
Received: 15 October 2021 Revised: 23 February 2022 Accepted: 9 March 2022

DOI: 10.1002/acm2.13597

MEDICAL IMAGING
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Purpose: Accurate segmentation of cardiac structures on coronary CT angiog-
raphy (CCTA) images is crucial for the morphological analysis, measurement,
and functional evaluation. In this study,we achieve accurate automatic segmen-
tation of cardiac structures on CCTA image by adopting an innovative deep
learning method based on visual attention mechanism and transformer network,
and its practical application value is discussed.
Methods: We developed a dual-input deep learning network based on visual
saliency and transformer (VST),which consists of self -attention mechanism for
cardiac structures segmentation. Sixty patients’ CCTA subjects were randomly
selected as a development set, which were manual marked by an experienced
technician.The proposed vision attention and transformer mode was trained on
the patients CCTA images, with a manual contour-derived binary mask used as
the learning-based target.We also used the deep supervision strategy by adding
auxiliary losses. The loss function of our model was the sum of the Dice loss
and cross-entropy loss. To quantitatively evaluate the segmentation results, we
calculated the Dice similarity coefficient (DSC) and Hausdorff distance (HD).
Meanwhile, we compare the volume of automatic segmentation and manual
segmentation to analyze whether there is statistical difference.
Results: Fivefold cross-validation was used to benchmark the segmentation
method.The results showed the left ventricular myocardium (LVM,DSC = 0.87),
the left ventricular (LV, DSC = 0.94), the left atrial (LA, DSC = 0.90), the right
ventricular (RV,DSC= 0.92),the right atrial (RA,DSC= 0.91),and the aortic (AO,
DSC = 0.96).The average DSC was 0.92,and HD was 7.2 ± 2.1 mm. In volume
comparison, except LVM and LA (p < 0.05), there was no significant statistical
difference in other structures. Proposed method for structural segmentation fit
well with the true profile of the cardiac substructure, and the model prediction
results closed to the manual annotation.
Conclusions: The adoption of the dual-input and transformer architecture
based on visual saliency has high sensitivity and specificity to cardiac struc-
tures segmentation, which can obviously improve the accuracy of automatic
substructure segmentation. This is of gr
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1 INTRODUCTION

Accurate segmentation of cardiac structures plays an
important role in cardiac morphological and functional
analysis.1,2 Typically, the cardiac structures include the
LV,LVM,LA,RV,RA,and AO.For example,LV segmenta-
tion can measure end systolic volume (ESV), end dias-
tolic volume, and ejection fraction (EF)3; the segmen-
tation of LVM can display the shape and thickness of
myocardial wall. These are very important for the eval-
uation of left ventricular function and the diagnosis of
myocardial-related diseases.4,5 In recent years, some
studies show that CT can accurately evaluate the shape
and function of the right ventricle.6,7 However, accurate
segmentation of right ventricle is the premise of right
heart dysfunction evaluation.More importantly,accurate
automatic segmentation and dynamic tracking of car-
diac substructures will have a broader prospect for com-
prehensive evaluation of cardiac morphology and diag-
nosis of related diseases.8

In the past, the method of combining threshold and
manual is often used for cardiac substructures seg-
mentation, which is very time-consuming and highly
variable.9 There is also research on model-based CT
automatic segmentation algorithm, but only for a sin-
gle structure, such as LV. With the application of deep
learning method, the efficiency of whole heart sub-
structures segmentation is greatly improved, and the
accuracy is also improving. Convolutional neural net-
works (CNNs), in particular fully convolutional networks
(FCNs),10 such as U-Net and different variants,11–14

