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Cellular exosome-mediated crosstalk in tumor microenvironment (TME) is a critical

component of anti-tumor immune responses. In addition to particle size, exosome

transport and uptake by target cells is influenced by physical and physiological factors,

including interstitial fluid pressure, and exosome concentration. These variables differ

under both normal and pathological conditions, including cancer. The transport of

exosomes in TME is governed by interstitial flow and diffusion. Based on these

determinants, mathematical models were adapted to simulate the transport of exosomes

in the TME with specified exosome release rates from the tumor cells. In this study, the

significance of spatial relationship in exosome-mediated intercellular communication was

established by treating their movement in the TME as a continuum using a transport

equation, with advection due to interstitial flow and diffusion due to concentration

gradients. To quantify the rate of release of exosomes by biomechanical forces acting

on the tumor cells, we used a transwell platform with confluent triple negative breast

cancer cells 4T1.2 seeded in BioFlex plates exposed to an oscillatory force. Exosome

release rates were quantified from 4T1.2 cells seeded at the bottom of the well following

the application of either no force or an oscillatory force, and these rates were used

to model exosome transport in the transwell. The simulations predicted that a larger

number of exosomes reached the membrane of the transwell for 4T1.2 cells exposed

to the oscillatory force when compared to controls. Additionally, we simulated the

interstitial fluid flow and exosome transport in a 2-dimensional TME with macrophages,

T cells, and mixtures of these two populations at two different stages of a tumor

growth. Computational simulations were carried out using the commercial computational

simulation package, ANSYS/Fluent. The results of this study indicated higher exosome

concentrations and larger interstitial fluid pressure at the later stages of the tumor growth.

Quantifying the release of exosomes by cancer cells, their transport through the TME,

and their concentration in TME will afford a deeper understanding of the mechanisms of

these interactions and aid in deriving predictive models for therapeutic intervention.
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INTRODUCTION

The tumor microenvironment (TME), which contains multiple
cell types, blood and lymph vessels, and extracellular matrix
(ECM), is often immunosuppressive, blocking anti-tumor
immunity, and mediating drug resistance (1). Previous studies
have shown that tumors have significantly increased hydrostatic
pressure and solid force (tension, compression, and shear),
and these forces activate signaling pathways and drive changes
in tumor cell proliferation, adhesion, migration, and survival
(2). Emerging evidence indicates that biomechanical forces in
the TME may influence tumor progression due to anti-tumor
immune response through cancer cell-immune cell crosstalk,
including that mediated by vesicular transport (3, 4). As a
key mediator of cell-cell signaling within the TME, tumor cell
exosomes have emerged as important regulators of several aspects
of tumor progression (5), including tumor initiation, progression
and invasion, and preparation of pre-metastatic niches (6, 7).
Exosomes are 50–150 nmmembrane-bound extracellular vesicles
(EVs) released by various cells in the TME, including tumor cells
(8). Exosomes contain proteins and microRNAs that can impact
immune cell function. We and others have demonstrated that
tumor-derived exosomes promote macrophages polarization (9–
11). They contribute to immune regulation and can create an
immuno-privileged environment within tumors (8, 12).

Exosomes secreted by the primary tumor lesion have been
shown to aid in the formation of metastatic lesion in distant
tissues (i.e., pre-metastatic niche formation) before the cancer
cells themselves migrate to the particular tissue. In 2012,
Peinado et al. (13) showed that when exosomes derived from
melanoma cells, with highly metastatic potential to the lungs,
were administered to mice, they promoted vascular permeability
through the introduction of bone marrow cells to the lungs and
thereby contributed to the formation of a pre-metastatic niche.
Similarly, pancreatic cancer cell-derived exosomes formed a pre-
metastatic niche for liver metastasis (6, 14). Internalization of
pancreatic cancer cell-derived exosomes containing macrophage
migration inhibitory factor by hepatic Kuppfer cells, induced
fibronectin and TGF-β production by hepatic stellate cells and
ultimately formed a pre-metastatic niche through introduction of
bone marrow cells to the liver (15). In the context of infections,
exosome transfer by lymphatic flow from the periphery to
the lymph node has been proposed to be a mechanism for
rapid exchange of infection-specific information that precedes
the arrival of migrating cells, thus priming the node for a
more effective immune response (16). Recent studies have
also investigated the utility of exosomes for drug delivery and
as carriers of bioactive molecules (17, 18). In vivo studies
demonstrate that after being internalized at the administration
site and transferred to the systemic circulation, exosomes
pass blood–tissue barriers and arrive in each tissue (17–19).

