demonstrated to be involved being steadily on the rise [4,9,12,14].
Given their large variety, it is intriguing to further explore the roles of this large gene family
in intestinal signaling.

The olfactory receptor family currently comprises of approximately 370- and 1000 func-
tional ORs, in man and mouse, respectively. The majority of these still bears an orphan
receptor classification, indicating that their endogenous ligand(s) has (have) not been deter-
mined. It seems conceivable that the plethora of fatty acid metabolites, either of microbial
or dietary origin, will be, at least partly, sensed by the host. Their detection is crucial, not
only as energy source but also to recognize and respond to potentially harmful molecules
resulting from dysfunctional fermentation and (or) invading pathogens or, vice versa, to
interact with commensal beneficial microbes. Olfr558, for example, was the first identified
chemosensor able to detect the branched chain fatty acids, isovalerate and isobutyrate in
gut [12]. Branched chain fatty acids, including isovalerate and isobutyrate constitute a
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minor part of the total fatty acid composition where they are present as a result of amino
acid degradation. Interestingly, more ORs are known, exhibiting response profiles for fatty
acids produced by the microbiome, but these ORs have not yet been linked to intestinal
physiology [152].

Another interesting aspect to address is the potential physiological relevance of ORs
for immune signaling, although the number of reports pointing towards such phenomena
is still rather limited. An abundant number of gene transcripts for class I odorant receptors,
the most ancient class of ORs conserved throughout evolution, were found to be expressed
on five different types of human blood leukocytes, including bone-marrow-derived lym-
phocytes (B cells) and T cells [7]. Functional relevance for ORs has been shown for CD4+
T cells, of which trafficking abilities were largely diminished by odorant stimulation [17].
In addition, in lung macrophages, odorants enhanced both OR expression, monocyte
chemoattractant protein-1 (MCP-1) production and macrophage migration, but only in
the presence of inflammatory triggers [18]. As studies on OR functioning in immune cells
are still very scarce and not associated with the intestinal immune system yet, further
research should reveal how and if OR-chemosensing is involved in immune-modulatory
processes in the gut and intermingled in the complex interaction of 5-HT and butyrate with
the intestinal innate and adaptive immune system.

Emerging reports have provided first evidence for the influence of environmental
factors on OR expression in the gut. In pigs, Priori et al. [96] showed that age, pathogen
challenge, as well as dietary manipulations modulated OR51E1 gene expression in GI
tissues, an effect particularly related to the factors that affect complexity of the microbiota.
Other studies also suggest an effect of dietary-associated obesity on OR expression. A com-
parison between obesity-prone rats and obesity-resistant rats that were both subjected for
two weeks to either a HF or a LF diet, found differences in OR gene expression in duodenal
enterocytes [153]. Furthermore, one of the studies originating from our own group showed
that weight loss, induced by one year gastroplication in a group of morbidly obese people
and accompanied by substantial weight loss, had beneficial effects on inflammatory and
metabolic biomarkers. Interestingly, genome wide transcriptome analysis upon one year
gastroplication, revealed that the orphan olfactory receptor OR2L8 appeared to be among
the top highest significantly downregulated genes in duodenum [154].

6.3. Future Applications

In recent years, the importance of nutrition and the intestinal microbiome in GI
physiology and energy metabolism has become increasingly apparent. Taste receptors
for bitter compounds and FFAs in the gut have been shown to play prominent roles in
signaling of nutrients, tastants, and microbial metabolites via essential insulin modulating
gut hormones like GLP-1 [1,8,65]. Hence, the impending implications of modulating
nutrient sensing seems to be large, given their effects on GLP-1, and underscores the huge
potential of understanding the full spectrum of chemosensory signaling, including those of
odorant receptors, in the gut. Understanding their role can lead to optimization of dietary
guidelines for obese and T2D patients, healthier food products, or to novel therapeutic
targets. Of particular interest seems the potential relevance of Olfr15 and Olfr544 in the
pancreas [20–22]. These ORs are chemosensors for medium chain fatty acids, a group of
nutritionally relevant FFAs, whose potential effects as signaling molecules [19,155] have
received little attention so far. Further unravelling their specific roles and ligand specificity
could have implications to control insulin homeostasis. Additionally, data for Olfr78
expression (mouse orthologue of OR51E2) on L cells and OR51E1-mediated GLP-1 release
by nonanoic acid indicate a role for incretin signaling via these receptors [96,97].