have become dominant in medical image segmenta-
tion. Although CNN-based methods have excellent rep-
resentation ability, it is difficult to build an explicit long-
distance dependence due to the intrinsic locality of
convolution operations.15–17 Therefore, this limitation of
convolution operation raises challenges to learn global
semantic information, which is critical for dense predic-
tion tasks like segmentation, especially for target struc-
tures that show large inter-patient variation in terms of
texture, shape, and size. To overcome this limitation, var-
ious methods have been used for modeling long-term
dependencies. Inspired by the attention mechanism18 in
natural language processing, existing studies propose
alternative architectures, which solely rely on attention
mechanisms.19-21 A typical example is the visual trans-
former (ViT),22 which outperforms ResNet-based CNN
on recognition tasks but at the cost of a large number of
the training dataset,which is not always available.Based
on this, we attempted to establish self -attention mecha-
nisms based on CNN features.

In this study, our proposed dual-input visual saliency
and transformer (VST) network has an encoder-decoder
structure.In the encoder,we combine a CNN and a trans-
former into a hybrid model to make a strong encoder
for CCTA image segmentation, specifically, a concise

CNN structure is adopted to extract feature maps, and
a transformer is used to capture the long-range depen-
dency. The features with long-range dependency are
fed to the CNN decoder, which performed progres-
sive up sampling to predict the full resolution seg-
mentation map. We segment the cardiac substructures
through the model and evaluate the accuracy of the
algorithm.

2 MATERIALS AND METHODS

2.1 Datasets

This retrospective study was approved by the local insti-
tutional review board, and informed consent was not
required.The information on all images was anonymized
before use. In this study, we randomly selected 60
patients’CCTA images (the best cardiac diastolic period
of the R-R interval) with an average age of 52.6 years
(range from 45 to 58 years), including 35 males and
25 females. All experiments follow a fivefold cross-
validation. The size of each image is 512 × 512 pixels
and the thickness is 0.75 mm. To ensure the segmen-
tation consistency and less variability, manual segmen-
tation was completed by one person and reviewed by
another.

2.2 CT acquisition

Using a third-generation DSCT scanner (SOMATOM
Force, Siemens Medical Solutions, Forchheim, Ger-
many), electrocardiography (ECG)-gated cardiac CT
scanning was performed. A retrospective ECG-gated
spiral scan with ECG-based tube current modulation
was applied to multiphase of 0%–90% of the R-R inter-
val. Automatic exposure control was active, enabling
both the adjustment of tube voltage and tube cur-
rent based on the topogram information. A bolus of
60–70 ml of contrast material (iomeprol; Iomeron 400,
Bracco Imaging S.p.A, Milan, Italy) was administered
by a power injector (Stellant D, Medrad, Indianola, PA,
USA) at 4.5 ml/s followed by 40 ml of saline. An auto-
mated bolus tracking system was used to synchronize
the arrival of the contrast material with the initiation of
the scan. CCTA scan was performed with a tube volt-
age of 120 kVp, a rotation time of 250 ms, and adaptive
tube current (185–380 mA).The effective radiation dose
of each scan was calculated by multiplying the dose-
length product by 0.014 mSv/mGy × 1 cm as the con-
stant k-value. Automatically selected the best cardiac
diastolic period, images were reconstructed at a section
thickness of 0.75 mm and an increment of 0.6 mm with
a Bv40 kernel. The selected FOV was 180mm and the
matrix was 512 × 512.
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F IGURE 1 Manual segmentation of cardiac structures. (a) Most of the structures with the large density difference can be segmented
through automatic threshold method. (b) In the same slice, the structure with small difference in density from the surrounding can be segmented
by manual anchor. (c) Slice by slice to draw until the cardiac structures were marked. (d) The segmentation results can be displayed through 3D
visualization to check the accuracy of manual segmentation

2.3 Manual segmentation

In each patient’s images, LV, LVM, LA, RV, RA, and AO
need to be segmented. The self -customized labeling
tool was used for manual segmentation (Uscube Med-
Label,Uscube Science and Technology Co.Ltd.,Beijing,
China). Most of the structures can be extracted by auto-
matic threshold segmentation. For the structures with
inaccurate threshold segmentation, we used the man-
ual anchor method to draw the boundary of tissue struc-
ture. We drew slice by slice until all the substructures of
the whole heart were marked (as shown in Figure 1).
In order to ensure the consistency and less variability
of manual image segmentation results, an experienced
technician generated the manual segmentation of the
data. All the segmentation data were reviewed by a car-
diac radiologist.