Abbreviations: CAD, Computer aided geometry; DMEM, Dulbecco’s Modified

Eagle Medium; ECM: extracellular matrix; EVs, Extracellular vesicles; MDSCs,

Myeloid-derive suppressor cells; MUSCL, Monotonic Upstream-centered

Scheme for Conservation Laws; NF, No force; OF, Oscillatory force; QUICK,

Quadratic Upstream Interpolation for Convective Kinematics; TME, Tumor

microenvironment; TNBC, Triple Negative Breast Cancer.

Intravenously administered exosomes have been shown to be
mainly distributed in the organs with a mononuclear phagocyte
system such as the liver, spleen, lungs, and kidneys (6, 13, 20).
In our own studies, intratumoral injection of tumor-derived
exosomes resulted in internalization by mononuclear phagocytes
including immune suppressive myeloid-derived suppressor cells
(21). The release of exosomes by cancer cells, their transport
through the TME, and their crosstalk with immune cells once
they reach the tissue are not well-understood. Even though
the importance of exosomes in TME is well-documented in
literature, tools to quantify exosomes in TME are lacking. This
necessitates the development of a numerical approach to simulate
the transport of exosomes and estimate concentration gradients
of exosomes in TME.

With the advent of faster and better computational
resources and algorithms, researchers have modeled various
aspects of the TME including simulation of tumor growth
in the microenvironment (22–25). Several studies have
comprehensively reviewed the existing models for tumor
growth, tumor progression and morphology (22, 23). These
models took into account the genetic characteristics of the tumor
and the TME. Bresch et al. (24) used partial differential equations
to model tumor growth and to estimate tumor densities, and
level set methods to model the membrane. Sciumè et al. (25)
developed an approach to model the TME with tumor and
healthy cells, interstitial fluid, and extracellular matrix using
continuum mechanics principles. Crespo et al. documented
the importance of mathematical modeling of heterogeneous
systems in tumor microenvironments and interplay of these
elements in TME (26). Further, they elucidated the use of
computational simulations in personalized cancer therapy and
precision medicine.

Various studies have addressed the computational simulation
of interstitial fluid flow and estimation of shear stress and
fluid pressure (27–30). Mitchell and King (27) recognized that
mechanical forces such as fluid shear stress can influence cancer
metastasis. They used the Stokes equation, Darcy’s law, and
Brinkman equation to estimate the fluid properties in TME.
Welter and Rieger (29) postulated that the elevated interstitial
fluid pressure due to a tumor could influence the interstitial
fluid flow and delivery of drugs and nutrients to the cells.
They modeled TME as a porous medium and the movement
of chemicals in TME was modeled using a transport equation.
A non-invasive technique to estimate the response of cancer
treatment using imaging, pharmacokinetics, and interstitial fluid
flow modeling was presented by Swinburne et al. (30). In this
modeling, the governing equations were taken as the Navier-
Stokes equation and the extracellular matrix was modeled as a
porous medium. Voronov et al. (31) used a numerical approach
to estimate the fluid shear stress in a scaffold. A high resolution
micro-CT was used to extract the detailed geometry of the
scaffold and the lattice Boltzmann method used for the modeling
of fluid flow inside the scaffold. Kim et al. used a medical
imaging technique (32) to extract high fidelity 3-D geometry of
a tumor and mathematical models to delineate blood flow and
molecular transport. The goal of this multi-scale modeling was
to develop a predictive model for tumor angiogenesis. Another
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approach to model TME are cell or agent-based methods,
which simulate the dynamic evolution of individual entities
called agents based on a set of rules (33–36). A survey of
different cell-based mathematical models to analyze TME and
their relative strengths and weaknesses are presented in Rejniak
andMcCawley (37). Cell-based approaches are particularly useful
in modeling individual cell behavior such as polarization of
immune cells, which provide insight into the dynamic processes
in heterogeneous TME.