Interestingly, in addition to obesity/T2D, many specific GI disorders seem to be
related to intestinal enteroendocrine (dis)functioning. An increasing number of studies
indicate that inflammatory bowel syndrome as well as irritable bowel disease might be
(partly) linked to altered serotonergic signaling of ECs. The emerging evidence that
Olfr78 and Olfr558, expressed by ECs, play a role in inflammation and pain sensation,
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respectively, could give rise to potentially novel nutritional, as well as pharmacological
applications [12,99]. Fiber intake, gut microbial diversity and composition, as well as new
sustainable protein sources (as a consequence of future dietary protein transition) might all
affect EC-mediated 5-HT signaling via ORs by modulation of levels of SCFAs and BCFAs.
Furthermore, more detailed knowledge about the function of 5-HT in the aetiology of
inflammatory disorders of the gut and the specific potential role of its fatty acid conjugates
in resolving inflammation could lead to novel drug development.

Another aspect that deserves particular attention is the role of OR51E2 and OR51E1 in
cancer. While OR51E2 is intensively being studied for prostate cancer [16], the finding that
OR51E1 is a marker for malignant enteroendocrine cells in intestinal cancer [10,11] is less
well known. Overexpressed OR51E1 by malignant cells could serve as a specific biomarker
or targeting OR51E1 might lead to novel therapies [10,11]. Intriguingly, gaining insight into
their endogenous role and ligand specificity might give rise to dietary means to prevent
early malignant behaviour of OR51E1 and OR51E2 expressing tissues or cells. Still puzzling
is the broader ligand profile and corresponding sensitivity of these broadly expressed ORs,
which raises the question as to whether different tissue or cellular functionalities might
exist by virtue of ligand specific signaling in these cells or tissues. On the contrary, these
ORs might mediate general physiological signals. Unravelling this issue could boost novel
therapeutic as well as nutritional constrains.

Altogether, the studies outlined in this review underscore the significance of OR EEC
signaling for GI physiology, however, at the same time they show how much still remains
to be discovered about their functionality in relation to gut health. It seems we are only
facing the beginning of the elucidation of the full spectrum of ORs, their ligand profiles
as well as their potential diverse functional roles. Understanding their physiology in the
interplay of the dietary-fatty acid-microbiome-EEC signaling axis might provide new leads
urgently needed to combat the obesity pandemic or impact gastrointestinal disorders.

Concluding, this review highlights the versality of fatty acids as messengers in the
GI tract and particularly focusses on interesting emerging players, including fatty acid
sensors, with potential importance for 5-HT and GLP-1 signaling. Evolving research has
revealed the relevance of intestinal hOR51E2/mOlfr78, hOR51E1/mOlfr558 and pancreatic
mOlfr15 and mOlfr544 for energy- and insulin/glucagon metabolism, respectively, and
their interaction with nutrients and/or microbial derived metabolites as MCFAs and SCFAs.
In relation to gut health, the BCFA isovalerate, sensed by Olfr558, signals through the
gut-brain axis via serotonergic signaling by enterochromaffin cells. Interestingly, while
Olfr78 plays a prominent role in immune processes of an inflammatory gut disorder,
environmental factors such as diet, obesity, age, pathogen challenge, and microbiota
composition seem to alter OR expression of till this far unrecognized ORs. Furthermore, of
particular interest are the fatty acid conjugates with serotonin and those of LCFAs such
as oleic acid and DHA. These LCFA-conjugates exhibit anti-inflammatory, anti-oxidant,
or insulin stimulatory properties. Overall, the interplay of bioactive fatty acids and their
conjugates at diverse locations within the signaling cascade with EECs or immune cells
points to their diverse functional relevance for intestinal physiology and hence for their
impact for health and disease.
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