2.4 VST architecture and algorithm

An overview of the proposed dual-input VST was pre-
sented in Figure 2. It consisted of a dual-input: input1
(original CCTA images) and input 2 (obtained from visual
attention model) for tissue contrast, a CNN encoder for
feature extraction, a transformer encoder for long-range
dependency modeling, and a decoder for segmentation.
Next, we described the components of VST in detail.

2.4.1 Dual-input CCTA images

In order to improve the contrast of the organ tissues,
a group of dual-input CCTA images was employed to
provide more feature information to the network. Visual
attention model23 with cross-layer saliency optimization
was proposed, in which the local saliency and global
saliency were extracted. Inspired by this, in our method,
the local and global saliency detection was performed
based on the contrast of low-level features respectively;

we adopt a multi-scale transform algorithm to decom-
pose the image into different scales, the local contrast
maps are constructed. Based on intensity, texture, and
color. First, the input images were decomposed into six
spatial scales with the Gaussian pyramid; then three
local contrast maps were calculated on each scale to
generate eighteen contrast maps; finally, the iterative
interpolation algorithm is used to interpolate these con-
trast maps to form three feature maps (I′FM, T ′

FM, C′
FM),

which are combined into the final integrated saliency
map (SM), SLocal

SLocal =

√
(N

(
I′FM

)
)
2
+ (N

(
T ′

FM

)
)
2
+ (N

(
C′

FM

)
)
2

(1)

The global saliency is obtained by calculating the dif-
ferences between the different patches in the image,
where the difference is measured by the Euclidean dis-
tance between two patches in color space, so the global
saliency of pixel k is:

SGlobal (k) =
∑

j

dis
(
pk, pj

)
(2)

where dis(pk, pj) is the euclidean distance between
patches pk and pj in color space.

Then a weight model was generated based on the
obtained local and global SMs, finally the weight model
was used as the feedback from local layer to global layer
and optimized the global saliency to the final SM.Empir-
ically, the weight values are set 𝜃 = 0.5. The SM for
CCTA image was obtained as following:

𝜔 = 𝜃N (SLocal) + (1 − 𝜃) N (SGlobal) (3)

SM = 𝜔 × SGlobal (4)

where 𝜔 is a weighting matrix with the range of value
in the matrix was [0, 1]. 𝜃 denoted the weight coefficient.
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F IGURE 2 Overall architecture of the proposed visual saliency and transformer (VST). We use input1 and input2 as a dual-input for tissue
contrast: (a) a Convolutional neural networks (CNN) encoder for feature extraction, use a CNN encoder to extract multi-scale features, and feed
the embedded tokens to the transformer; (b) a transformer encoder for long-range dependency modeling; (c) a CNN decoder for segmentation

N(.) denoted normalization. SGlobal and SLocal denoted
the obtained global and local SMs.As shown in Figure 3,
SM improved the clarity of the organ boundaries.

2.4.2 CNN-encoder

Concretely, Given an input image x with a spatial reso-
lution of H (# of height) × W (# of width), depth dimen-
sion of D(# of slices). Our goal was to predict the cor-
responding pixel-wise label map with size H × W . The
CNN-encoder consisted of four stages of convolution
blocks, which repeated application of two 3 × 3 con-
volutions (unpadded convolutions), each followed by a
Rectified Linear Unit (ReLU) activation and a 2 × 2 max

pooling operation with stride 2 for down sampling. In this
way, we encoded images into high-level feature repre-
sentations, and then the feature maps produced by cnn
encoder could be formally expressed as