Although various aspects of TME have been modeled using
computational simulations, the computational tools to simulate
exosome transport in TME are lacking. Quantifying exosome
concentration and factors that regulate their interactions with
various cells in the TME will afford a deeper understanding of
the mechanisms of interaction and aid in deriving predictive
models for therapeutic intervention. This article focuses on a
computational technique to model the transport of exosomes in
the TME by taking into account exosome production by cancer
cells, exosome advection due to interstitial flow, and exosome
diffusion due to concentration gradients.

MATERIALS AND METHODS

Computational Modeling
In this study, because of the sub-micron size of exosomes, their
movement in the TME was treated as a continuum and modeled
using an advection-diffusion transport equation, with advection
due to interstitial flow and diffusion due to concentration
gradients (38). In general, an exosome transport equation can be
written as,

∂ck

∂t
+

∂uick

∂xi
=

∂

∂xi

(

Ŵk
∂ck

∂xi

)

+ Sck , k = 1, . . . ,N (1)

Where ck is the concentration of the kth type of exosome in
a heterogeneous field with N number of exosome types, ui is
the interstitial fluid velocity components, Γk is the diffusion
coefficient, and Sck is the exosome source or sink term. In the
above equation, the second term on the left-hand side models
the movement of exosomes due to interstitial fluid flow, the first
term on the right-hand side models the diffusion of exosomes
due to concentration gradients, and the last term on the right-
hand side represents the production of exosomes by donor cells
(tumor cells) and uptake of exosomes by receptor cells (immune
cells). In this study, the uptake of exosomes by immune cells were
not taken into consideration. The diffusion coefficient for the
simulation was taken from the data published in the literature
(38–42). The interstitial fluid flow in TME is governed by the
Navier-Stokes equations (43–45), which is the mathematical
representation of the conservation of mass, momentum, and
energy. The fluid flow in TME is incompressible in nature, and
heat transfer is also not an important factor for the flow in TME
(46). Therefore, the energy equation was not considered for the
following simulations. The turbulent effects were not modeled
due to the fact that the Reynolds number for the interstitial flow
was very small. Therefore, the laminar flow assumption was used
for the simulations.

Computational simulations presented in this article were
carried out using the commercial computational simulation
package called ANSYS/Fluent (47). It has capabilities to model
Navier-Stokes and transport equations for different flow regimes
using various numerical schemes, and is commonly used in
academia and industries. In the present simulations, the transport
of exosome in TME was carried out in two stages using a
staggered approach. In the first stage the Navier-Stokes equations
were solved to estimate the velocity field. In the second stage, the
transport equations were solved using the velocity field predicted
from the first step. In these simulations, it was assumed that the
transport of exosomes in TME would not affect the underlying
velocity field. Geometries for TME, presented in this article were
extracted from the images created using Biorender (48). These
images were segmented using edge detection techniques to get
the outer boundaries of tumor and immune cells present in
TME, with the application of the geometry modeling program
SpaceClaim available in Ansys (47).

Validation of the Numerical Approach
Validation of the numerical methods using experimental data or
analytical solution of an appropriate problem is an important step
in computational simulations. The numerical approach to solve
the advection-diffusion equation used in this study was validated
using a Gaussian source in a planar shear flow (49, 50). The
computational domain for this simulation was taken as a square
with dimension 100 × 100mm, with the origin at the geometric
center. In this test case, the y-component of the velocity was taken
as zero and the x-component of the velocity was assumed to vary
linearly as U + λy, where U and λ are constants. At time equals
zero, the concentration of the transport variable was taken as an
impulse function at the origin, multiplied by a constant M. The
exact solution of the concentration for this Gaussian source in a
planar shear flow at any spatial location and at any time is given
by the relation (49, 50),
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Where c is the concentration and D is the diffusion coefficient.
More details on the analytical solution of this benchmark test case
can be found in references (42, 43). Numerical values of different
parameters used in this benchmark test case are listed in Table 1.
To keep the concentration as finite values in the computational
domain at the beginning of the simulation, the exact solution at
time equals 1min was used.

TABLE 1 | Parameters used for the benchmark test case.

Variable U λ M D

Numerical value 5.0 × 10−6 (m/s) 5.0 × 10−4 (1/s) 1.0 1.0 × 10−8 m2/s
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Cell Culture and Exposure to Strain
The rate of release of exosomes is influenced by biomechanical
forces acting on the tumor cells, and to quantify this, an
experimental setup depicted in Figure 1 was used. The murine
TNBC cell line 4T1.2 (an aggressive clone derived from 4T1)
was obtained from Dr. Robin L. Anderson’s laboratory (Peter
McCallum Cancer Center, Australia). 4T1.2 cells were cultured in
Dulbecco’sModified EagleMedium (DMEM) supplemented with
10% FBS and 10mM HEPES (MP Biomedicals, Santa Ana, CA).
Prior to the exposure to tensile strain, the 4T1.2 cells were stained
with the lypophilic dye PKH26 Red Fluorescent Cell Linker
(Sigma, St. Louis, MO), per themanufacturer’s instructions. 2.5×
105 4T1.2 were seeded on collagen coated 6 well UniFlex culture
plates (Flexcell International Corporation, Burlington, NC) and
cultured to confluence. Once confluent, the media was changed
to exosome depleted growth media and the plates were subjected
to 10% uniaxial oscillatory strain at 0.3Hz for 48 h, 10% constant
strain for 48 h, or no strain for 48 h using a FlexCell FX-6000 or
FX-5000 Tension System.

Preparation of Exosome-Depleted Media
The exosome-depleted medium was prepared as previously
described (51). Briefly, DMEM media supplemented with 20%
FBS was centrifuged using an ultracentrifuge overnight at
100,000 × g at 4◦C. The supernatant was filtered through

a 0.2µm cellulose acetate filter (Corning, NY). The exosome
depleted media was then diluted 1:1 with DMEM to make a final
concentration of 10% FBS and 10 mMHEPES.

Isolation of Exosomes From Conditioned
Media and Quantification of Concentration
Extracellular vesicles (EVs) were isolated as previously described
(21). Briefly, conditioned media was collected following 48 h
exposure to NF or OF and centrifuge at 2,000 × g to remove
any cell fragments or apoptotic bodies. The supernatant was
then incubated with the Total Exosome Isolation Reagent for
Cell Culture Media kit (ThermoFisher, Waltham, MA) per the
manufacturer’s protocol. Purified exosomes were stored in 50 µl
of PBS at −80◦C. Exosome concentration was quantified using
Imagestream flow cytometry.

Immune Cell Exosome Internalization
0.4µm pore size transwell filters (MilliporeSigma, Burlington,
MA) were added on top of strained or control 6 well plates
containing PKH26+ 4T1.2 cells. Subsequently, 5 × 104 purified
naïve lung macrophages (CD11b+CD64+), or 3 × 105 purified
splenic T cells (CD45+CD8+), or a mixture of these cell
populations (1:3 ratio of macrophages to T cells, total of 2
× 105) were added into the top well of the transwell filter.
After 24 h, cells on the upper surface of the transwell filter

FIGURE 1 | Schematic of experimental protocol. (A) 4T1.2 cells were seeded in BioFlex plates (1), once cells reached confluence they were exposed to OF strain (or

NF) (2). Strain exposed (or NF) cells were either put into co-cultured with immune cells (T cells and macrophages) using transwell (3) or conditioned media was

collected for exosome isolation. (B) Exosome release rate quantified following OF or NF. n = 8 per condition from 3 experiments, 2–3 replicates per experiment. (C)

Exosome internalization by T cells and macrophages was quantified using Imagestream flow cytometry, n = 2–3 per condition.
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were removed and tumor cell exosome internalization was
evaluated using ImageStream flow cytometry, evaluating cell
specific markers CD8 and CD11b, along with PKH26, to indicate
exosome internalization.