FCNN
E (x, 𝜃) ∈ RC× H

2s+1 ×
W

2s+1 (5)

where E indicates the different encoders, 𝜃 denotes
the parameters of the CNN-encoder, S denotes the
stages of the CNN-encoder, and C denotes the num-
ber of channels. At the lowest level, we fused the final
output of all encoders in the channel dimension, so
that the up-sampling process could obtain more feature
information.
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F IGURE 3 Compare and display the original coronary CT angiography (CCTA) image, the labeled image and the saliency map. From this
picture, the addition of the saliency map improved the tissue contrast of the organs in the original CCTA image and also grasped more
information about the boundaries. It improved the clarity of the CCTA image boundaries, which played a important role in the following
segmentation

2.4.3 Transformer encoder

The transformer encoder was a composition of an
input-to-sequence layer and L layers of multi-head
self -attention (MSA) and multi-layer perceptron (MLP)
blocks. Considering that transformer deal with the infor-
mation in a sequence-to-sequence manner, we first flat-
ten the feature maps produced by the CNN-encoder into
a 1D sequence. The CNN encoder designed for CCTA
image segmentation down sample a 2D image X ∈

RH×W×3into a feature map F ∈ R
H
16
×

W
16
×C,we thus decide

to set the transformer input sequence lengthH∗W

256
,This

way, the output sequence of the transformer can be sim-
ply reshaped to the input feature map of the decoder. To
encode the spatial information which was important for
CCTA image segmentation,we introduced the learnable
position embeddings Xpos, which was added to the fea-
ture map Xf to form the final sequence input, and the
feature embeddings Xe can be created as follows:

Xe = Xf + Xpos (6)

MSA was the key components of transformer layers,
and MSA was an extension with m independent SA oper-
ations (Equations (7) and (8)). Therefore, the output of
the lth layer could be written as follows:

query = Xl−1 WQ, key = Xl−1WK, value = Xl−1WV (7)

SA
(
Xl−1

)
= Xl−1

+ softmax

(
Xl−1WQ (XWK)√

d

)(
Xl−1Wv

)
(8)

MSA
(
Xl−1

)
= Concat (SA1,… , SAh) Wl

O, (9)

where WQ∖Wk∖WV ∈ Rc∗d are the learnable parame-
ters of three linear projection layers, and d is the dimen-
sion (of query, key, and value). The transformer encoder
was composed of L transformer layers, which consisted
of a multi-head attention (MHSA) block and a feed for-
ward network. As depicted in Figure 2, the whole calcu-
lation could be formulated as:

Xl = MSA
(
Xl−1

)
+ MLP

(
MSA

(
Xl−1

))
(10)

To thoroughly evaluate the proposed VST framework
and validate the performance under different settings,
a variety of ablation studies were performed, including:
model scaling. (i.e., depth [L] and number of heads [h]).
Two hyper-parameters, number of heads (h), and the
number of transformer layers (depth L) mainly deter-
mine the scale of transformer.We conduct ablation study
to verify the impact of transformer scale on the segmen-
tation performance. As shown in Table 1, the network
with h = 8 and L = 8 achieves the best average scores
of cardiac structures. Increasing the number of heads
(d) may not necessarily lead to improved performance
(L = 8, h = 12), and increasing the number of trans-
former layers (depth L) may also not necessarily lead
to improved performance (L = 12, h = 8). Considering
that the experiments results and the computation cost,
we adopt L = 8 and h = 8 for all the experiments.