RESULTS

Results From the Validation of the
Numerical Approach
For the simulation of the validation test case, the concentration
of the transport variable at the beginning of the simulation
is shown in Figure 2A, and the concentration after 45min is
shown in Figure 2B. These data show the advection due to
the shear flow and diffusion due to the concentration gradient.
Also, it can be seen from the result that as time progresses, the
concentration gets distorted due to the velocity gradient normal
to the flow direction. Computations were carried out to calculate
the concentrations at 45min using different numerical schemes
and a quantitative comparison of the computed results with the
analytical data is presented in Figure 3.

3-D Transwell Modeling
To mimic the experimental setup depicted in Figure 1, a 3-
D computational model of the transwell geometry was created,
as shown in Figure 4A, and was used for the simulation
of exosome transport. This geometry was created using the
computer aided geometry (CAD) modeler available in ANSYS
(47). The cells that release exosomes were placed at the
bottom chamber and the release rates of the exosomes from
these cells were taken from the experiments described in the
previous section. The experimental measurements described
in section Isolation of Exosomes from Conditioned Media

and Quantification of Concentration showed that the average
exosome release rates were 515.3, and 986.3 per hour per 105 cells,
for NF and OF groups, respectively (Figure 1B). In co-culture
experiments, internalization of exosomes by immune cells could
reduce the exosome concentration near these cells, which could
potentially affect the diffusion. However, experimental evidence
showed that the concentration change due to internalization
was small (Figure 1C) and therefore, exosome internalization
measurements from the experiment were assumed negligible and
was not modeled. The presented numerical approach will be
further refined by adding a sink term in the transport equation
(equation 1) to represent exosome internalization in future
studies. For the computational simulations, 3.6 × 106 cells were
assumed to be placed at the bottom of the transwell for both NF
and OF groups, and the exosome source fluxes from the bottom
surface were estimated using the exosome release rates from the
experiments and the area of the bottom surface of the transwell.

For these simulations, the fluid medium in the transwell

arrangement was taken as stagnant. This resulted in the transport
of exosomes in the transwell based completely on diffusion.

Therefore, the velocity field was set as zero and the Navier-
Stokes equations were not used to calculate the flow field. The

diffusion coefficient for this simulation was taken as 2.0 × 10−3

m2/s. The unsteady transport equation was used to estimate the

exosome concentration in the computational domain. The initial

concentration of the exosomes in the transwell was taken as zero
and the computational simulation calculated the time evolution
of exosome concentration in the transwell. Simulations were
carried out for 72 h and the concentration of exosomes in the
computational domain for NF and the comparison of the number
of exosomes that reached the membrane for both NF and OF
groups are shown in Figures 4B,C.

FIGURE 2 | The initial conditions used for the benchmark simulations and the predicted concentration at the end of the simulation. In these figures, red represents

higher concentrations and blue represents lower concentrations. (A) Initial concentration used at the beginning of the simulation. (B) Computed concentration

after 45min.
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FIGURE 3 | Comparison of computed concentrations using different numerical schemes with the analytical solutions. Simulations were conducted using first order,

second order upwind, second order QUICK, and third order MUSCL schemes for the discretization of the spatial derivatives in the transport equation (37–39).

Computed concentrations are compared with the analytical results along the horizontal and vertical lines shown in Figure 2B. (A) Comparison of the concentration

along the horizontal line. (B) Zoomed in view of the comparison in the rectangle marked in (A). (C) Comparison of the concentration along the vertical line. (D)

Zoomed in view of the concentration in the rectangle marked in (C).

Modeling the Tumor Microenvironment
The presence of tumor in a microenvironment not only
influences the dynamic behavior of the cells in the
microenvironment, but also changes the interstitial fluid
flow properties such as pressure and shear stress distributions,
and flow patterns. As the tumor grows, obstruction to flow
increases and the exosome release rate also increases due to the
larger number of cancer cells. To model TME, two different
configurations at two different stages of the tumor growth in
TMEs with macrophages, T cells, and MDSCs were created
using Biorender (48). This approach of generating geometries
for TME using Biorender images was considered for this
proof-of-principle study. However, more realistic TME from
medical images will be considered in follow-up studies. The
TME with different cell types at the later stage of growth is
shown in Figure 5A. The distribution and proportions of these

cell populations were based on what is observed normally in
the TME in murine models of both lung and breast cancer
(21, 52–55). The extracted geometry using image segmentation
techniques and a zoomed-in view of the computational mesh
near the tumor surface are shown in Figures 5B,C, respectively.
In this simulation, the interstitial fluid was assumed to be
coming from the left side of the computational domain with
a velocity of 0.75 µm/s. The Navier-Stokes equations together
with laminar flow assumptions were used for the calculation
of the velocity field in TME. This computed velocity field
was used for the evaluation of the advective component of
the transport equation. The exosome release rates for the
initial and final stages of the tumor were taken as 2.5 and 7.5
exosomes per second, respectively. The computed streamlines
in TME and the concentration of exosomes after 45min are
shown in Figure 6.
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FIGURE 4 | Computational domain and the results from modeling of exosome transport in a transwell. For this modeling, exosome release rate for the cells placed at

the bottom surface is taken as 515.3 and 986.3/h./105 cells for NF and OF, respectively. (A) A cross-sectional view of the 3-dimensional computational domain used

for the simulation. (B) Exosome gradient on a plane through the middle of the transwell for NF after 72 h. (C) A comparison of the number of exosomes at the

membrane for NF and OF groups as a function of time.

DISCUSSION

The validation of the numerical approach for the computational
modeling was carried out using the advection and diffusion of a
material in a planar shear flow, which has an analytical solution.
The order of the discretization of the spatial derivative terms
in the transport equation (equation 1) influences the accuracy
of computational simulations. To estimate the accuracy of these
discretizations and to select an appropriate numerical scheme for
the rest of the simulations presented in this paper, simulations
were conducted using first order, second order upwind, second
order QUICK, and third order MUSCL schemes (43–45). The
computed concentrations at 45min from these simulations were
compared with the exact solution (equation 2) in Figure 3.
This comparison shows that the results from the second and
third order schemes are in very good agreement with the
analytical results, and the selected schemes are able to model both
advection and diffusion accurately. Therefore, for the rest of the
calculations, a second order numerical scheme was used.

The transwell simulations modeled the exosome transport
through a stagnant region due to the concentration gradient.
As expected, exosome gradient on a plane showed a higher
concentration of exosomes at the bottom wall and a lower
concentration at the top of both bottom and top wells. In this
figure, red represents a higher concentration of exosomes and

blue represents a lower concentration. Figure 4C compares the
number of exosomes that have reached the membrane at the
base of the top well for both NF and OF groups. Computational
simulations showed that at all times, a larger number of exosomes
reached the membrane for the OF group compared to the NF
group. After 72 h,∼2.86× 104 exosomes reached the membrane
for 4T1.2 cells exposed to OF compared 1.58× 104 exosomes for
those exposed to NF. The difference in the number of exosomes
passing through the membrane is due to the higher release rate
for the OF group, resulting in a higher concentration gradient
and faster diffusion. The rate of release of exosomes by the tumor
cells in the OF group is ∼1.9 times compared to the release rate
for the ones in the NF group. This shows the number of exosomes
that reached the membrane is close to being linearly proportional
to the exosome release rate.