2.4.4 Decoder

The decoder, a pure CNN architecture, which consisted
of stacked up-sampling steps to decode the hidden fea-
ture for outputting. Obviously, we need firstly design a
feature mapping module to project the 1D sequence of
hidden features back to a standard shape of the low-
est CNN feature map and also, the skip connections
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TABLE 1 Ablation study on model scaling

Dice

Depth (L)
Number of
heads (h) LVM LV LA RV RA AO Average

6 8 0.83 0.94 0.86 0.89 0.90 0.91 0.89

8 8 0.87 0.95 0.90 0.93 0.91 0.95 0.92

8 12 0.87 0.92 0.90 0.92 0.92 0.92 0.90

12 8 0.84 0.93 0.91 0.88 0.89 0.93 0.89

Abbreviations: AO, aortic; LA, left atrial; LV, left ventricular; LVM, left ventricular myocardium; RA, right atrial; RV, right ventricular.

between encoder and decoder were used to obtain more
low-level details for segmentation task.

2.5 Processing and statistical analysis

The VST model was trained from scratch and evalu-
ated using fivefold cross-validation on the training set.
All experiments follow a fivefold cross-validation, using
80% of images in training and 20% in validation. Specif-
ically, we divided all the obtained slices into five parts,
which were not included among each other, four parts
were used as the training set,and the remaining one was
used as the validation set. Five parts data were taken in
turn as the validation set, we calculated the average of
the five experimental results. In order to ensure the accu-
racy of the experimental results,fivefold cross-validation
experiments were repeated five times.We took the aver-
age of the five times experimental results as the final
results.

In the training stage, we used the Pytorch software
packages to train the model, with Adam optimizer (a
momentum of 0.1 and an initial learning rate of 0.01).To
weigh the balance between training time cost and per-
formance reward,VST was trained for 1000 epochs,and
each epoch contains 250 iterations with a batch size of
12.We train our networks with a combination of dice and
cross entropy loss:

Ltotal = Ldice + LCE (11)

To quantitatively evaluate the segmentation results,
we calculated the DSC and Hausdorff distance (HD),
we also randomly selected a set of test data in fivefold
cross-validation to compare the volume of each struc-
ture of the heart between automatic segmentation and
manual segmentation and analyzed whether the statisti-
cal difference is significant. Statistical analysis was per-
formed using SPSS software (V26.0;SPSS,Chicago, IL,
USA). Normal distribution variables were expressed as
the mean ± standard deviation (X ± SD), paired sample
t-test was used to compare the data of manual segmen-
tation and automatic segmentation. Non-normal distri-
bution variables were represented by the median and
its quartile range (M (Q1, Q3)); the comparison between

TABLE 2 The DSC scores of cardiac structures

Structure DSC ± SD

Left ventricular myocardium 0.87 ± 0.31

Left ventricular 0.94 ± 0.22

Left atrial 0.90 ± 0.28

Right ventricular 0.92 ± 0.23

Right atrial 0.91 ± 0.34

Aortic 0.96 ± 0.14

Average 0.92 ± 0.25

Abbreviations: DSC, Dice similarity coefficient; SD, standard deviation.

manual segmentation and automatic segmentation data
adopted Wilcoxon signed-ranks tests with p < 0.05 con-
sidered significantly different.

3 RESULT

Table 2 lists the DSC between reference segmentation
and automatic segmentation on CCTA images using
five-fold cross validation to benchmark the segmen-
tation method. Automatic segmentation of all cardiac
structures achieved a DSC ≥ 0.87, while the DSC was
lowest on the LVM (0.87). If the LVM is excluded, all the
structures will achieve a DSC ≥ 0.90. AO had the best
performance with DSC = 0.96. In this study, the average
DSC was 0.92,and HD was 7.2 ± 2.1 mm.On the whole,
this study achieved very good results.

Table 3 shows the volume calculation and statistical
analysis of automatic and manual cardiac segmenta-
tion in 12 cases. It can be shown from the table that the
volume range of each structure of the heart was large
among different people. There was no significant statis-
tical difference in cardiac structures except LVM and LA.

4 DISCUSSION

Accurate segmentation of cardiac structures plays a
more and more important role in cardiac functional
assessment. This is not only because the volume
change can be measured by whole heart segmenta-
tion to calculate ESV, EF, and other indicators.24,25 More



WANG ET AL. 7 of 11

TABLE 3 Volume statistics results of manual and automatic segmentation of cardiac structures

Manual segmentation Auto segmentation Comparison
Structure Range (ml) M (Q1, Q3) Range(ml) M (Q1, Q3) Z value p-Value

LVM 65.4–128.8 86.1 (74.7, 111.4) 66.2–129.0 86.8 (75.0, 111.8) –2.084 0.037

LV 45.1–173.5 104.3 (94.2, 152.2) 44.4–172 104.9 (94.2, 154.7) –0.784 0.433

LA 38.4–98.9 61.4 (45.6, 84.1) 39.0–100.4 61.6 (46.8, 84.8) –2.041 0.041

RV 62.9–198.9 121.7 (101.4, 171.4) 63.3–200.2 122.4 (103.8, 171.3) –1.256 0.209

RA 51.1–114.2 67.0 (59.9, 85.5) 52.6–114.6 67.7 (59.3, 87.2) –1.021 0.307

AO 21.4–48.8 29.9 (26.4, 42.4) 22.1–48.2 29.7 (26.3, 42.8) –0.315 0.753

Abbreviations: AO, aortic; HD, Hausdorff distance; LA, left atrial; LV, left ventricular; LVM, left ventricular myocardium; RA, right atrial; RV, right ventricular.

importantly, the accurate segmentation of the whole
heart based on artificial intelligence (AI) on a phase
of the R-R interval plays a vital role and has broad
prospects for promoting the development of cardiac
functional imaging (such as CT and MR) to track move-
ment, so as to ensure more accurate application in the
diagnosis of cardiovascular diseases.26–28 Because of
ECG-gated and very short acquisition time,CCTA image
can well capture the static images of a certain phase in
the cardiac cycle and effectively suppress the artifacts
of heart beat. On the other hand, intravascular injection
of contrast agent can produce obvious contrast between
cardiac cavity and myocardium, and there are differ-
ences in the concentration of contrast agent between
different cardiac cavities. Although some articles have
reported the segmentation in dual-energy non-contrast
enhanced cardiac CT but still based on the contrast-
enhanced CCTA images.29 This high-quality image with
contrast difference is more conducive to the segmenta-
tion of heart substructures. However, because there is
no obvious boundary and contrast difference between
the partial substructures of the heart, which brings dif-
ficulties to the segmentation automation and accuracy.
The application of AI in the field of medical image seg-
mentation provides a very bright direction for cardiac
structures segmentation. With the continuous improve-
ment of algorithms and methods, the efficiency and
accuracy have been greatly improved.

In this study, we explored using vision saliency-based
transformer architecture for CCTA image segmentation
without any pretraining. Multiscale feature representa-
tions have shown to benefit various CV tasks.30–32 Espe-
cially, we leverage the multi-scale feature extracted from
CNN to fed to the transformer encoder. VST not only
inherits the advantage of CNN for modeling local con-
text information but also leverages transformer on learn-
ing global semantic correlations. In our method, we also
adopted a vision attention training strategy, which can
improve the contrast of the organ tissues. VST achieves
superior performances than various competing meth-
ods, including CNN-based self -attention methods. We
apply this method to the segmentation of cardiac struc-
tures, and the findings are as following: (1) The lowest

Dice coefficient score was LVM (0.87), and the highest
was AO (0.96),with an average score of 0.92,showed an
overall high level of accuracy. (2) The results of manual
segmentation and automatic segmentation were visu-
alized by 3D reconstruction, and they had a high over-
lap. This meets the clinical requirements and is of great
value for clinical application.(3) Most structures volumes
of the automatic segmentation and manually obtained
reference had small statistical difference and agreed
well.