As shown in Figure 6, the release rate for the later stage of
the tumor was taken as a larger value due to the presence of a
larger number of cells in the tumor. Here, red represents higher
and blue represents lower exosome concentrations. In the later
stage (B), the predicted average concentration of the exosomes
was∼3.5 times greater than the predicted exosome concentration
in the early stage (A). The streamline patterns in the TME for
the two different stages of the tumor growth is also plotted in
Figure 6. It can be seen from the figure that the flow pattern
in the TME is more complex for the later stage of the tumor
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FIGURE 5 | Biorender image, computational domain, and a view of the mesh for the tumor microenvironment with macrophages, T cells, and MDSCs. The tumor

microenvironments used for the simulations are created using Biorendor (48), and the rendered images is segmented to extract the geometry of various cell types in

the computational domain. (A) Rendered image using Biorender. (B) Extracted computational domain using image processing techniques. (C) A zoomed in view of

the mesh in TME used for the computational simulation.

FIGURE 6 | Results from the simulation of interstitial fluid flow and exosome concentration in TME at two stages in tumor growth. Exosomes produced by the tumor

cells at a constant rate are carried by the interstitial fluid flow and diffused based on the concentration gradient. (A) Predicted exosome concentration in an early

stage. (B) Predicted exosome concentration in a later stage. The predicted concentration of exosomes is ∼3.5 times greater for the later stage as compared to the

early stage.

growth, and this is due to more blockage for the interstitial fluid
flow. In addition to the complex flow pattern, the interstitial
fluid pressure was higher for the later stages of the tumor growth

compared to the early stage, see Figure 7. This could also lead to a
higher rate of exosome release due to the larger mechanical forces
acting on the tumor surface. However, in this simulation the
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FIGURE 7 | Pressure distribution in the TME at the early and later stages of tumor growth. The Navier-Stokes equations are used to estimate the interstitial fluid flow

velocities and the pressure distribution within TME. (A) Predicted pressure distribution at early stage. (B) Predicted pressure distribution at later stage. The predicted

pressure distribution is greater for the later stage of the tumor growth, due to greater obstruction for the flow by a larger tumor.

influence of higher interstitial fluid pressure on exosome release
was not taken into account.

The concentration of exosomes in TME is an important
parameter in cellular crosstalk and evolution of the dynamic
environment. Drug delivery and microRNA delivery via
exosomes for specific targets in the TME is an active area of
investigation that has significant translational potential. This
paper presents a numerical approach to model the transport
of exosomes in the TME and quantify exosome concentrations.
Results are presented to validate the approach using a benchmark
test case, and the accuracy of different numerical schemes
are presented by comparing numerical results with the exact
solution. The numerical approach presented in our studies is
a valuable tool to quantify exosome concentration, exosome
gradient, and time evolution of exosome concentration in a TME.
This approach can be combined with agent-based models to
simulate exosome uptake by immune cells and their polarization.
This will enable the evaluation of the influence of different
parameters, including the magnitude of force, the frequency
and duration of the application, and distance from the tumor
cells on the impact of exosomes on immune populations and
their polarization rather quickly, without conducting a large
number of experiments. This will also make it easier, faster,
and more cost-effective to study the effect of the wide range
of these parameter values on immune cell polarization that
determine the effector or suppressor function at the TME. The
use of this numerical approach for in-vivo applications requires
the proper estimation of tissue properties in a heterogeneous
environment, accurate representation of distribution of various
cell types in the dynamic ECM environment, and the uptake
and polarization of immune cells. However, this approach could
serve as a tool to study the propagation of exosomes secreted
by the primary tumor lesion and pre-metastatic niche formation
in distant tissues, before the cancer cells themselves migrate to
the particular tissue, and this will be explored in future studies.
Additionally, modeling the dynamics of exosome transport in in-

vitro models will provide insights to enhance the understanding
of exosome transport in vivo from the primary tumor site to
metastatic sites of the tumor and how exosome transport may
influence metastatic niche.
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