Emerging deep-learning methods appear as innova-
tive and appealing tools and based on CNN, FCN, U-
net,and various innovative algorithms are applied in this
research direction. In this study, we try to improve the
segmentation accuracy of our method as much as pos-
sible.For quantitative analysis,we use the Dice similarity
coefficient to compare our proposed methods with the
other state of the art methods. In Table 4, we can see
that our method has the higher DSC scores for each
of the six cardiac structures, and four scores are the
highest among these start-of -the-art methods, the aver-
age DSC scores are also the highest among the meth-
ods, which also shows the advantages of VST model. In
addition, by comparing HD in the table, we can also see
our transformer architecture contributes to more accu-
rate segmentation.

To illustrate the effectiveness of our approach, perfor-
mance evaluation of proposed architectures with var-
ious normalization techniques are shown in Table 5.
U-Net (using a pure CNN encoder), multi-U-Net (using
several pure CNN encoders), multi-U-Net+transformer
(using a hybrid CNN–transformer encoder), multi-U-
Net+transformer+dual-input (using a vision saliency-
based hybrid CNN–transformer encoder), in the vali-
dation of Multi-U-Net, the average DSC performance
was improved by 0.01. When compared with U-Net
in segmentation in respect of Cardiac structures. The
multi-U-Net+transformer showed better performance
for average DSC by 0.03, respectively, over Multi-U-
Net for the segmentation of cardiac structures. The
proposed multi-U-Net+transformer+dual-input boosted
the performance of segmentation of LVM, LV, LA, RV,
RA, AO yielding scores for DSC to 0.87, 0.94, 0.90,
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TABLE 4 Results for each network in Dice similarity coefficient

DSC
Network LVM LV LA RV RA AO average HD (mm)

Multi-planar FCNs (2D)40 0.85 0.90 0.91 0.88 0.83 0.90 0.88 24.4 ± 11.4

A pipeline of two FCNs (2D)41 0.88 0.91 0.92 0.90 0.88 0.93 0.90 25.2 ± 10.8

Multi-view UNet (2.5D)42 0.87 0.93 0.90 0.83 0.88 – – 31.1 ± 13.2

Faster RCNN and U-net (3D)43 0.82 0.87 0.83 0.90 0.84 0.91 0.86 –

3D FCN (3D)44 0.81 0.90 0.79 0.81 0.85 0.72 0.81 29.0 ± 15.8

3D deeply supervised U-Net (3D)45 0.84 0.89 0.89 0.81 0.81 0.87 0.85 44.9 ± 16.1

R-CNN based on SqueezeNet (3D)46 0.92 0.85 0.93 0.81 0.87 0.91 0.88 –

Ours (VST) 0.87 0.94 0.90 0.92 0.91 0.96 0.92 7.2 ± 2.1

Abbreviations: AO, aortic; CNN, convolutional neural networks; RCNN, region convolutional neural networks; DSC, Dice similarity coefficient; FCNs, fully convolutional
networks; HD, Hausdorff distance; LA, left atrial; LV, left ventricular; LVM, left ventricular myocardium; RA, right atrial; RV, right ventricular. The bold values in the table
represent the best performanceof each column.

TABLE 5 Performance evaluation of proposed architectures with various normalization techniques

DSC
Model LVM LV LA RV RA AO Average

U-Net 0.86 0.91 0.82 0.84 0.81 0.84 0.85

Multi-U-Net 0.87 0.92 0.74 0.86 0.90 0.85 0.86

Multi-U-Net+transformer 0.87 0.92 0.86 0.87 0.89 0.93 0.89

VST (multi-U-Net+transformer+dual-input) 0.87 0.94 0.90 0.92 0.91 0.96 0.92

Abbreviations: AO, aortic; DSC, Dice similarity coefficient; LA, left atrial; LV, left ventricular; LVM, left ventricular myocardium; RA, right atrial; RV, right ventricular; VST,
visual saliency and transformer.

0.92, 0.91, 0.96, respectively. It corroborates that our
VST model using a hybrid CNN–transformer encoder
has a stronger ability than using a pure CNN encoder
to learn effective representations for medical image
segmentation.

In our study, the AO had the highest DSC score, and
the LV had the lowest. Several reasons may explain
these observations. First, on the CCTA image, the con-
trast medium concentration in the aorta is very high and
uniform, which makes the aorta have a clear boundary
with other structures.33 The segmentation effect in pre-
vious studies was very good. On the premise of good
tissue contrast, we added the input of visual significant
images, which can better sharpen the structural edge.
Therefore, we can get higher DSC score in aortic seg-
mentation.Second,regarding LVM,we elected to include
the papillary muscles into the LV label as a common
practice,34,35 although the papillary muscles include into
the LVM label in line with magnetic resonance imag-
ing measurements guidelines.36 On the CCTA image,
its density is consistent with that of LVM. Due to the
high density of LV caused by contrast agent, the pap-
illary muscles contour is often divided into LVM on the
visual SM (as shown in Figure 3). From a segmenta-
tion standpoint, it likely complicated the automatic delin-
eation of the LVM border, which will adversely affect the
result of automatic segmentation. Moreover, the LV has

a stronger contrast than the LVM, this effect is much
smaller. I think this may explaining the lowest Dice score
observed for LVM in the present study. Nevertheless,
VST model still achieved a good Dice score compared
with other studies, showing its excellent performance in
heart substructures segmentation.

In order to display the effect of segmentation, we per-
formed a three-dimensional visual display of the results
of each heart substructure manually and automatically
segmented (as shown in Figure 4). As can be seen from
the figure, the automatically segmented image and the
manually segmented image can be well overlapped after
being superimposed, and only a few edge regions are
under or over segmented. In the aspect of visualization,
most studies only show the segmentation contour on the
2D image and compare it with the standard value.37,38

Morris39 only made the overall three-dimensional visual-
ization of the whole heart structure. In our study,we real-
ized the visual display of the segmented image and the
manually segmented image,and overlapped the display,
which is very rare in other studies. Three-dimensional
visualization is conducive to more vividly showing the
differences of nonoverlapping pixels of the structure,
and this result is very necessary for clinical application.

We also calculated the volume of each structure of
the heart after automatic segmentation and compared
it with manual segmentation results. It shows excellent
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F IGURE 4 Three dimensional
visualization displayed the manually
segmented image, visual saliency and
transformer (VST) automatically segmented
image, and them overlapped. The first column
was the manual segmentation image, the
second column was the automatic
segmentation image, and the third column
was the overlay display. In the overlay display
image, dark red represented the manual
segmentation of non overlapping pixels, while
gray green represented the automatic
segmentation of non overlapping pixels. On
the whole, they had a high overlap

correlations between manually obtained and deep-
learning predicted volumes for most structures.Although
statistically significant absolute differences in volume
measurement for the LVM and LA were observed, the
mean differences of measurement for all structures
were low. This explains the accuracy and practicability
of segmentation from a clinical point of view, and the
analysis of the volume of different cardiac structures
has more practical significance for clinical application. It
shows from the study that there is a statistical difference
in the volume of LVM, and its DSC is relatively low. This
result may have a positive correlation with DSC. About

the statistical difference in LA volume, we can find from
the image that the LA is connected with superior and
inferior vena cava, and heir enhanced density is consis-
tent without obvious boundary. The input visually signifi-
cant image does not seem to play a role in this boundary
enhancement because these structures are continuous,
and there is no difference in density. These may be the
main factor leading to the difference in volume between
automatic segmentation and manual segmentation, or
it may be solved by increasing the training data.

In conclusion, we developed a dual-input deep learn-
ing segmentation model based on VST algorithm,which
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achieved promising results in the segmentation of
cardiac structures. This will greatly benefit its potential
clinical application. It will surely contribute to establish
a more robust and accurate cardiac structure segmen-
tation methods and help to diagnose and treat patients
with heart diseases.
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